
IBM Informix
Guide to SQL
Reference
IBM Informix 4GL, Version 4.1

IBM Informix SQL, Version 4.1
IBM Informix ESQL/C, Version 5.2
IBM Informix ESQL/COBOL, Version 5.0
IBM Informix SE, Version 5.0
IBM Informix OnLine, Version 5.2
IBM Informix NET, Version 5.2
IBM Informix STAR, Version 5.2
November 2002
Part No. 000-9122

ii IBM Informix Guide to
This document contains proprietary information of IBM. It is provided under a license agreement and is
protected by copyright law. The information contained in this publication does not include any product
warranties, and any statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2002. All rights reserved.

US Government User Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Note:
Before using this information and the product it supports, read the information in the
appendix entitled “Notices.”
 SQL: Reference

Table of Contents

Table of
Contents
Introduction
In This Introduction 3
About This Manual 3
Organization of This Manual 4
IBM Informix Products That Use SQL 5
Products Covered in This Manual 5
The Demonstration Database 6

Creating the Demonstration Database on IBM Informix OnLine . 7
Creating the Demonstration Database on IBM Informix SE. . . 8

New Features in IBM Informix Server Products, Version 5.x 9
Document Conventions 11

Typographical Conventions 11
Syntax Conventions 12
Example Code Conventions 17

Additional Documentation 18
Online Manuals 18
Error Message Files 19
Documentation Notes, Release Notes, Machine Notes 22

Compliance with Industry Standards 22
IBM Welcomes Your Comments 23

iv IBM In
Chapter 1 The stores5 Database
In This Chapter 1-3
Structure of the Tables 1-4

The customer Table 1-5
The orders Table 1-6
The items Table 1-6
The stock Table 1-8
The catalog Table 1-9
The cust_calls Table 1-10
The call_type Table 1-10
The manufact Table 1-11
The state Table. 1-11

The stores5 Database Map 1-11
Primary-Foreign Key Relationships 1-13

The customer and orders Tables. 1-14
The orders and items Tables 1-15
The items and stock Tables 1-16
The stock and catalog Tables 1-17
The stock and manufact Tables 1-18
The cust_calls and customer Tables 1-19
The call_type and cust_calls Table 1-20
The state and customer Tables 1-21

Data in the stores5 Database 1-21

Chapter 2 System Catalog
In This Chapter 2-3
Using the System Catalog 2-4

Accessing the System Catalog 2-8
Updating System Catalog Data 2-9

Structure of the System Catalog 2-9
SYSBLOBS 2-10
SYSCHECKS 2-11
SYSCOLAUTH 2-11
SYSCOLDEPEND 2-12
SYSCOLUMNS 2-13
SYSCONSTRAINTS 2-16
SYSDEFAULTS 2-17
SYSDEPEND 2-18
SYSINDEXES 2-18
formix Guide to SQL: Reference

SYSOPCLSTR 2-21
SYSPROCAUTH 2-23
SYSPROCBODY 2-24
SYSPROCEDURES 2-25
SYSPROCPLAN 2-26
SYSREFERENCES 2-27
SYSSYNONYMS 2-27
SYSSYNTABLE 2-28
SYSTABAUTH 2-29
SYSTABLES 2-30
SYSUSERS 2-32
SYSVIEWS 2-33

System Catalog Map 2-33

Chapter 3 Data Types
In This Chapter 3-3
Database Data Types 3-4

BYTE . 3-5
CHAR(n) 3-6
CHARACTER(n) 3-7
DATE . 3-7
DATETIME 3-8
DEC. 3-11
DECIMAL[(p,s)] 3-11
DOUBLE PRECISION(n) 3-12
FLOAT(n) 3-12
INT . 3-13
INTEGER 3-13
INTERVAL 3-13
MONEY(p,s) 3-17
NUMERIC(p,s) 3-17
REAL . 3-17
SERIAL(n) 3-18
SMALLFLOAT 3-19
SMALLINT 3-19
TEXT . 3-19
VARCHAR(m,r) 3-21
Table of Contents v

vi IBM In
Data Type Conversions 3-22
Converting from Number to Number. 3-23
Converting Between Number and CHAR 3-24
Converting Between DATE and DATETIME 3-24

Range of Operations Using DATE, DATETIME, and INTERVAL . . 3-25
Manipulating DATETIME Values 3-26
Manipulating DATETIME with INTERVAL Values 3-27
Manipulating DATE with DATETIME and INTERVAL Values . 3-28
Manipulating INTERVAL Values 3-30
Multiplying or Dividing INTERVAL Values 3-30

Chapter 4 Environment Variables
In This Chapter 4-3
Setting Environment Variables 4-4
Informix Environment Variables 4-5

DBANSIWARN 4-7
DBDATE 4-8
DBDELIMITER 4-9
DBEDIT . 4-10
DBFORMAT 4-10
DBLANG 4-11
DBMENU 4-12
DBMONEY. 4-12
DBNETTYPE 4-13
DBPATH. 4-14
DBPRINT 4-15
DBREMOTECMD 4-15
DBSRC . 4-16
DBTEMP 4-17
DBTIME . 4-17
INFORMIXCOB 4-20
INFORMIXCOBDIR. 4-20
INFORMIXCOBSTORE 4-21
INFORMIXCOBTYPE 4-21
INFORMIXDIR 4-22
INFORMIXONLINEDIR 4-23
INFORMIXTERM 4-23
NOSORTINDEX 4-24
SQLEXEC 4-25
SQLRM . 4-26
formix Guide to SQL: Reference

SQLRMDIR 4-27
TBCONFIG 4-27

UNIX Environment Variables 4-28
PATH . 4-28
TERM . 4-29
TERMCAP 4-29
TERMINFO 4-30

Chapter 5 Error Handling with SQLCA
In This Chapter 5-3
The SQLCA Record in IBM Informix 4GL 5-5
The sqlca Structure in IBM Informix ESQL/C 5-7
The SQLCA Record in IBM Informix ESQL/COBOL 5-10

Chapter 6 Using Descriptors
In This Chapter 6-3
The System Descriptor Area and the sqlda Structure in ESQL/C . 6-4

Using a System Descriptor Area 6-5
Using Pointers to an sqlda Structure 6-9

The System Descriptor Area in ESQL/COBOL 6-13
Using a System Descriptor Area 6-13

Chapter 7 Syntax
In This Chapter 7-9
SQL Statements 7-9

ALLOCATE DESCRIPTOR 7-13
ALTER INDEX 7-17
ALTER TABLE 7-20
BEGIN WORK 7-37
CHECK TABLE 7-39
CLOSE 7-41
CLOSE DATABASE 7-44
COMMIT WORK 7-46
CREATE AUDIT 7-47
CREATE DATABASE 7-49
CREATE INDEX 7-54
CREATE PROCEDURE 7-58
CREATE PROCEDURE FROM 7-67
CREATE SCHEMA 7-68
CREATE SYNONYM 7-70
CREATE TABLE 7-75
Table of Contents vii

viii IBM
CREATE VIEW 7-97
DATABASE. 7-101
DEALLOCATE DESCRIPTOR 7-105
DECLARE 7-107
DELETE . 7-122
DESCRIBE 7-125
DROP AUDIT 7-131
DROP DATABASE 7-132
DROP INDEX 7-134
DROP PROCEDURE 7-136
DROP SYNONYM 7-137
DROP TABLE 7-139
DROP VIEW 7-141
EXECUTE 7-142
EXECUTE IMMEDIATE 7-147
EXECUTE PROCEDURE 7-150
FETCH . 7-153
FLUSH . 7-162
FREE . 7-165
GET DESCRIPTOR 7-169
GRANT . 7-175
INFO . 7-185
INSERT . 7-189
LOAD . 7-199
LOCK TABLE 7-204
OPEN. 7-207
OUTPUT 7-216
PREPARE 7-218
PUT . 7-230
RECOVER TABLE 7-238
RENAME COLUMN 7-241
RENAME TABLE 7-243
REPAIR TABLE 7-245
REVOKE 7-247
ROLLBACK WORK 7-254
ROLLFORWARD DATABASE 7-256
SELECT . 7-258
SET CONSTRAINTS 7-289
SET DEBUG FILE TO 7-291
SET DESCRIPTOR 7-293
SET EXPLAIN 7-301
SET ISOLATION 7-307
 Informix Guide to SQL: Reference

SET LOCK MODE 7-311
SET LOG 7-313
SET OPTIMIZATION. 7-315
START DATABASE 7-317
UNLOAD. 7-319
UNLOCK TABLE 7-323
UPDATE 7-325
UPDATE STATISTICS 7-335
WHENEVER 7-337

Segments . 7-344
Condition 7-345
Constraint Name 7-360
Database Name 7-362
Data Type 7-365
DATETIME Field Qualifier 7-368
Expression 7-370
Identifier 7-399
Index Name 7-413
INTERVAL Field Qualifier 7-414
Literal DATETIME. 7-416
Literal INTERVAL 7-419
Literal Number 7-422
Procedure Name 7-424
Quoted String 7-426
Relational Operator 7-429
Synonym Name 7-432
Table Name 7-434
View Name 7-438

Chapter 8 Stored Procedures and SPL
In This Chapter 8-5
Introduction to Stored Procedures and SPL 8-5

What You Can Do with Stored Procedures 8-6
Relationship Between SQL and a Stored Procedure 8-6

Creating and Using Stored Procedures 8-7
Creating a Procedure Using DB-Access 8-7
Creating a Procedure Using an Embedded-Language Product. 8-8
Commenting and Documenting a Procedure. 8-8
Diagnosing Compile-Time Errors 8-9
Looking at Compile-Time Warnings. 8-10
Generating the Text or Documentation 8-11
Executing a Procedure 8-12
Table of Contents ix

x IBM In
Debugging a Procedure 8-14
Re-creating a Procedure 8-16

Privileges on Stored Procedures 8-16
Privileges at Creation 8-16
Privileges at Execution 8-17
Revoking Privileges 8-19

Variables and Expressions 8-19
Variables. 8-19
Expressions. 8-23

Program Flow Control 8-26
Branching 8-26
Looping . 8-27
Function Handling 8-28

Passing Information into and out of a Procedure 8-29
Returning Results 8-29

Exception Handling 8-32
Trapping an Error and Recovering 8-32
Scope of Control of an ON EXCEPTION Statement 8-33
User-Generated Exceptions 8-34

SPL Statement Syntax 8-36
CALL. 8-37
CONTINUE 8-40
DEFINE . 8-42
EXIT . 8-50
FOR . 8-52
FOREACH 8-56
IF . 8-60
LET . 8-64
ON EXCEPTION 8-67
RAISE EXCEPTION 8-73
RETURN 8-75
SYSTEM 8-78
TRACE . 8-80
WHILE . 8-84

Appendix A Notices

Glossary

Index
formix Guide to SQL: Reference

Introduction
Introduction
In This Introduction 3

About This Manual 3

Organization of This Manual 4

IBM Informix Products That Use SQL 5

Products Covered in This Manual. 5

The Demonstration Database 6
Creating the Demonstration Database on IBM Informix OnLine . . 7
Creating the Demonstration Database on IBM Informix SE. . . . 8

New Features in IBM Informix Server Products, Version 5.x. 9

Document Conventions 11
Typographical Conventions 11
Syntax Conventions 12
Example Code Conventions 17

Additional Documentation 18
Online Manuals 18
Error Message Files 19

The finderr Script. 20
The rofferr Script 21

Documentation Notes, Release Notes, Machine Notes 22

Compliance with Industry Standards 22

IBM Welcomes Your Comments 23

2 IBM In
formix Guide to SQL: Reference

In This Introduction
This introduction provides an overview of the information in this manual
and describes the conventions it uses.

About This Manual
IBM Informix Guide to SQL: Reference is intended to be used as a companion
volume to IBM Informix Guide to SQL: Tutorial. Like IBM Informix Guide to SQL:
Tutorial, this book is written for people who already know how to use
computers and who rely on them in their daily work.

Whereas IBM Informix Guide to SQL: Tutorial explains the philosophy and
concepts behind relational databases, this volume is a reference source that
you can use on a daily basis after you have finished reading and experi-
menting with IBM Informix Guide to SQL: Tutorial.
Introduction 3

Organization of This Manual
Organization of This Manual
IBM Informix Guide to SQL: Reference includes the following chapters:

� Chapter 1, “The stores5 Database,” describes the structure and
contents of the demonstration database named stores5 that is
installed with every IBM Informix application development tool. It
includes a map of the nine tables in the database, illustrates the
columns on which they join, and displays the data in them.

� Chapter 2, “System Catalog,” provides details of the Informix
system catalog, which is the collection of 21 system catalog tables
that describe the structure of the stores5 database. The chapter
explains how to access and update statistics in the system catalog,
shows the system catalog structure, and lists the name and data type
for each column in each table.

� Chapter 3, “Data Types,” defines the column data types supported
by IBM Informix products, tells how to convert between different
data types, and describes how to use specific values in arithmetic
and relational expressions.

� Chapter 4, “Environment Variables,” describes the various
environment variables that you can or should set to properly use
your IBM Informix products. These variables identify your terminal,
specify the location of your software, and define other parameters of
your product environment.

� Chapter 5, “Error Handling with SQLCA,” explains how errors are
handled and tells how you can check the contents of the SQL
Communications Area (SQLCA) when you use the following
products: IBM Informix 4GL, IBM Informix ESQL/C, or IBM Informix
ESQL/COBOL.

� Chapter 6, “Using Descriptors,” describes the system descriptor area
and the SQL Descriptor Area (sqlda), which hold descriptive infor-
mation about data in dynamic SQL statements.

� Chapter 7, “Syntax,” explains the workings of all the SQL statements
supported by IBM Informix products. Detailed diagrams walk you
through every clause of each SQL statement. Thorough usage
instructions, pertinent examples, and references to related material
complete the SQL picture.
4 IBM Informix Guide to SQL: Reference

IBM Informix Products That Use SQL
� Chapter 8, “Stored Procedures and SPL,” describes how to create
and use stored procedures. It also contains the syntax of the Stored
Procedure Language (SPL) statements.

� A Notices appendix describes IBM products, features, and services.

� A glossary of common database terms follows the chapters, and a
comprehensive index directs you to areas of particular interest.

IBM Informix Products That Use SQL
IBM produces many application development tools and CASE tools that use
SQL. Application development tools currently available include products like
IBM Informix SQL, IBM Informix 4GL and the IBM Informix 4GL Interactive
Debugger, and the IBM Informix embedded-language products, such as
IBM Informix ESQL/C.

IBM Informix products work with a database server, either IBM Informix
OnLine or IBM Informix SE. If you are running applications on a network, you
will use an IBM Informix client/server product such as IBM Informix NET or
IBM Informix STAR. IBM Informix NET is the communication facility for
multiple IBM Informix SE database servers. IBM Informix STAR allows
distributed database access to multiple IBM Informix OnLine database
servers. You also can use IBM Informix NET on a client to access remote
OnLine database servers (as long as IBM Informix STAR is installed with
OnLine on the same database server).

Products Covered in This Manual
The information presented in this manual is valid for the following products
and versions, and indicates differences in their use of SQL where appropriate:

� IBM Informix 4GL (C Compiler Version and Rapid Development
System Version) Version 4.1

� IBM Informix SQL Version 4.1

� IBM Informix ESQL/C Version 5.2

� IBM Informix ESQL/COBOL Version 5.0
Introduction 5

The Demonstration Database
� IBM Informix SE Version 5.0

� IBM Informix NET Version 5.2

� IBM Informix OnLine Version 5.2

� IBM Informix STAR Version 5.2

The IBM Informix TP/XA User Manual discusses the special considerations you
should be aware of when using SQL statements with IBM Informix TP/XA.

The Demonstration Database
The DB-Access utility, which is provided with your IBM Informix database
server products, includes a demonstration database called stores5 that
contains information about a fictitious wholesale sporting-goods distributor.
The sample command files that make up a demonstration application are
included as well.

Most of the examples in this manual are based on the stores5 demonstration
database. The stores5 database is described in detail and its contents are
listed in Chapter 1, “The stores5 Database.”

The script that you use to install the demonstration database is called
dbaccessdemo5 and is located in the $INFORMIXDIR/bin directory. The
database name that you supply is the name given to the demonstration
database. If you do not supply a database name, the name defaults to stores5.
Follow these rules for naming your database:

� Names for databases can be up to 10 characters long.

� The first character of a name must be a letter.

� You can use letters, characters, and underscores (_) for the rest of the
name.

� DB-Access makes no distinction between uppercase and lowercase
letters.

� The database name should be unique.

When you run dbaccessdemo5, you are, as the creator of the database, the
owner and Database Administrator (DBA) of that database.
6 IBM Informix Guide to SQL: Reference

Creating the Demonstration Database on IBM Informix OnLine
If you installed your IBM Informix database server product according to the
installation instructions, the files that make up the demonstration database
are protected so that you cannot make any changes to the original database.

You can run the dbaccessdemo5 script again whenever you want to work
with a fresh demonstration database. The script prompts you when the
creation of the database is complete, and asks if you would like to copy the
sample command files to the current directory. Answer “N” to the prompt if
you have made changes to the sample files and do not want them replaced
with the original versions. Answer “Y” to the prompt if you want to copy
over the sample command files.

Creating the Demonstration Database on IBM Informix
OnLine
Use the following steps to create and populate the demonstration database in
the IBM Informix OnLine environment:

1. Set the INFORMIXDIR environment so that it contains the name of the
directory in which your IBM Informix products are installed. Set
SQLEXEC to $INFORMIXDIR/lib/sqlturbo. (For a full description of
environment variables, see Chapter 4, “Environment Variables.”)

2. Create a new directory for the SQL command files. Create the
directory by entering

mkdir dirname

3. Make the new directory the current directory by entering
cd dirname

4. Create the demonstration database and copy over the sample
command files by entering

dbaccessdemo5 dbname

The data for the database is put into the root dbspace.

To give someone else the SQL privileges to access the data, use the GRANT
and REVOKE statements. The GRANT and REVOKE statements are described
in Chapter 7.
Introduction 7

Creating the Demonstration Database on IBM Informix SE
To use the command files that have been copied to your directory, you must
have UNIX read and execute permissions for each directory in the pathname
of the directory from which you ran the dbaccessdemo5 script. To give
someone else the permissions to access the command files in your directory,
use the UNIX chmod command.

Creating the Demonstration Database on IBM Informix SE
Use the following steps to create and populate the demonstration database in
the IBM Informix SE environment:

1. Set the INFORMIXDIR environment so that it contains the name of the
directory in which your IBM Informix products are installed. Set
SQLEXEC to $INFORMIXDIR/lib/sqlexec. (For a full description of
environment variables, see Chapter 4.)

2. Create a new directory for the demonstration database. This
directory will contain the example command files included with the
demonstration database. Create the directory by entering

mkdir dirname

3. Make the new directory the current directory by entering
cd dirname

4. Create the demonstration database and copy over the sample
command files by entering

dbaccessdemo5 dbname

When you run the dbaccessdemo5 script, it creates a subdirectory called
dbname.dbs in your current directory and places the database files associated
with stores5 there. You will see both data and index files in the dbname.dbs
directory.

To use the database and the command files that have been copied to your
directory, you must have UNIX read and execute permissions for each
directory in the pathname of the directory from which you ran the
dbaccessdemo5 script. To give someone else the permissions to access the
command files in your directory, use the UNIX chmod command. Check with
your system administrator for more information about operating system file
and directory permissions. UNIX permissions are discussed in the
IBM Informix SE Administrator’s Guide.
8 IBM Informix Guide to SQL: Reference

New Features in IBM Informix Server Products, Version 5.x
To give someone else access to the database that you have created, grant them
the appropriate privileges using the GRANT statement in DB-Access. To
remove privileges, use the REVOKE statement. The GRANT and REVOKE
statements are described in Chapter 7.

New Features in IBM Informix Server Products,
Version 5.x
This section highlights the major new features implemented in version 5.x of
IBM Informix server products:

� Enhanced Connectivity (IBM Informix OnLine only)

The version 5.2 IBM Informix OnLine database server enables you to
connect to Version 7.x client application tools when both server and
client are installed in the same machine.

� Enhanced support for chunk offsets (IBM Informix OnLine only)

The version 5.2 IBM Informix OnLine database server supports chunk
offset values up to 2 terabytes.

� Referential and Entity Integrity

New data integrity constraints allow you to specify a column or col-
umns as representing a primary or foreign key of a table upon creation,
and to establish dependencies between tables. Once specified, a par-
ent-child relationship between two tables is enforced by the database
server. Other constraints allow you to specify a default value for a
column, or to specify a condition for a column that an inserted value
must meet.

� Stored Procedures

A stored procedure is a function written by a user using a combina-
tion of SQL statements and Stored Procedure Language (SPL). Once
created, a procedure is stored as an object in the database in a com-
piled, optimized form, and is available to other users with the
appropriate privileges. In a client/server environment, the use of
stored procedures can significantly reduce network traffic.
Introduction 9

New Features in IBM Informix Server Products, Version 5.x
� Dynamic SQL

Support is provided for the X/Open implementation of dynamic SQL
using a system descriptor area. This support involves the new SQL
statements ALLOCATE DESCRIPTOR, DEALLOCATE DESCRIPTOR,
GET DESCRIPTOR, and SET DESCRIPTOR, as well as changes in the
syntax of existing dynamic management statements.

� Optimizer Enhancement

You can use the new SET OPTIMIZATION statement to instruct the
database server to select a high or low level of query optimization.
The default level of HIGH causes the database server to examine and
select the best of all possible optimization strategies. Since this level
of optimization may result in a longer-than-desired optimization
time for some queries, you have the option of setting an optimization
level of LOW.

� Relay Module (IBM Informix NET only)

The new Relay Module component of IBM Informix NET resides on
the client machine in a distributed data processing environment and
relays messages between an application development tool and an
IBM Informix OnLine or IBM Informix SE database server through a
network interface. The Relay Module allows version 5.0 application
development tools to connect to a remote database server without
the need to run an Informix database server process on the client.

� Two-Phase Commit (IBM Informix STAR only)

The new two-phase commit protocol allows you to manipulate data
in multiple databases on multiple OnLine database servers within a
single transaction. It ensures that transactions that span more than
one OnLine database server are committed on an all-or-nothing
basis.

� Support for Transaction Processing in the XA Environment
(IBM Informix TP/XA only)

IBM Informix TP/XA allows you to use the OnLine database server as
a Resource Manager in conformance with the X/Open Preliminary
Specification (April 1990), Distributed Transaction Processing: The XA
Interface. The IBM Informix TP/XA User Manual describes the changes
in the behavior of existing SQL statements that manage transactions
in an X/Open environment.
10 IBM Informix Guide to SQL: Reference

Document Conventions
Document Conventions
This manual assumes that you are using IBM Informix OnLine as your
database server. Features and behavior specific to IBM Informix SE are noted
throughout the manual.

Typographical Conventions
IBM Informix product manuals use a standard set of conventions to introduce
new terms, illustrate screen displays, describe command syntax, and so forth.
The following typographical conventions are used throughout this manual:

Tip: When you are instructed to “enter” characters or to “execute” a command,
immediately press RETURN after the entry. When you are instructed to “type” the
text or to “press” other keys, no RETURN is required.

Convention Meaning

KEYWORD All primary elements in a programming language statement
(keywords) appear in uppercase letters in a serif font.

italics
italics
italics

Within text, new terms and emphasized words appear in italics.
Within syntax and code examples, variable values that you are
to specify appear in italics.

boldface
boldface

Names of program entities (such as classes, events, and tables),
environment variables, file and pathnames, and interface
elements (such as icons, menu items, and buttons) appear in
boldface.

monospace
monospace

Information that the product displays and information that you
enter appear in a monospace typeface.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans
serif font.

♦ This symbol indicates the end of product- or platform-specific
information.

Indicates a unique identifier (primary key) for each table.
Introduction 11

Syntax Conventions
Syntax Conventions
Syntax diagrams describe the format of SQL statements or commands,
including alternative forms of a statement, required and optional parts of the
statement, and so forth. Syntax diagrams have their own conventions, which
are defined in detail and illustrated in this section. SQL statements are listed
in their entirety in Chapter 7, “Syntax,” although some statements may
appear in other manuals.

Each syntax diagram displays the sequences of required and optional
elements that are valid in a statement. Briefly:

� All keywords are shown in uppercase letters for ease of identifi-
cation, even though you need not enter them that way.

� Words for which you must supply values are in italics.

A diagram begins at the upper left with a keyword. It ends at the upper right
with a vertical line. Between these points you can trace any path that does not
stop or back up. Each path describes a valid form of the statement.

Along a path, you may encounter the following elements:

Element Description

KEYWORD You must spell a word in uppercase letters exactly as shown;
however, you can use either uppercase or lowercase letters
when you enter it.

(.,;+*-/) Punctuation and mathematical notations are literal symbols
that you must enter exactly as shown.

" " Double quotes are literal symbols that you must enter as shown.
You can replace a pair of double quotes with a pair of single
quotes, if you prefer. You cannot mix double and single quotes.

variable A word in italics represents a value that you must supply. The
nature of the value is explained immediately following the
diagram unless the variable appears in a box. In that case, the
page number of the detailed explanation follows the variable
name.

(1 of 3)
12 IBM Informix Guide to SQL: Reference

Syntax Conventions
A reference in a box represents a subdiagram on the same page
or another page. Imagine that the subdiagram is spliced into the
main diagram at this point.

A reference to SQLR in another manual represents an SQL
statement or segment described in Chapter 7, “Syntax.”
Imagine that the statement or segment is spliced into the main
diagram at this point.

A code in an icon is a signal warning you that this path is valid
only for some products or under certain conditions. The codes
indicate the products or conditions that support the path. The
following codes are used:

This path is valid only for IBM Informix SE.

This path is valid only for IBM Informix OnLine.

This path is valid only for IBM Informix STAR.

This path is valid only for IBM Informix NET.

This path is valid only for IBM Informix 4GL.

This path is valid only for IBM Informix SQL.

This path is valid for SQL statements in all the
following embedded-language products:
IBM Informix ESQL/C, or IBM Informix
ESQL/COBOL.

This path is valid only for IBM Informix ESQL/C.

This path is valid only for IBM Informix
ESQL/COBOL.

This path is valid only for DB-Access.

This path is valid only if you are using Informix
Stored Procedure Language (SPL).

Element Description

(2 of 3)

ADD Clause
p. 7-14

Relational
Operator

see SQLR

I4GLI4GL

SESE

OLOL

STARSTAR

STARINET

I4GLI4GL

ISQLISQL

ESQLESQL

E/CE/C

E/CE/CO

E/CDB

STARSPL
Introduction 13

Syntax Conventions
This path is an Informix extension to ANSI-standard
SQL. If you initiate Informix extension checking and
include this syntax branch, you receive a warning. If
you have set the DBANSIWARN environment
variable, you receive the warnings at run time. To
receive the warnings at compile time, compile with
the -ansi flag.

A shaded option is the default. Even if you do not explicitly type
the option, it will be in effect unless you choose another option.

Syntax enclosed in a pair of arrows indicates that this is a
subdiagram.

The vertical line is a terminator and indicates that the statement
is complete.

A branch below the main line indicates an optional path.

A loop indicates a path that can be repeated.

A gate () in an option indicates that you can only use that
option once, even though it is within a larger loop.

Element Description

(3 of 3)

++

ALL

NOT

IN

variable

,

column1 key

1

14 IBM Informix Guide to SQL: Reference

Syntax Conventions
In Chapter 7, icons that appear in the left margin indicate that the accompa-
nying shaded text is valid only for some products or under certain
conditions. In addition to the icons described in the preceding list, you may
encounter the following icons in the left margin:

Figure 1 shows the elements of a syntax diagram for the CREATE DATABASE
statement.

This icon indicates that the functionality described in the
shaded text is valid only if your database is ANSI-compliant.

This icon indicates that the functionality described in the
shaded text conforms to X/Open standards for dynamic SQL.
This functionality is available when you compile your embed-
ded-language application with the -xopen flag.

E/CANSI

E/CX/O
Introduction 15

Syntax Conventions
Figure 1
Elements of a syntax diagram

To construct a statement using this diagram, start at the top left with the
keywords CREATE DATABASE. Then follow the diagram to the right,
proceeding through the options that you want. The diagram conveys the
following information:

1. You must type the words CREATE DATABASE.

2. You must supply a database name.

3. You can stop, taking the direct route to the terminator, or you can
take one or more of the optional paths.

4. If desired, you can designate a dbspace by typing the word IN and a
dbspace name.

SE Log Clause

CREATE DATABASE database name

IN dbspace

LOG IN "pathname"

MODE ANSI

BUFFERED

LOG

LOG MODE ANSI

OL Log Clause

WITH

WITH

Keywords
Variables

Reference Boxes

Terminator

Subdiagrams

Punctuation
SE Log Clause

Signals

OL Log Clause

OL SE

OL
16 IBM Informix Guide to SQL: Reference

Example Code Conventions
5. If desired, you can specify logging. Here, you are constrained by the
database server with which you are working.

� If you are using IBM Informix OnLine, go to the subdiagram
named OL Log Clause. Follow the subdiagram by typing the
keyword WITH, then choosing and typing either LOG, BUFFERED
LOG, or LOG MODE ANSI. Then, follow the arrow back to the
main diagram.

� If you are using IBM Informix SE, go to the subdiagram named SE
Log Clause. Follow the subdiagram by typing the keywords
WITH LOG IN, typing a double quote, supplying a pathname,
and closing the quotes. You can then choose the MODE ANSI
option below the line or continue to follow the line across.

6. Once you are back at the main diagram, you come to the terminator.
Your CREATE DATABASE statement is complete.

Example Code Conventions
Examples of SQL code appear throughout this manual. Except where noted,
the code is not specific to any single IBM Informix application development
tool. If only SQL statements are listed, they are not delineated by semicolons.
To use this SQL code for a specific product, you must apply the syntax rules
for that product. For example, if you are using DB-Access or IBM Informix
SQL, you must delineate the statements with semicolons. If you are using an
embedded language, you must use EXEC SQL and a semicolon (or other
appropriate delimiters) at the start and end of each statement, respectively.

For example, you might see the following example code:

DATABASE stores
.
.
.
DELETE FROM customer

WHERE customer_num = 121
.
.
.
COMMIT WORK
CLOSE DATABASE
Introduction 17

Additional Documentation
If you are using DB-Access or IBM Informix SQL, add semicolons at the end of
each statement. If you are using IBM Informix 4GL, use the code as it appears.
If you are using IBM Informix ESQL/C, add EXEC SQL or a dollar sign ($) at
the beginning of each line and end each line with a semicolon. For detailed
directions on using SQL statements for a particular application development
tool, see the manual for your product.

Also note that dots in the example indicate that more code would be added
in a full application, but it is not necessary to show it to describe the concept
being discussed.

Additional Documentation
For additional information, refer to the following types of documentation:

� Online manuals

� Error message files

� Documentation notes, release notes, and machine notes

Online Manuals
A CD that contains your manuals in electronic format is provided with your
IBM Informix products. You can install the documentation or access it directly
from the CD. For information about how to install, read, and print online
manuals, see the installation insert that accompanies your CD. You can also
obtain the same online manuals at the IBM Informix Online Documentation
site at http://www-3.ibm.com/software/data/informix/pubs/library/.
18 IBM Informix Guide to SQL: Reference

Error Message Files
You may want to refer to a number of related IBM Informix documents that
complement IBM Informix Guide to SQL: Reference:

� The SQL Quick Syntax Guide contains syntax diagrams for all state-
ments and segments described in this manual.

� A companion volume to the Reference, IBM Informix Guide to SQL:
Tutorial, provides a tutorial on SQL as it is implemented by
IBM Informix products. It describes the fundamental ideas and
terminology that are used when planning and implementing a
relational database. It also describes how to retrieve information
from a database, how to modify a database, and how to write a
program to retrieve database information and modify a database.

� You, or whoever installs your IBM Informix products, should refer to
the UNIX Products Installation Guide for your particular release to
ensure that your IBM Informix product is properly set up before you
begin to work with it.

� If you are using your IBM Informix product across a network, you
also may want to refer to the IBM Informix NET and IBM Informix STAR
Installation and Configuration Guide.

� Depending on the database server you are using, you or your system
administrator need either the IBM Informix OnLine Administrator’s
Guide or the IBM Informix SE Administrator’s Guide.

� When errors occur, you can look them up, by number, and learn their
cause and solution in the IBM Informix Error Messages manual. If you
prefer, you can look up the error messages in the online message file
described in the section “Error Message Files” below.

Error Message Files
IBM Informix software products provide ASCII files that contain all of the
error messages and their corrective actions. For a detailed description of
these error messages, refer to the IBM Informix Error Messages manual in the
IBM Informix Online Documentation site at
http://www-3.ibm.com/software/data/informix/pubs/library/.

In addition, there are two ways in which you can access the error messages
directly from the ASCII Error Message File.
Introduction 19

Error Message Files
� Use the finderr script to display one or more error messages on the
terminal screen.

� Use the rofferr script to print one error message or a range of error
messages.

The scripts are in the $INFORMIXDIR/bin directory. The ASCII file has the
following path:

$INFORMIXDIR/msg/errmsg.txt

The error message numbers range from -1 to -33000. When you specify these
numbers for the finderr or rofferr scripts, you can omit the minus sign. A few
messages have positive numbers. In the unlikely event that you want to
display them, you must precede the message number with a + sign.

The messages numbered -1 to -100 can be platform-dependent. If the message
text for a message in this range does not apply to your platform, check the
operating system documentation for the precise meaning of the message
number.

The finderr Script

Use the finderr script to display one or more error messages, and their
corrective actions, on the terminal screen. The finderr script has the following
syntax:

You can specify any number of error messages per finderr command. The
finderr command copies all the specified messages, and their corrective
actions, to standard output.

For example, to display the -359 error message, you can enter the following
command:

finderr -359

finderr

-

+

msg_num
20 IBM Informix Guide to SQL: Reference

Error Message Files
The following example demonstrates how to specify a list of error messages.
This example also pipes the output to the UNIX more command to control the
display. You can also redirect the output to another file so that you can save
or print the error messages:

finderr 233 107 113 134 143 144 154 | more

The rofferr Script

Use the rofferr script to format one error message, or a range of error
messages, for printing. By default, rofferr displays output on the screen. You
need to send the output to nroff to interpret the formatting commands and
then to a printer, or to a file where the nroff output is stored until you are
ready to print. You can then print the file. For information on using nroff and
on printing files, see your UNIX documentation.

The rofferr script has the following syntax:

The following example formats error message -359. It pipes the formatted
error message into nroff and sends the output of nroff to the default printer:

rofferr 359 | nroff -man | lpr

The following example formats and then prints all the error messages
between -1300 and -4999:

rofferr -1300 -4999 | nroff -man | lpr

-

+

start_msgrofferr

end_msg

+

-

Introduction 21

Documentation Notes, Release Notes, Machine Notes
Documentation Notes, Release Notes, Machine Notes
In addition to the IBM Informix set of manuals, the following on-line files,
located in the $INFORMIXDIR/release directory, may supplement the infor-
mation in IBM Informix Guide to SQL: Reference.

Please examine these files because they contain vital information about appli-
cation and performance issues.

A number of IBM Informix products also provide on-line Help files that walk
you through each menu option. To invoke the Help feature, simply press
CTRL-W wherever you are in your IBM Informix product.

Compliance with Industry Standards
The American National Standards Institute (ANSI) has established a set of
industry standards for SQL. IBM Informix SQL-based products are fully
compliant with SQL-92 Entry Level (published as ANSI X3.135-1992), which is
identical to ISO 9075:1992. In addition, many features of Informix database
servers comply with the SQL-92 Intermediate and Full Level and X/Open
SQL CAE (common applications environment) standards.

Online File Purpose

SQLRDOC_5.txt The documentation notes file describes features that are not
covered in the manual or that were modified since
publication.

ENGREL_5.txt The release notes file describes feature differences from
earlier versions of IBM Informix products and how these
differences might affect current products. This file also
contains information about any known problems and their
workarounds.

ONLINE_5.txt The machine notes file describes any special actions that
you must take to configure and use IBM Informix products
on your computer. Machine notes are named for the
product described.
22 IBM Informix Guide to SQL: Reference

IBM Welcomes Your Comments
IBM Welcomes Your Comments
To help us with future versions of our manuals, let us know about any correc-
tions or clarifications that you would find useful. Include the following
information:

� The name and version of your manual

� Any comments that you have about the manual

� Your name, address, and phone number

Send electronic mail to us at the following address:

docinf@us.ibm.com

This address is reserved for reporting errors and omissions in our documen-
tation. For immediate help with a technical problem, contact Customer
Services.
Introduction 23

1
Chapter
The stores5 Database
In This Chapter . 1-3

Structure of the Tables 1-4
The customer Table 1-5
The orders Table 1-6
The items Table 1-6
The stock Table 1-8
The catalog Table 1-9
The cust_calls Table 1-10
The call_type Table 1-10
The manufact Table 1-11
The state Table 1-11

The stores5 Database Map 1-11

Primary-Foreign Key Relationships 1-13
The customer and orders Tables 1-14
The orders and items Tables 1-15
The items and stock Tables 1-16
The stock and catalog Tables 1-17
The stock and manufact Tables 1-18
The cust_calls and customer Tables 1-19
The call_type and cust_calls Table 1-20
The state and customer Tables. 1-21

Data in the stores5 Database. 1-21

1-2 IBM
 Informix Guide to SQL: Reference

In This Chapter
The stores5 database contains a set of tables that describe an imaginary
business. The examples in this book are based on this database. The stores5
database is not ANSI-compliant. Information on creating the stores5 database
appears in the Introduction of this manual.

This chapter contains four sections:

� The first section describes the structure of the tables in the stores5
database. It identifies the primary key of each table, lists the name
and data type of each column, and indicates whether the column has
a default value or check constraint. Indexes on columns also are
identified and classified as unique or as allowing duplicate values.

� The second section shows a graphic map of the tables in the stores5
database and indicates the relationships between columns.

� The third section describes the primary-foreign key relationships
between columns in tables.

� The final section shows the data contained in each table of the stores5
database.
The stores5 Database 1-3

Structure of the Tables
Structure of the Tables
The stores5 database contains information about a fictitious sporting-goods
distributor that services stores in the western United States. This database
includes the following tables:

� customer

� orders

� items

� stock

� catalog

� cust_calls

� call_type

� manufact

� state

The following sections describe each table. The unique identifier for each
table (primary key) is shaded and indicated by a key symbol.
1-4 IBM Informix Guide to SQL: Reference

The customer Table
The customer Table
The customer table contains information about the retail stores that place
orders from the distributor. The columns of the customer table are as follows:

The zipcode column is indexed to allow duplicate values.

Column Name Data Type Description

customer_num SERIAL(101) system-generated customer
number

fname CHAR(15) first name of store representative

lname CHAR(15) last name of store representative

company CHAR(20) name of store

address1 CHAR(20) first line of store address

address2 CHAR(20) second line of store address

city CHAR(15) city

state CHAR(2) state (foreign key to state table)

zipcode CHAR(5) zip code

phone CHAR(18) telephone number
The stores5 Database 1-5

The orders Table
The orders Table
The orders table contains information about orders placed by the customers
of the distributor. The columns of the orders table are as follows:

The items Table
An order can include one or more items. There is one row in the items table
for each item in an order. The columns of the items table are as follows:

Column Name Data Type Description

order_num SERIAL(1001) system-generated order number

order_date DATE date order entered

customer_num INTEGER customer number (foreign key to
customer table)

ship_instruct CHAR(40) special shipping instructions

backlog CHAR(1) indicates order cannot be filled
because the item is backlogged:

y = yes
n = no

po_num CHAR(10) customer purchase order number

ship_date DATE shipping date

ship_weight DECIMAL(8,2) shipping weight

ship_charge MONEY(6) shipping charge

paid_date DATE date order paid
1-6 IBM Informix Guide to SQL: Reference

The items Table
Column Name Data Type Description

item_num SMALLINT sequentially assigned item number
for an order

order_num INTEGER order number (foreign key to
orders table)

stock_num SMALLINT stock number for item (foreign key
to stock table)

manu_code CHAR(3) manufacturer code for item ordered
(foreign key to manufact table)

quantity SMALLINT quantity ordered (value must be
> 1)

total_price MONEY(8) quantity ordered × unit price = total
price of item
The stores5 Database 1-7

The stock Table
The stock Table
The distributor carries 41 different types of sporting goods from various
manufacturers. More than one manufacturer can supply a sporting good. For
example, the distributor offers racer goggles from two manufacturers and
running shoes from six manufacturers.

The stock table is a catalog of the items sold by the distributor. The columns
of the stock table are as follows:

Column Name Data Type Description

stock_num SMALLINT stock number that identifies type of
item

manu_code CHAR(3) manufacturer code (foreign key to
manufact table)

description CHAR(15) description of item

unit_price MONEY(6,2) unit price

unit CHAR(4) unit by which item is ordered:

each
pair
case
box

unit_descr CHAR(15) description of unit
1-8 IBM Informix Guide to SQL: Reference

The catalog Table
The catalog Table
The catalog table describes each of the items in stock. Retail stores use this
table when placing orders with the distributor. The columns of the catalog
table are as follows:

The catalog table appears only if you are using an IBM Informix OnLine
database server.

Column Name Data Type Description

catalog_num SERIAL(10001) system-generated catalog number

stock_num SMALLINT distributor stock number (foreign
key to stock table)

manu_code CHAR(3) manufacturer code (foreign key to
manufact table)

cat_descr TEXT description of item

cat_picture BYTE picture of item (binary data)

cat_advert VARCHAR(255, 65) tag line underneath picture
The stores5 Database 1-9

The cust_calls Table
The cust_calls Table
All customer calls for information on orders, shipments, or complaints are
logged. The cust_calls table contains information about these types of
customer calls. The columns of the cust_calls table are as follows:

The call_type Table
The call codes associated with customer calls are stored in the call_type table.
The columns of the call_type table are as follows:

Column Name Data Type Description

customer_num INTEGER customer number (foreign key to
customer table)

call_dtime DATETIME YEAR
TO MINUTE

date and time call received

user_id CHAR(18) name of person logging call
(default is user login name)

call_code CHAR(1) type of call (foreign key to
call_type table)

call_descr CHAR(240) description of call

res_dtime DATETIME YEAR
TO MINUTE

date and time call resolved

res_descr CHAR(240) description of how call was
resolved

Column Name Data Type Description

call_code CHAR(1) call code

code_descr CHAR (30) description of call type
1-10 IBM Informix Guide to SQL: Reference

The manufact Table
The manufact Table
Information about the nine manufacturers whose sporting goods are handled
by the distributor is stored in the manufact table. The columns of the
manufact table are as follows:

The state Table
The state table contains the names and postal abbreviations for the 50 states
of the United States. The columns of the state table are as follows:

The stores5 Database Map
Figure 1-1 displays the joins in the stores5 database. The lines connecting a
column in one table to the same column in another table indicate the relation-
ships, or joins, between tables.

Column Name Data Type Description

manu_code CHAR(3) manufacturer code

manu_name CHAR(15) name of manufacturer

lead_time INTERVAL DAY(3)
TO DAY

lead time for shipment of orders

Column Name Data Type Description

code CHAR(2) state code

sname CHAR(15) state name
The stores5 Database 1-11

The stores5 Database Map
Figure 1-1
Joins in the stores5 database

ite
m

s

or
de

rs
ite

m
_n

um
ca

ta
lo

g

or
de

r_
nu

m
or

de
r_

nu
m

st
oc

k
ca

tal
og

_n
um

cu
st

_c
al

ls
cu

st
om

er
or

de
r_

da
te

sto
ck

_n
um

sto
ck

_n
um

sto
ck

_n
um

m
an

uf
ac

t

cu
sto

m
er

_n
um

cu
sto

m
er

_n
um

cu
sto

m
er

_n
um

m
an

u_
co

de
m

an
u_

co
de

m
an

u_
co

de
m

an
u_

co
de

ca
ll_

dt
im

e
fn

am
e

sh
ip

_i
ns

tru
ct

qu
an

tit
y

de
sc

rip
tio

n
ca

t_
de

sc
r

m
an

u_
na

m
e

ca
ll_

ty
pe

us
er

_i
d

ln
am

e
ba

ck
lo

g
to

tal
_p

ric
e

un
it_

pr
ice

ca
t_

pi
ctu

re
lea

d_
tim

e

ca
ll_

co
de

ca
ll_

co
de

co
m

pa
ny

po
_n

um
un

it
ca

t_
ad

ve
rt

ca
ll_

de
sc

r
ca

ll_
de

sc
r

ad
dr

es
s1

sh
ip

_d
ate

un
it_

de
sc

r

re
s_

dt
im

e
ad

dr
es

s2
sh

ip
_w

eig
ht

re
s_

de
sc

r
cit

y
sh

ip
_c

ha
rg

e

st
at

e
sta

te
pa

id
_d

ate

co
de

zip
co

de

sn
am

e
ph

on
e

1-12 IBM Informix Guide to SQL: Reference

Primary-Foreign Key Relationships
Primary-Foreign Key Relationships
The tables of the stores5 database are linked by the primary-foreign key
relationships shown in Figure 1-1 and identified in this section. This type of
relationship is called a referential constraint because a foreign key in one table
references the primary key in another table. Figure 1-2 through Figure 1-8
show the relationships among tables and how information stored in one table
supplements information stored in others.
The stores5 Database 1-13

The customer and orders Tables
The customer and orders Tables
The customer table contains a customer_num column that holds a number
identifying a customer, along with columns for the customer name, company,
address, and telephone number. For example, the row with information
about Anthony Higgins contains the number 104 in the customer_num
column. The orders table also contains a customer_num column that stores
the number of the customer who placed a particular order. In the orders table,
the customer_num column is a foreign key that references the
customer_num column in the customer table. This relationship is shown in
Figure 1-2.

Figure 1-2
Tables joined by the customer_num column

According to Figure 1-2, customer 104 (Anthony Higgins) has placed two
orders, since his customer number appears in two rows of the orders table.
Since the customer number is a foreign key in the orders table, you can
retrieve Anthony Higgins’ name, address, and information about his orders
at the same time.

customer Table (detail)

orders Table (detail)

customer_num fname lname

101 Ludwig Pauli

102 Carole Sadler

103 Philip Currie

104 Anthony Higgins

order_num order_date customer_num

1001 05/20/1991 104

1002 05/21/1991 101

1003 05/22/1991 104

1004 05/22/1991 106
1-14 IBM Informix Guide to SQL: Reference

The orders and items Tables
The orders and items Tables
The orders and items tables are linked by an order_num column that
contains an identification number for each order. If an order includes several
items, the same order number appears in several rows of the items table. In
the items table, the order_num column is a foreign key that references the
order_num column in the orders table. Figure 1-3 shows this relationship.

Figure 1-3
Tables joined by the order_num column

orders Table (detail)

items Table (detail)

order_num order_date customer_num

1001 05/20/1991 104

1002 05/21/1991 101

1003 05/22/1991 104

item_num order_num stock_num manu_code

1 1001 1 HRO

1 1002 4 HSK

2 1002 3 HSK

1 1003 9 ANZ

2 1003 8 ANZ

3 1003 5 ANZ
The stores5 Database 1-15

The items and stock Tables
The items and stock Tables
The items table and the stock table are joined by two columns: the
stock_num column stores a stock number for an item, and the manu_code
column stores a code that identifies the manufacturer. You need both the
stock number and the manufacturer code to uniquely identify an item. For
example, the item with the stock number 1 and the manufacturer code HRO
is a Hero baseball glove, while the item with the stock number 1 and the
manufacturer code HSK is a Husky baseball glove. The same stock number
and manufacturer code can appear in more than one row of the items table,
if the same item belongs to separate orders. In the items table, the stock_num
and manu_code columns are foreign keys that reference the stock_num and
manu_code columns in the stock table. This is illustrated in Figure 1-4.

Figure 1-4
Tables joined by the stock_num and manu_code columns

 items Table (detail)

stock Table (detail)

item_num order_num stock_num manu_code

1 1001 1 HRO

1 1002 4 HSK

2 1002 3 HSK

1 1003 9 ANZ

2 1003 8 ANZ

3 1003 5 ANZ

1 1004 1 HRO

stock_num manu_code description

1 HRO baseball gloves

1 HSK baseball gloves

1 SMT baseball gloves
1-16 IBM Informix Guide to SQL: Reference

The stock and catalog Tables
The stock and catalog Tables
The stock table and catalog table are joined by two columns: the stock_num
column, which stores a stock number for an item, and the manu_code
column, which stores a code that identifies the manufacturer. You need both
columns to uniquely identify an item. In the catalog table, the stock_num
and manu_code columns are foreign keys that reference the stock_num and
manu_code columns in the stock table. Figure 1-5 shows this relationship.

Figure 1-5
Tables joined by the stock_num and manu_code columns

stock Table (detail)

catalog Table (detail)

stock_num manu_code description

1 HRO baseball gloves

1 HSK baseball gloves

1 SMT baseball gloves

catalog_num stock_num manu_code

10001 1 HRO

10002 1 HSK

10003 1 SMT

10004 2 HRO
The stores5 Database 1-17

The stock and manufact Tables
The stock and manufact Tables
The stock table and the manufact table are joined by the manu_code column.
The same manufacturer code can appear in more than one row of the stock
table if the manufacturer produces more than one piece of equipment. In the
stock table, the manu_code column is a foreign key that references the
manu_code column in the manufact table. This relationship is illustrated in
Figure 1-6.

Figure 1-6
Tables joined by the manu_code column

stock Table (detail)

manufact Table (detail)

stock_num manu_code description

1 HRO baseball gloves

1 HSK baseball gloves

1 SMT baseball gloves

manu_code manu_name

NRG Norge

HSK Husky

HRO Hero
1-18 IBM Informix Guide to SQL: Reference

The cust_calls and customer Tables
The cust_calls and customer Tables
The cust_calls table and the customer table are joined by the customer_num
column. The same customer number can appear in more than one row of the
cust_calls table if the customer calls the distributor more than once with a
problem or question. In the cust_calls table, the customer_num column is a
foreign key that references the customer_num column in the customer table.
This relationship is illustrated in Figure 1-7.

Figure 1-7
Tables joined by the customer_num column

customer Table (detail)

cust_calls Table (detail)

customer_num fname lname

101 Ludwig Pauli

102 Carole Sadler

103 Philip Currie

104 Anthony Higgins

105 Raymond Vector

106 George Watson

customer_num call_dtime user_id

106 1991-06-12 08:20 maryj

127 1991-07-31 14:30 maryj

116 1990-11-28 13:34 mannyh

116 1990-12-21 11:24 mannyh
The stores5 Database 1-19

The call_type and cust_calls Table
The call_type and cust_calls Table
The call_type and cust_calls tables are joined by the call_code column. The
same call code can appear in more than one row of the cust_calls table since
many customers can have the same type of problem. In the cust_calls table,
the call_code column is a foreign key that references the call_code column in
the call_type table. This relationship is illustrated in Figure 1-8.

Figure 1-8
Tables joined by the call_code column

call_type Table (detail)

cust_calls Table (detail)

call_code code_descr

B billing error

D damaged goods

I incorrect merchandise sent

L late shipment

O other

customer_num call_dtime call_code

106 1991-06-12 08:20 D

127 1991-07-31 14:30 I

116 1990-11-28 13:34 I

116 1990-12-21 11:24 I
1-20 IBM Informix Guide to SQL: Reference

The state and customer Tables
The state and customer Tables
The state table and the customer table are joined by a column that contains
the state code. This column is called code in the state table and state in the
customer table. If several customers live in the same state, the same state
code appears in several rows of the table. In the customer table, the state
column is a foreign key that references the code column in the state table.
This is shown in Figure 1-9.

Figure 1-9
Tables joined by the state/code column

Data in the stores5 Database
 The tables that follow display the data in the stores5 database.

customer Table (detail)

state Table (detail)

customer_num fname lname --- state

101 Ludwig Pauli --- CA

102 Carole Sadler --- CA

103 Philip Currie --- CA

code sname

AK Alaska

AL Alabama

AR Arkansas

AZ Arizona

CA California
The stores5 Database 1-21

Data in the stores5 Database
 c
us

to
m

er
 T

ab
le

cu
st

om
er

_n
u

m
fn

am
e

ln
am

e
co

m
p

an
y

ad
d

re
ss

1
ad

d
re

ss
2

ci
ty

st
at

e
zi

p
co

d
e

p
h

on
e

10
1

L
ud

w
ig

Pa
ul

i
A

ll
Sp

or
ts

 S
up

pl
ie

s
21

3
E

rs
tw

ild
 C

ou
rt

Su
nn

yv
al

e
C

A
94

08
6

40
8-

78
9-

80
75

10
2

C
ar

ol
e

Sa
d

le
r

Sp
or

ts
 S

po
t

78
5

G
ea

ry
 S

t
Sa

n
Fr

an
ci

sc
o

C
A

94
11

7
41

5-
82

2-
12

89
10

3
Ph

ili
p

C
ur

ri
e

Ph
il’

s
Sp

or
ts

65
4

Po
pl

ar
P.

 O
. B

ox
 3

49
8

Pa
lo

 A
lt

o
C

A
94

30
3

41
5-

32
8-

45
43

10
4

A
nt

ho
ny

H
ig

gi
ns

Pl
ay

 B
al

l!
E

as
t S

ho
pp

in
g

C
nt

r.
42

2
B

ay
 R

oa
d

R
ed

w
oo

d
 C

it
y

C
A

94
02

6
41

5-
36

8-
11

00
10

5
R

ay
m

on
d

V
ec

to
r

L
os

 A
lt

os
 S

po
rt

s
18

99
 L

a
L

om
a

D
ri

ve
L

os
 A

lt
os

C
A

94
02

2
41

5-
77

6-
32

49
10

6
G

eo
rg

e
W

at
so

n
W

at
so

n
&

 S
on

11
43

 C
ar

ve
r

Pl
ac

e
M

ou
nt

ai
n

V
ie

w
C

A
94

06
3

41
5-

38
9-

87
89

10
7

C
ha

rl
es

R
ea

m
A

th
le

ti
c

Su
pp

lie
s

41
 Jo

rd
an

 A
ve

nu
e

Pa
lo

 A
lt

o
C

A
94

30
4

41
5-

35
6-

98
76

10
8

D
on

al
d

Q
ui

nn
Q

ui
nn

’s
 S

po
rt

s
58

7
A

lv
ar

ad
o

R
ed

w
oo

d
 C

it
y

C
A

94
06

3
41

5-
54

4-
87

29
10

9
Ja

ne
M

ill
er

Sp
or

t S
tu

ff
M

ay
fa

ir
 M

ar
t

73
45

 R
os

s
B

lv
d

.
Su

nn
yv

al
e

C
A

94
08

6
40

8-
72

3-
87

89
11

0
R

oy
Ja

eg
er

A
A

 A
th

le
ti

cs
52

0
T

op
az

 W
ay

R
ed

w
oo

d
 C

it
y

C
A

94
06

2
41

5-
74

3-
36

11
11

1
Fr

an
ce

s
K

ey
es

Sp
or

ts
 C

en
te

r
31

99
 S

te
rl

in
g

C
ou

rt
Su

nn
yv

al
e

C
A

94
08

5
40

8-
27

7-
72

45
11

2
M

ar
ga

re
t

L
aw

so
n

R
un

ne
rs

 &
 O

th
er

s
23

4
W

ya
nd

ot
te

 W
ay

L
os

 A
lt

os
C

A
94

02
2

41
5-

88
7-

72
35

11
3

L
an

a
B

ea
tt

y
Sp

or
ts

to
w

n
65

4
O

ak
 G

ro
ve

M
en

lo
 P

ar
k

C
A

94
02

5
41

5-
35

6-
99

82
11

4
Fr

an
k

A
lb

er
ts

on
Sp

or
ti

ng
 P

la
ce

94
7

W
av

er
ly

 P
la

ce
R

ed
w

oo
d

 C
it

y
C

A
94

06
2

41
5-

88
6-

66
77

11
5

A
lf

re
d

G
ra

nt
G

ol
d

 M
ed

al
 S

po
rt

s
77

6
G

ar
y

A
ve

nu
e

M
en

lo
 P

ar
k

C
A

94
02

5
41

5-
35

6-
11

23
11

6
Je

an
Pa

rm
el

ee
O

ly
m

pi
c

C
it

y
11

04
 S

pi
no

sa
 D

ri
ve

M
ou

nt
ai

n
V

ie
w

C
A

94
04

0
41

5-
53

4-
88

22
11

7
A

rn
ol

d
Si

pe
s

K
id

s
K

or
ne

r
85

0
L

yt
to

n
C

ou
rt

R
ed

w
oo

d
 C

it
y

C
A

94
06

3
41

5-
24

5-
45

78
11

8
D

ic
k

B
ax

te
r

B
lu

e
R

ib
bo

n
Sp

or
ts

54
27

 C
ol

le
ge

O
ak

la
nd

C
A

94
60

9
41

5-
65

5-
00

11
11

9
B

ob
Sh

or
te

r
T

he
 T

ri
at

hl
et

es
 C

lu
b

24
05

 K
in

gs
 H

ig
hw

ay
C

he
rr

y
H

ill
N

J
08

00
2

60
9-

66
3-

60
79

12
0

Fr
ed

Je
w

el
l

C
en

tu
ry

 P
ro

 S
ho

p
66

27
 N

. 1
7t

h
W

ay
Ph

oe
ni

x
A

Z
85

01
6

60
2-

26
5-

87
54

12
1

Ja
so

n
W

al
la

ck
C

it
y

Sp
or

ts
L

ak
e

B
ilt

m
or

e
M

al
l

35
0

W
. 2

3r
d

 S
tr

ee
t

W
ilm

in
gt

on
D

E
19

89
8

30
2-

36
6-

75
11

12
2

C
at

hy
O

’B
ri

an
T

he
 S

po
rt

in
g

L
if

e
54

3
N

as
sa

u
St

re
et

Pr
in

ce
to

n
N

J
08

54
0

60
9-

34
2-

00
54

12
3

M
ar

vi
n

H
an

lo
n

B
ay

 S
po

rt
s

10
10

0
B

ay
 M

ea
d

ow
s

R
d

Su
it

e
10

20
Ja

ck
so

nv
ill

e
FL

32
25

6
90

4-
82

3-
42

39
12

4
C

hr
is

Pu
tn

um
Pu

tn
um

’s
 P

ut
te

rs
47

15
 S

.E
. A

d
am

s
B

lv
d

Su
it

e
90

9C
B

ar
tl

es
vi

lle
O

K
74

00
6

91
8-

35
5-

20
74

12
5

Ja
m

es
H

en
ry

T
ot

al
 F

it
ne

ss
 S

po
rt

s
14

50
 C

om
m

on
w

ea
lt

h
A

v
B

ri
gh

to
n

M
A

02
13

5
61

7-
23

2-
41

59
12

6
E

ile
en

N
ee

lie
N

ee
lie

’s
 D

is
co

un
t S

p
25

39
 S

ou
th

 U
ti

ca
 S

t
D

en
ve

r
C

O
80

21
9

30
3-

93
6-

77
31

12
7

K
im

Sa
ti

fe
r

B
ig

 B
lu

e
B

ik
e

Sh
op

B
lu

e
Is

la
nd

 S
qu

ar
e

12
22

2
G

re
go

ry
 S

tr
ee

t
B

lu
e

Is
la

nd
N

Y
60

40
6

31
2-

94
4-

56
91

12
8

Fr
an

k
L

es
so

r
Ph

oe
ni

x
U

ni
ve

rs
it

y
A

th
le

ti
c

D
ep

ar
tm

en
t

18
17

 N
. T

ho
m

as
 R

oa
d

Ph
oe

ni
x

A
Z

85
00

8
60

2-
53

3-
18

17
1-22 IBM Informix Guide to SQL: Reference

Data in the stores5 Database
items Table (1 of 2)

item_num order_num stock_num manu_code quantity total_price

1
1
2
1
2
3
1
2
3
4
1
2
3
4
1
2
3
4
5
1
2
3
4
5
1
2
1
1
2
1
1
2
1
2
3
4
1
2
1
1
2

1001
1002
1002
1003
1003
1003
1004
1004
1004
1004
1005
1005
1005
1005
1006
1006
1006
1006
1006
1007
1007
1007
1007
1007
1008
1008
1009
1010
1010
1011
1012
1012
1013
1013
1013
1013
1014
1014
1015
1016
1016

1
4
3
9
8
5
1
2
3
1
5
5
6
6
5
5
5
6
6
1
2
3
4
7
8
9
1
6
6
5
8
9
5
6
6
9
4
4
1

101
109

HRO
HSK
HSK
ANZ
ANZ
ANZ
HRO
HRO
HSK
HSK
NRG
ANZ
SMT
ANZ
SMT
NRG
ANZ
SMT
ANZ
HRO
HRO
HSK
HRO
HRO
ANZ
ANZ
SMT
SMT
ANZ
ANZ
ANZ
ANZ
ANZ
SMT
ANZ
ANZ
HSK
HRO
SMT
SHM
PRC

1
1
1
1
1
5
1
1
1
1
10
10
1
1
5
5
5
1
1
1
1
1
1
1
1
5
1
1
1
5
1
10
1
1
1
2
1
1
1
2
3

250.00
960.00
240.00
20.00
840.00
99.00
250.00
126.00
240.00
800.00
280.00
198.00
36.00
48.00
125.00
140.00
99.00
36.00
48.00
250.00
126.00
240.00
480.00
600.00
840.00
100.00
450.00
36.00
48.00
99.00
840.00
200.00
19.80
36.00
48.00
40.00
960.00
480.00
450.00
136.00
90.00
The stores5 Database 1-23

Data in the stores5 Database
items Table (2 of 2)

call_type Table

item_num order_num stock_num manu_code quantity total_price

3
4
1
2
3
1
2
3
4
5
1
1
2
1
2
3
4
1
2
3
1
2
3
4
5
6

1016
1016
1017
1017
1017
1018
1018
1018
1018
1018
1019
1020
1020
1021
1021
1021
1021
1022
1022
1022
1023
1023
1023
1023
1023
1023

110
114
201
202
301
307
302
110
5

304
111
204
301
201
201
202
205
309
303
6

103
104
105
110
304
306

HSK
PRC
NKL
KAR
SHM
PRC
KAR
PRC
SMT
HRO
SHM
KAR
KAR
NKL
ANZ
KAR
ANZ
HRO
PRC
ANZ
PRC
PRC
SHM
SHM
ANZ
SHM

1
1
4
1
2
2
3
1
4
1
3
2
4
2
3
3
2
1
2
2
2
2
1
1
1
1

308.00
120.00
150.00
230.00
204.00
500.00
15.00

236.00
100.00
280.00

1499.97
90.00

348.00
75.00

225.00
690.00
624.00
40.00
96.00
96.00
40.00

116.00
80.00

228.00
170.00
190.00

call_code code_descr

B billing error

D damaged goods

I incorrect merchandise sent

L late shipment

O other
1-24 IBM Informix Guide to SQL: Reference

Data in the stores5 Database
or
de

rs
 T

ab
le

or
d

er
_n

u
m

or
d

er
_d

at
e

cu
st

om
er

_n
u

m
sh

ip
_i

n
st

ru
ct

b
ac

k
lo

g
p

o_
n

u
m

sh
ip

_d
at

e
sh

ip
_w

ei
gh

t
sh

ip
_c

h
ar

ge
p

ai
d

_d
at

e
10

01
05

/
20

/
19

91
10

4
ex

pr
es

s
n

B
77

83
6

06
/

01
/

19
91

20
.4

0
10

.0
0

07
/

22
/

19
91

10
02

05
/

21
/

19
91

10
1

PO
 o

n
bo

x;
 d

el
iv

er
 b

ac
k

d
oo

r
on

ly
n

92
70

05
/

26
/

19
91

50
.6

0
15

.3
0

06
/

03
/

19
91

10
03

05
/

22
/

19
91

10
4

ex
pr

es
s

n
B

77
89

0
05

/
23

/
19

91
35

.6
0

10
.8

0
06

/
14

/
19

91
10

04
05

/
22

/
19

91
10

6
ri

ng
 b

el
l t

w
ic

e
y

80
06

05
/

30
/

19
91

95
.8

0
19

.2
0

10
05

05
/

24
/

19
91

11
6

ca
ll

be
fo

re
 d

el
iv

er
y

n
28

65
06

/
09

/
19

91
80

.8
0

16
.2

0
06

/
21

/
19

91
10

06
05

/
30

/
19

91
11

2
af

te
r

10
 a

m
y

Q
13

55
7

70
.8

0
14

.2
0

10
07

05
/

31
/

19
91

11
7

n
27

86
93

06
/

05
/

19
91

12
5.

90
25

.2
0

10
08

06
/

07
/

19
91

11
0

cl
os

ed
 M

on
d

ay
y

L
Z

23
0

07
/

06
/

19
91

45
.6

0
13

.8
0

07
/

21
/

19
91

10
09

06
/

14
/

19
91

11
1

d
oo

r
ne

xt
 to

 g
ro

ce
ry

n
47

45
06

/
21

/
19

91
20

.4
0

10
.0

0
08

/
21

/
19

91
10

10
06

/
17

/
19

91
11

5
d

el
iv

er
 7

76
 K

in
g

St
. i

f n
o

an
sw

er
n

42
9Q

06
/

29
/

19
91

40
.6

0
12

.3
0

08
/

22
/

19
91

10
11

06
/

18
/

19
91

10
4

ex
pr

es
s

n
B

77
89

7
07

/
03

/
19

91
10

.4
0

5.
00

08
/

29
/

19
91

10
12

06
/

18
/

19
91

11
7

n
27

87
01

06
/

29
/

19
91

70
.8

0
14

.2
0

10
13

06
/

22
/

19
91

10
4

ex
pr

es
s

n
B

77
93

0
07

/
10

/
19

91
60

.8
0

12
.2

0
07

/
31

/
19

91
10

14
06

/
25

/
19

91
10

6
ri

ng
 b

el
l,

ki
ck

 d
oo

r
lo

ud
ly

n
80

52
07

/
03

/
19

91
40

.6
0

12
.3

0
07

/
10

/
19

91
10

15
06

/
27

/
19

91
11

0
cl

os
ed

 M
on

d
ay

s
n

M
A

00
3

07
/

16
/

19
91

20
.6

0
6.

30
08

/
31

/
19

91
10

16
06

/
29

/
19

91
11

9
d

el
iv

er
y

en
tr

an
ce

 o
ff

 C
am

p
St

.
n

PC
67

82
07

/
12

/
19

91
35

.0
0

11
.8

0
10

17
07

/
09

/
19

91
12

0
N

or
th

 s
id

e
of

 c
lu

bh
ou

se
n

D
M

35
43

31
07

/
13

/
19

91
60

.0
0

18
.0

0
10

18
07

/
10

/
19

91
12

1
SW

 c
or

ne
r

of
 B

ilt
m

or
e

M
al

l
n

S2
29

42
07

/
13

/
19

91
70

.5
0

20
.0

0
08

/
06

/
19

91
10

19
07

/
11

/
19

91
12

2
cl

os
ed

 ti
l n

oo
n

M
on

d
ay

s
n

Z
55

70
9

07
/

16
/

19
91

90
.0

0
23

.0
0

08
/

06
/

19
91

10
20

07
/

11
/

19
91

12
3

ex
pr

es
s

n
W

22
86

07
/

16
/

19
91

14
.0

0
8.

50
09

/
20

/
19

91
10

21
07

/
23

/
19

91
12

4
as

k
fo

r
E

la
in

e
n

C
32

88
07

/
25

/
19

91
40

.0
0

12
.0

0
08

/
22

/
19

91
10

22
07

/
24

/
19

91
12

6
ex

pr
es

s
n

W
99

25
07

/
30

/
19

91
15

.0
0

13
.0

0
09

/
02

/
19

91
10

23
07

/
24

/
19

91
12

7
no

 d
el

iv
er

ie
s

af
te

r
3

p.
m

.
n

K
F2

96
1

07
/

30
/

19
91

60
.0

0
18

.0
0

08
/

22
/

19
91
The stores5 Database 1-25

Data in the stores5 Database
stock Table (1 of 2)

stock_num manu_code description unit_price unit unit_descr

1
1
1
2
3
4
4
5
5
5
6
6
7
8
9

101
101
102
102
103
104
105
105
106
107
108
109
109
110
110
110
110
110
111
112
113
114

HRO
HSK
SMT
HRO
HSK
HSK
HRO
NRG
SMT
ANZ
SMT
ANZ
HRO
ANZ
ANZ
PRC
SHM
SHM
PRC
PRC
PRC
PRC
SHM
PRC
PRC
SHM
PRC
SHM
PRC
ANZ
SHM
HRO
HSK
SHM
SHM
SHM
PRC

baseball gloves
baseball gloves
baseball gloves

baseball
baseball bat

football
football

tennis racquet
tennis racquet
tennis racquet

tennis ball
tennis ball
basketball
volleyball

volleyball net
bicycle tires
bicycle tires

bicycle brakes
bicycle brakes

front derailleur
rear derailleur
bicycle wheels
bicycle wheels
bicycle stem

bicycle saddle
crankset

pedal binding
pedal binding

helmet
helmet
helmet
helmet
helmet

10-spd, assmbld
12-spd, assmbld
18-spd, assmbld
bicycle gloves

250.00
800.00
450.00
126.00
240.00
960.00
480.00
28.00
25.00
19.80
36.00
48.00
600.00
840.00
20.00
88.00
68.00
220.00
480.00
20.00
58.00
53.00
80.00
23.00
70.00
45.00
30.00
200.00
236.00
244.00
228.00
260.00
308.00
499.99
549.00
685.90
120.00

case
case
case
case
case
case
case
each
each
each
case
case
case
case
each
box
box
case
case
each
each
pair
pair
each
pair
each
case
case
case
case
case
case
case
each
each
each
case

10 gloves/case
10 gloves/case
10 gloves/case

24/case
12/case
24/case
24/case

each
each
each

24 cans/case
24 cans/case

24/case
24/case

each
4/box
4/box

4 sets/case
4 sets/case

each
each
pair
pair
each
pair
each

6 pairs/case
4 pairs/case

4/case
4/case
4/case
4/case
4/case
each
each
each

10 pairs/case
1-26 IBM Informix Guide to SQL: Reference

Data in the stores5 Database
stock Table (2 of 2)

stock_num manu_code description unit_price unit unit_descr

201
201
201
202
202
203
204
205
205
205
301
301
301
301
301
301
302
302
303
303
304
304
305
306
306
307
308
309
309
310
310
311
312
312
313
313

NKL
ANZ
KAR
NKL
KAR
NKL
KAR
NKL
ANZ
HRO
NKL
HRO
SHM
PRC
KAR
ANZ
HRO
KAR
PRC
KAR
ANZ
HRO
HRO
PRC
SHM
PRC
PRC
HRO
SHM
SHM
ANZ
SHM
SHM
HRO
SHM
ANZ

golf shoes
golf shoes
golf shoes

metal woods
std woods

irons/wedges
putter

3 golf balls
3 golf balls
3 golf balls

running shoes
running shoes
running shoes
running shoes
running shoes
running shoes

ice pack
ice pack

socks
socks
watch
watch

first-aid kit
tandem adapter
tandem adapter

infant jogger
twin jogger
ear drops
ear drops

kick board
kick board

water gloves
racer goggles
racer goggles

swim cap
swim cap

37.50
75.00
90.00
174.00
230.00
670.00
45.00
312.00
312.00
312.00
97.00
42.50
102.00
75.00
87.00
95.00
4.50
5.00
48.00
36.00
170.00
280.00
48.00
160.00
190.00
250.00
280.00
40.00
40.00
80.00
89.00
48.00
96.00
72.00
72.00
60.00

each
each
each
case
case
case
each
case
case
case
each
each
each
each
each
each
each
each
box
box
box
box
case
each
each
each
each
case
case
case
case
box
box
box
box
box

each
each
each

2 sets/case
2 sets/case
2 sets/case

each
24/case
24/case
24/case

each
each
each
each
each
each
each
each

24 pairs/box
24 pair/box

10/box
10/box
4/case
each
each
each
each

20/case
20/case
10/case
12/case

4 pairs/box
12/box
12/box
12/box
12/box
The stores5 Database 1-27

Data in the stores5 Database

ca

t_
p

ic
tu

re
ca

t_
ad

ve
rt

<
B

Y
T

E
 v

al
ue

>
Yo

ur
 F

ir
st

 S
ea

so
n’

s
B

as
eb

al
l G

lo
ve

<
B

Y
T

E
 v

al
ue

>
A

ll-
L

ea
th

er
, H

an
d

-S
ti

tc
he

d
, D

ee
p-

Po
ck

et
s,

St
ur

d
y

W
eb

bi
ng

th
at

W
on

’t
L

et
 G

o
<

B
Y

T
E

 v
al

ue
>

A
 S

tu
rd

y
C

at
ch

er
’s

 M
it

t W
it

h
th

e
Pe

rf
ec

t P
oc

ke
t

<
B

Y
T

E
 v

al
ue

>
H

ig
he

st
Q

ua
lit

y
B

al
lA

va
ila

bl
e,

fr
om

th
e

H
an

d
-S

ti
tc

hi
ng

 to
 th

e
R

ob
in

so
n

Si
gn

at
ur

e
<

B
Y

T
E

 v
al

ue
>

H
ig

h-
Te

ch
no

lo
gy

 D
es

ig
n

E
xp

an
d

s
th

e
Sw

ee
t S

po
t

<
B

Y
T

E
 v

al
ue

>
D

ur
ab

le
A

lu
m

in
um

fo
rH

ig
h

Sc
ho

ol
an

d
 C

ol
le

gi
at

e
A

th
le

te
s

<
B

Y
T

E
 v

al
ue

>
Q

ua
lit

y
Pi

gs
ki

n
w

it
h

N
or

m
 V

an
B

ro
ck

lin
 S

ig
na

tu
re

<
B

Y
T

E
 v

al
ue

>
H

ig
he

st
 Q

ua
lit

y
Fo

ot
ba

ll
fo

r
H

ig
h

Sc
ho

ol
 a

nd
 C

ol
le

gi
at

e
C

om
pe

ti
ti

on
s

<
B

Y
T

E
 v

al
ue

>
W

id
e

B
od

y
A

m
pl

ifi
es

 Y
ou

r
N

at
ur

al
A

bi
lit

ie
s

by
 P

ro
vi

d
in

g
M

or
e

Po
w

er
T

hr
ou

gh
 A

er
od

yn
am

ic
 D

es
ig

n
<

B
Y

T
E

 v
al

ue
>

M
id

-S
iz

ed
 R

ac
qu

et
 F

or
 th

e
Im

pr
ov

in
g

Pl
ay

er
<

B
Y

T
E

 v
al

ue
>

A
nt

iq
ue

 R
ep

lic
a

of
 C

la
ss

ic
 W

oo
d

en
R

ac
qu

et
 B

ui
lt

 w
it

h
C

at
-G

ut
 S

tr
in

gs
<

B
Y

T
E

 v
al

ue
>

H
ig

h-
V

is
ib

ili
ty

 T
en

ni
s,

 D
ay

 o
r

N
ig

ht
<

B
Y

T
E

 v
al

ue
>

D
ur

ab
le

C
on

st
ru

ct
io

n
C

ou
pl

ed
w

it
h

th
e

B
ri

gh
te

st
 C

ol
or

s
A

va
ila

bl
e

<
B

Y
T

E
 v

al
ue

>
L

on
g-

L
if

e
B

as
ke

tb
al

ls
 fo

r
In

d
oo

r
G

ym
na

si
um

s
<

B
Y

T
E

 v
al

ue
>

Pr
of

es
si

on
al

 V
ol

le
yb

al
ls

 fo
r

In
d

oo
r

C
om

pe
ti

ti
on

s
<

B
Y

T
E

 v
al

ue
>

Sa
nc

ti
on

ed
 V

ol
le

yb
al

l N
et

ti
ng

 fo
r

In
d

oo
r

Pr
of

es
si

on
al

 a
nd

 C
ol

le
gi

at
e

C
om

pe
ti

ti
on

ca
ta

lo
g_

n
u

m
st

oc
k

_n
u

m
m

an
u

_c
od

e
ca

t_
d

es
cr

10
00

1
1

H
R

O
B

ro
w

n
le

at
he

r.
Sp

ec
if

y
fir

st
ba

se
m

an
’s

 o
r

in
fie

ld
/

ou
tfi

el
d

 s
ty

le
.

Sp
ec

if
y

ri
gh

t-
 o

r
le

ft
-h

an
d

ed
.

10
00

2
1

H
SK

B
ab

e
R

ut
h

si
gn

at
ur

e
gl

ov
e.

 B
la

ck
le

at
he

r.
In

fie
ld

/
ou

tfi
el

d
st

yl
e.

Sp
ec

if
y

ri
gh

t-
 o

r
le

ft
-h

an
d

ed
.

10
00

3
1

SM
T

C
at

ch
er

’s
m

it
t.

B
ro

w
n

le
at

he
r.

Sp
ec

if
y

ri
gh

t-
 o

r
le

ft
-h

an
d

ed
.

10
00

4
2

H
R

O
Ja

ck
ie

 R
ob

in
so

n
si

gn
at

ur
e

gl
ov

e.
H

ig
he

st
Pr

of
es

si
on

al
qu

al
it

y,
us

ed
by

N
at

io
na

l L
ea

gu
e.

10
00

5
3

H
SK

Pr
o-

st
yl

e
w

oo
d

.A
va

ila
bl

e
in

si
ze

s:
31

,
32

, 3
3,

 3
4,

 3
5.

10
00

6
3

SH
M

A
lu

m
in

um
.B

lu
e

w
it

h
bl

ac
k

ta
pe

.3
1"

,
20

oz
or

22
oz

;3
2"

,2
1

oz
or

23
oz

;3
3"

,
22

 o
z

or
 2

4
oz

.
10

00
7

4
H

SK
N

or
m

 V
an

 B
ro

ck
lin

 s
ig

na
tu

re
 s

ty
le

.

10
00

8
4

H
R

O
N

FL
-S

ty
le

 p
ig

sk
in

.

10
00

9
5

N
R

G
G

ra
ph

it
e

fr
am

e.
 S

yn
th

et
ic

 s
tr

in
gs

.

10
01

0
5

SM
T

A
lu

m
in

um
 fr

am
e.

 S
yn

th
et

ic
 s

tr
in

gs
.

10
01

1
5

A
N

Z
W

oo
d

 fr
am

e,
 c

at
-g

ut
 s

tr
in

gs
.

10
01

2
6

SM
T

So
ft

ye
llo

w
co

lo
r

fo
r

ea
sy

vi
si

bi
lit

y
in

su
nl

ig
ht

 o
r

ar
ti

fic
ia

l l
ig

ht
.

10
01

3
6

A
N

Z
Pr

o-
co

re
. A

va
ila

bl
e

in
 n

eo
n

ye
llo

w
,

gr
ee

n,
 a

nd
 p

in
k.

10
01

4
7

H
R

O
In

d
oo

r.
C

la
ss

ic
 N

B
A

 s
ty

le
. B

ro
w

n
le

at
he

r.
10

01
5

8
A

N
Z

 In
d

oo
r.

Fi
ne

st
 le

at
he

r.
Pr

of
es

si
on

al
qu

al
it

y.
10

01
6

9
A

N
Z

St
ee

l e
ye

le
ts

. N
yl

on
 c

or
d

in
g.

 D
ou

bl
e-

st
it

ch
ed

. S
an

ct
io

ne
d

 b
y

th
e

N
at

io
na

l
A

th
le

ti
c

C
on

gr
es

s.

ca
ta

lo
g

Ta
bl

e
(1

 o
f 7

)

1-28 IBM Informix Guide to SQL: Reference

Data in the stores5 Database
ca
t_

p
ic

tu
re

ca
t_

ad
ve

rt

<
B

Y
T

E
 v

al
ue

>
U

lt
im

at
e

in
Pu

nc
tu

re
Pr

ot
ec

ti
on

,
Ti

re
s

D
es

ig
ne

d
 fo

r
In

-C
it

y
R

id
in

g

<
B

Y
T

E
 v

al
ue

>
T

he
Pe

rf
ec

tT
ir

e
fo

rC
lu

b
R

id
es

or
Tr

ai
ni

ng

<
B

Y
T

E
 v

al
ue

>
T

hr
us

t-
B

ea
ri

ng
 a

nd
 S

pr
in

g-
Sl

ee
ve

 B
ra

ke
 S

et
 G

ua
ra

nt
ee

s
Sm

oo
th

 A
ct

io
n

<
B

Y
T

E
 v

al
ue

>
C

om
pu

te
rD

es
ig

n
D

el
iv

er
sR

ig
id

Ye
tV

ib
ra

ti
on

-F
re

e
B

ra
ke

s

<
B

Y
T

E
 v

al
ue

>
C

lim
b

A
ny

 M
ou

nt
ai

n:
Pr

oC
yc

le
’s

 F
ro

nt
 D

er
ai

lle
ur

A
d

d
s

Fi
ne

ss
e

to
 Y

ou
r

A
T

B

<
B

Y
T

E
 v

al
ue

>
C

om
pu

te
r-

A
id

ed
 D

es
ig

n
E

ng
in

ee
rs

10
0-

To
ot

h
C

ap
ac

it
y

In
to

Pr
oC

yc
le

’s
 R

ea
r

D
er

ai
lle

ur
<

B
Y

T
E

 v
al

ue
>

D
ur

ab
le

 T
ra

in
in

g
W

he
el

s
T

ha
t

H
ol

d
 T

ru
e

U
nd

er
 T

ou
gh

es
t

C
on

d
it

io
ns

<
B

Y
T

E
 v

al
ue

>
E

xt
ra

 L
ig

ht
w

ei
gh

t W
he

el
s

fo
r

Tr
ai

ni
ng

 o
r

H
ig

h-
Pe

rf
or

m
an

ce
To

ur
in

g

<
B

Y
T

E
 v

al
ue

>
Pr

oC
yc

le
 S

te
m

 w
it

h
Pe

ar
l

Fi
ni

sh

<
B

Y
T

E
 v

al
ue

>
T

he
U

lt
im

at
e

In
R

id
in

g
C

om
fo

rt
,

L
ig

ht
w

ei
gh

t W
it

h
A

na
to

m
ic

al
Su

pp
or

t

ca
ta

lo
g_

n
u

m
st

oc
k

_n
u

m
m

an
u

_c
od

e
ca

t_
d

es
cr

10
01

7
10

1
PR

C
R

ei
nf

or
ce

d
, h

an
d

-fi
ni

sh
ed

 tu
bu

la
r.

Po
ly

ur
et

ha
ne

 b
el

te
d

. E
ff

ec
ti

ve
 a

ga
in

st
pu

nc
tu

re
s.

 M
ix

ed
 tr

ea
d

 fo
r

su
pe

r
w

ea
r

an
d

 r
oa

d
 g

ri
p.

10
01

8
10

1
SH

M
D

ur
ab

le
 n

yl
on

 c
as

in
g

w
it

h
bu

ty
l t

ub
e

fo
rs

up
er

io
ra

ir
re

te
nt

io
n.

C
en

te
r-

ri
bb

ed
tr

ea
d

 w
it

h
he

rr
in

gb
on

e
si

d
e.

 C
oa

te
d

si
d

ew
al

ls
 r

es
is

t a
br

as
io

n.
10

01
9

10
2

SH
M

T
hr

us
t b

ea
ri

ng
 a

nd
 c

oa
te

d
 p

iv
ot

w
as

he
r/

sp
ri

ng
 s

le
ev

e
fo

r
sm

oo
th

ac
ti

on
. S

lo
tt

ed
le

ve
rs

 w
it

h
so

ft
 g

um
ho

od
s.

 T
w

o-
to

ne
 p

ai
nt

 tr
ea

tm
en

t.
Se

t
in

cl
ud

es
 c

al
ip

er
s,

le
ve

rs
, a

nd
 c

ab
le

s.
10

02
0

10
2

PR
C

C
om

pu
te

r-
ai

d
ed

 d
es

ig
n

w
it

h
lo

w
-

pr
ofi

le
 p

ad
s.

 C
ol

d
-f

or
ge

d
 a

llo
y

ca
lip

er
s

an
d

 b
ee

fy
 c

al
ip

er
 b

us
hi

ng
. A

er
o

le
ve

rs
.

Se
t i

nc
lu

d
es

 c
al

ip
er

s,
 le

ve
rs

, a
nd

 c
ab

le
s.

10
02

1
10

3
PR

C
C

om
pa

ct
 le

ad
in

g-
ac

ti
on

 d
es

ig
n

en
ha

nc
es

 s
hi

ft
in

g.
 D

ee
p

ca
ge

 fo
r

su
pe

r-
sm

al
l g

ra
nn

y
ge

ar
s.

 E
xt

ra
 s

tr
on

g
co

ns
tr

uc
ti

on
 to

 r
es

is
t o

ff
-r

oa
d

 a
bu

se
.

10
02

2
10

4
PR

C
Fl

oa
ti

ng
 tr

ap
ez

oi
d

 g
eo

m
et

ry
 w

it
h

ex
tr

a
th

ic
k

pa
ra

lle
lo

gr
am

 a
rm

s.
 1

00
-t

oo
th

ca
pa

ci
ty

. O
pt

im
um

 a
lig

nm
en

t w
it

h
an

y
fr

ee
w

he
el

.
10

02
3

10
5

PR
C

Fr
on

tw
he

el
s

la
ce

d
w

it
h

15
g

sp
ok

es
in

a
3-

cr
os

s
pa

tt
er

n.
 R

ea
r

w
he

el
s

la
ce

d
 w

it
h

14
g

sp
ik

es
 in

 a
 3

-c
ro

ss
 p

at
te

rn
.

10
02

4
10

5
SH

M
Po

lis
he

d
 a

llo
y.

 S
ea

le
d

-b
ea

ri
ng

, q
ui

ck
-

re
le

as
e

hu
bs

. D
ou

bl
e-

bu
tt

ed
. F

ro
nt

w
he

el
s

ar
e

la
ce

d
 1

5g
/

2-
cr

os
s.

 R
ea

r
w

he
el

s
ar

e
la

ce
d

 1
5g

/
3-

cr
os

s.
10

02
5

10
6

PR
C

H
ar

d
 a

no
d

iz
ed

 a
llo

y
w

it
h

pe
ar

l fi
ni

sh
.

6m
m

 h
ex

 b
ol

t h
ar

d
w

ar
e.

 A
va

ila
bl

e
in

le
ng

th
s

of
 9

0-
14

0m
m

 in
 1

0m
m

 in
cr

e-
m

en
ts

.
10

02
6

10
7

PR
C

A
va

ila
bl

e
in

 th
re

e
st

yl
es

: M
en

s
ra

ci
ng

;
M

en
s

to
ur

in
g;

 a
nd

 W
om

en
’s

.
A

na
to

m
ic

al
 g

el
 c

on
st

ru
ct

io
n

w
it

h
ly

cr
a

co
ve

r.
B

la
ck

 o
r

bl
ac

k/
ho

t p
in

k.

ca
ta

lo
g

Ta
bl

e
(2

 o
f 7

)

The stores5 Database 1-29

Data in the stores5 Database
ca
t_

p
ic

tu
re

ca
t_

ad
ve

rt

<
B

Y
T

E
 v

al
ue

>
C

us
to

m
iz

e
Yo

ur
 M

ou
nt

ai
n

B
ik

e
W

it
h

E
xt

ra
-D

ur
ab

le
 C

ra
nk

se
t

<
B

Y
T

E
 v

al
ue

>
C

la
ss

ic
 T

oe
cl

ip
 Im

pr
ov

ed
 T

o
Pr

ev
en

t S
or

en
es

s
A

t C
lip

 B
uc

kl
e

<
B

Y
T

E
 v

al
ue

>
In

ge
ni

ou
s

Pe
d

al
/

C
lip

 D
es

ig
n

D
el

iv
er

s
M

ax
im

um
 P

ow
er

 A
nd

Fa
st

 U
nl

oc
ki

ng

<
B

Y
T

E
 v

al
ue

>
Fe

at
he

r-
L

ig
ht

, Q
ui

ck
-R

el
ea

se
,

M
ax

im
um

 P
ro

te
ct

io
n

H
el

m
et

<
B

Y
T

E
 v

al
ue

>
M

in
im

um
 C

hi
n

C
on

ta
ct

,
Fe

at
he

r-
L

ig
ht

, M
ax

im
um

Pr
ot

ec
ti

on
 H

el
m

et
<

B
Y

T
E

 v
al

ue
>

M
ou

nt
ai

n
B

ik
e

H
el

m
et

: S
m

oo
th

C
ov

er
 E

lim
in

at
es

 th
e

W
or

ry
 o

f
B

ru
sh

 S
na

gs
 B

ut
 D

el
iv

er
s

M
ax

im
um

 P
ro

te
ct

io
n

<
B

Y
T

E
 v

al
ue

>
L

ig
ht

w
ei

gh
t P

la
st

ic
 w

it
h

V
en

ts
A

ss
ur

es
 C

oo
l C

om
fo

rt
 W

it
ho

ut
Sa

cr
ifi

ci
ng

Pr
ot

ec
ti

on
<

B
Y

T
E

 v
al

ue
>

Te
ar

d
ro

p
D

es
ig

n
U

se
d

by
Ye

llo
w

Je
rs

ey
s,

 Y
ou

 C
an

 T
im

e
th

e
D

if
fe

re
nc

e

<
B

Y
T

E
 v

al
ue

>
Fu

lly
 E

qu
ip

pe
d

 B
ic

yc
le

D
es

ig
ne

d
 fo

r
th

e
Se

ri
ou

s
C

om
m

ut
er

W
ho

M
ix

es
B

us
in

es
s

W
it

h
Pl

ea
su

re

ca
ta

lo
g_

n
u

m
st

oc
k

_n
u

m
m

an
u

_c
od

e
ca

t_
d

es
cr

10
02

7
10

8
SH

M
D

ou
bl

e
or

 tr
ip

le
 c

ra
nk

se
t w

it
h

ch
oi

ce
 o

f
ch

ai
nr

in
gs

. F
or

 d
ou

bl
e

cr
an

ks
et

, c
ha

in
-

ri
ng

s
fr

om
38

-5
4

te
et

h.
Fo

rt
ri

pl
e

cr
an

ks
et

,
ch

ai
nr

in
gs

 fr
om

 2
4-

48
 te

et
h.

10
02

8
10

9
PR

C
St

ee
l t

oe
 c

lip
s

w
it

h
ny

lo
n

st
ra

p.
 E

xt
ra

w
id

e
at

 b
uc

kl
e

to
 r

ed
uc

e
pr

es
su

re
.

10
02

9
10

9
SH

M
In

ge
ni

ou
s

ne
w

 d
es

ig
n

co
m

bi
ne

s
bu

tt
on

on
 s

ol
e

of
 s

ho
e

w
it

h
sl

ot
 o

n
a

pe
d

al
 p

la
te

to
 g

iv
e

ri
d

er
s

ne
w

 o
pt

io
ns

 in
 r

id
in

g
ef

fic
ie

nc
y.

 C
ho

os
e

fu
ll

or
 p

ar
ti

al
 lo

ck
in

g.
Fo

ur
 p

la
te

s
m

ea
n

bo
th

 to
p

an
d

 b
ot

to
m

 o
f

pe
d

al
s

ar
e

sl
ot

te
d

—
no

 fi
sh

in
g

ar
ou

nd
w

he
n

yo
u

w
an

tt
o

en
ga

ge
fu

ll
po

w
er

.F
as

t
un

lo
ck

in
g

en
su

re
s

sa
fe

ty
 w

he
n

m
an

eu
-

ve
ra

bi
lit

y
is

 p
ar

am
ou

nt
.

10
03

0
11

0
PR

C
Su

pe
r-

lig
ht

w
ei

gh
t.

M
ee

ts
bo

th
A

N
Z

Ia
nd

Sn
el

l s
ta

nd
ar

d
s

fo
r

im
pa

ct
 p

ro
te

ct
io

n.
 7

.5
oz

. Q
ui

ck
-r

el
ea

se
 s

ha
d

ow
 b

uc
kl

e.
10

03
1

11
0

A
N

Z
N

o
bu

ck
le

so
no

pl
as

ti
c

to
uc

he
s

yo
ur

ch
in

.
M

ee
ts

bo
th

A
N

Z
Ia

nd
Sn

el
ls

ta
nd

ar
d

s
fo

r
im

pa
ct

 p
ro

te
ct

io
n.

 7
.5

 o
z.

 L
yc

ra
 c

ov
er

.
10

03
2

11
0

SH
M

D
en

se
 o

ut
er

 la
ye

r
co

m
bi

ne
s

w
it

h
so

ft
er

in
ne

rl
ay

er
to

el
im

in
at

e
th

e
m

es
h

co
ve

r,
no

sn
ag

gi
ng

on
br

us
h.

M
ee

ts
bo

th
A

N
Z

Ia
nd

Sn
el

l s
ta

nd
ar

d
s

fo
r

im
pa

ct
 p

ro
te

ct
io

n.
 8

.0
oz

.
10

03
3

11
0

H
R

O
N

ew
es

t u
lt

ra
lig

ht
 h

el
m

et
 u

se
s

pl
as

ti
c

sh
el

l.
L

ar
ge

st
 v

en
ti

la
ti

on
 c

ha
nn

el
s

of
 a

ny
he

lm
et

 o
n

th
e

m
ar

ke
t.

8.
5

oz
.

10
03

4
11

0
H

SK
A

er
od

yn
am

ic
 (t

ea
rd

ro
p)

 h
el

m
et

 c
ov

er
ed

w
it

h
an

ti
-d

ra
g

fa
br

ic
. C

re
d

it
ed

 w
it

h
sh

av
in

g
2

se
co

nd
s/

m
ile

 fr
om

 w
in

ne
r’

s
ti

m
e

in
 T

ou
r

d
e

Fr
an

ce
 ti

m
e-

tr
ia

l.
7.

5
oz

.
10

03
5

11
1

SH
M

L
ig

ht
-a

ct
io

n
sh

if
ti

ng
 1

0
sp

ee
d

. D
es

ig
ne

d
fo

r
th

e
ci

ty
 c

om
m

ut
er

 w
it

h
sh

oc
k-

ab
so

rb
in

g
fr

on
t f

or
k

an
d

 d
ri

lle
d

 e
ye

le
ts

fo
r

ca
rr

y-
al

l r
ac

ks
 o

r
bi

cy
cl

e
tr

ai
le

rs
.

In
te

rn
al

w
ir

in
g

fo
rg

en
er

at
or

lig
ht

s.
33

lb
s.

ca
ta

lo
g

Ta
bl

e
(3

 o
f 7

)

1-30 IBM Informix Guide to SQL: Reference

Data in the stores5 Database

ca

t_
p

ic
tu

re
ca

t_
ad

ve
rt

<
B

Y
T

E
 v

al
ue

>
W

e
Se

le
ct

ed
 th

e
Id

ea
l C

om
bi

na
ti

on
 o

f
To

ur
in

g
B

ik
e

E
qu

ip
m

en
t,

T
he

n
Tu

rn
ed

It
In

to
T

hi
s

Pa
ck

ag
e

D
ea

l:
H

ig
h-

Pe
rf

or
-

m
an

ce
 o

n
th

e
R

oa
d

s,
 M

ax
im

um
Pl

ea
su

re
 E

ve
ry

w
he

re
<

B
Y

T
E

 v
al

ue
>

D
es

ig
ne

d
 fo

r
th

e
Se

ri
ou

s
C

om
pe

ti
to

r,
T

he
 C

om
pl

et
e

R
ac

in
g

M
ac

hi
ne

<
B

Y
T

E
 v

al
ue

>
R

id
in

g
G

lo
ve

s
Fo

r
C

om
fo

rt
 a

nd
Pr

ot
ec

ti
on

<
B

Y
T

E
 v

al
ue

>
Fu

ll-
C

om
fo

rt
, L

on
g-

W
ea

ri
ng

 G
ol

f
Sh

oe
s

fo
r

M
en

 a
nd

 W
om

en

<
B

Y
T

E
 v

al
ue

>
W

at
er

pr
oo

f P
ro

te
ct

io
n

E
ns

ur
es

M
ax

im
um

 C
om

fo
rt

 a
nd

 D
ur

ab
ili

ty
In

 A
ll

C
lim

at
es

<
B

Y
T

E
 v

al
ue

>
K

ar
st

en
’s

 T
op

 Q
ua

lit
y

Sh
oe

 C
om

bi
ne

s
L

ea
th

er
 a

nd
 L

ea
th

er
 M

es
h

<
B

Y
T

E
 v

al
ue

>
St

ar
te

r
Se

t o
f W

oo
d

s,
 Id

ea
l f

or
 H

ig
h

Sc
ho

ol
 a

nd
 C

ol
le

gi
at

e
C

la
ss

es
<

B
Y

T
E

 v
al

ue
>

H
ig

h-
Q

ua
lit

y
W

oo
d

s
A

pp
ro

pr
ia

te
 fo

r
H

ig
h

Sc
ho

ol
 C

om
pe

ti
ti

on
s

or
 S

er
io

us
A

m
at

eu
rs

<
B

Y
T

E
 v

al
ue

>
Se

t o
f I

ro
ns

 A
va

ila
bl

e
Fr

om
 F

ac
to

ry
 a

t
Tr

em
en

d
ou

s
Sa

vi
ng

s:
 D

is
co

nt
in

ue
d

L
in

e
<

B
Y

T
E

 v
al

ue
>

H
ig

h-
Q

ua
lit

y
B

eg
in

ni
ng

 S
et

 o
f I

ro
ns

A
pp

ro
pr

ia
te

fo
rH

ig
h

Sc
ho

ol
C

om
pe

tit
io

ns
<

B
Y

T
E

 v
al

ue
>

Lo
ng

D
ri

ve
G

ol
fB

al
ls

:F
lu

or
es

ce
nt

Ye
llo

w
<

B
Y

T
E

 v
al

ue
>

L
on

g
D

ri
ve

 G
ol

f B
al

ls
: W

hi
te

<
B

Y
T

E
 v

al
ue

>
H

iF
lie

r
G

ol
f B

al
ls

: C
as

e
In

cl
ud

es
Fl

uo
re

sc
en

t Y
el

lo
w

 a
nd

 S
ta

nd
ar

d
W

hi
te

ca
ta

lo
g_

n
u

m
st

oc
k

_n
u

m
m

an
u

_c
od

e
ca

t_
d

es
cr

10
03

6
11

2
SH

M
C

re
at

ed
fo

rt
he

be
gi

nn
er

en
th

us
ia

st
.

Id
ea

l f
or

 c
lu

b
ri

d
es

 a
nd

 li
gh

t
to

ur
in

g.
 S

op
hi

st
ic

at
ed

 tr
ip

le
-b

ut
te

d
fr

am
e

co
ns

tr
uc

ti
on

. P
re

ci
se

 in
d

ex
sh

if
ti

ng
. 2

8
lb

s.
10

03
7

11
3

SH
M

U
lt

ra
-l

ig
ht

w
ei

gh
t.

R
ac

in
g

fr
am

e
ge

om
et

ry
 b

ui
lt

 fo
r

ae
ro

d
yn

am
ic

ha
nd

le
ba

rs
.C

an
ti

le
ve

r
br

ak
es

.
In

d
ex

 s
hi

ft
in

g.
 H

ig
h-

pe
rf

or
m

an
ce

ge
ar

in
g.

 Q
ui

ck
-r

el
ea

se
 h

ub
s.

 D
is

k
w

he
el

s.
 B

la
d

ed
 s

po
ke

s.
10

03
8

11
4

PR
C

Pa
d

d
ed

 le
at

he
r

pa
lm

 a
nd

 s
tr

et
ch

m
es

h
m

er
ge

d
 w

it
h

te
rr

y
ba

ck
;

A
va

ila
bl

e
in

 ta
n,

 b
la

ck
, a

nd
 c

re
am

.
Si

ze
s

S,
 M

, L
, X

L
.

10
03

9
20

1
N

K
L

D
es

ig
ne

d
 fo

r
co

m
fo

rt
 a

nd
 s

ta
bi

lit
y.

A
va

ila
bl

e
in

 w
hi

te
 &

 b
lu

e
or

 w
hi

te
&

 b
ro

w
n.

 S
pe

ci
fy

 s
iz

e.
10

04
0

20
1

A
N

Z
G

ua
ra

nt
ee

d
w

at
er

pr
oo

f.
Fu

ll
le

at
he

r
up

pe
r.

A
va

ila
bl

e
in

 w
hi

te
, b

on
e,

br
ow

n,
gr

ee
n,

an
d

bl
ue

.S
pe

ci
fy

si
ze

.
10

04
1

20
1

K
A

R
L

ea
th

er
 a

nd
 le

at
he

r
m

es
h

fo
r

m
ax

im
um

 v
en

ti
la

ti
on

. W
at

er
pr

oo
f

lin
in

g
to

 k
ee

p
fe

et
 d

ry
. A

va
ila

bl
e

in
w

hi
te

 &
 g

ra
y

or
 w

hi
te

 &
 iv

or
y.

Sp
ec

if
y

si
ze

.
10

04
2

20
2

N
K

L
C

om
pl

et
e

st
ar

te
r

se
t u

ti
liz

es
 g

ol
d

sh
af

ts
. B

al
an

ce
d

 fo
r

po
w

er
.

10
04

3
20

2
K

A
R

Fu
ll

se
t o

f w
oo

d
s

d
es

ig
ne

d
 fo

r
pr

ec
is

io
n

co
nt

ro
l a

nd
 p

ow
er

 p
er

fo
r-

m
an

ce
.

10
04

4
20

3
N

K
L

Se
to

fe
ig

ht
ir

on
s

in
cl

ud
es

3
th

ro
ug

h
9

ir
on

s
an

d
 p

it
ch

in
g

w
ed

ge
. O

ri
gi

-
na

lly
 p

ri
ce

d
 a

t $
48

9.
00

.
10

04
5

20
4

K
A

R
Id

ea
lly

 b
al

an
ce

d
 fo

r
op

ti
m

um
co

nt
ro

l.
N

yl
on

-c
ov

er
ed

 s
ha

ft
.

10
04

6
20

5
N

K
L

Fl
uo

re
sc

en
t y

el
lo

w
.

10
04

7
20

5
A

N
Z

W
hi

te
 o

nl
y.

10
04

8
20

5
H

R
O

C
om

bi
na

ti
on

 fl
uo

re
sc

en
t y

el
lo

w
an

d
st

an
d

ar
d

 w
hi

te
.

ca
ta

lo
g

Ta
bl

e
(4

 o
f 7

)

The stores5 Database 1-31

Data in the stores5 Database

ca

t_
p

ic
tu

re
ca

t_
ad

ve
rt

<
B

Y
T

E
 v

al
ue

>
M

ax
im

um
 P

ro
te

ct
io

n
Fo

r
H

ig
h-

M
ile

ag
e

R
un

ne
rs

<
B

Y
T

E
 v

al
ue

>
Pr

on
at

or
s

an
d

 S
up

in
at

or
s

Ta
ke

H
ea

rt
: A

 S
er

io
us

 T
ra

in
in

g
Sh

oe
Fo

r
R

un
ne

rs
 W

ho
 N

ee
d

 M
ot

io
n

C
on

tr
ol

<
B

Y
T

E
 v

al
ue

>
T

he
Tr

ai
ni

ng
Sh

oe
E

ng
in

ee
re

d
fo

r
M

ar
at

ho
ne

rs
 a

nd
 U

lt
ra

-D
is

ta
nc

e
R

un
ne

rs

<
B

Y
T

E
 v

al
ue

>
A

 W
om

an
’s

 R
ac

in
g

Fl
at

 T
ha

t
C

om
bi

ne
s

E
xt

ra
 F

or
ef

oo
t

Pr
ot

ec
ti

on
 W

it
h

a
Sl

en
d

er
 H

ee
l

<
B

Y
T

E
 v

al
ue

>
D

ur
ab

le
 T

ra
in

in
g

Fl
at

 T
ha

t C
an

C
ar

ry
 Y

ou
 T

hr
ou

gh
 M

ar
at

ho
n

M
ile

s

<
B

Y
T

E
 v

al
ue

>
M

ot
io

n
C

on
tr

ol
, P

ro
te

ct
io

n,
 a

nd
E

xt
ra

 T
oe

bo
x

R
oo

m

<
B

Y
T

E
 v

al
ue

>
Fi

na
lly

, A
n

Ic
e

Pa
ck

 fo
r

A
ch

ill
es

In
ju

ri
es

an
d

Sh
in

Sp
lin

ts
th

at
Yo

u
C

an
 T

ak
e

to
 th

e
O

ffi
ce

<
B

Y
T

E
 v

al
ue

>
K

no
ck

 T
he

ir
 S

oc
ks

 O
ff

 W
it

h
Y

O
U

R
 S

oc
ks

<
B

Y
T

E
 v

al
ue

>
10

0%
 N

yl
on

 B
le

nd
 S

oc
ks

 -
N

o
C

ot
to

n

ca
ta

lo
g_

n
u

m
st

oc
k

_n
u

m
m

an
u

_c
od

e
ca

t_
d

es
cr

10
04

9
30

1
N

K
L

Su
pe

r
sh

oc
k-

ab
so

rb
in

g
ge

l p
ad

s
d

is
pe

rs
e

ve
rt

ic
al

 e
ne

rg
y

in
to

 a
 h

or
iz

on
ta

l p
la

ne
 fo

r
ex

tr
ao

rd
in

ar
y

cu
sh

io
ne

d
 c

om
fo

rt
. G

re
at

m
ot

io
n

co
nt

ro
l.

M
en

s
on

ly
. S

pe
ci

fy
 s

iz
e.

10
05

0
30

1
H

R
O

E
ng

in
ee

re
d

 fo
r

se
ri

ou
s

tr
ai

ni
ng

 w
it

h
ex

ce
pt

io
na

l s
ta

bi
lit

y.
 F

ab
ul

ou
s

sh
oc

k
ab

so
rp

ti
on

. G
re

at
 d

ur
ab

ili
ty

. S
pe

ci
fy

m
en

s/
w

om
en

’s
, s

iz
e.

10
05

1
30

1
SH

M
Fo

r
ru

nn
er

s
w

ho
lo

g
he

av
y

m
ile

s
an

d
ne

ed
a

d
ur

ab
le

, s
up

po
rt

iv
e,

 s
ta

bl
e

pl
at

fo
rm

.
M

es
h/

sy
nt

he
ti

c
up

pe
r

gi
ve

s
ex

ce
lle

nt
m

oi
st

ur
e

d
is

si
pa

ti
on

. S
ta

bi
lit

y
sy

st
em

 u
se

s
re

ar
 a

nt
ip

ro
na

ti
on

 p
la

tf
or

m
 a

nd
 fo

re
fo

ot
co

nt
ro

lp
la

te
fo

r
ex

te
nd

ed
pr

ot
ec

ti
on

d
ur

in
g

hi
gh

-i
nt

en
si

ty
 tr

ai
ni

ng
. S

pe
ci

fy
m

en
s/

w
om

en
’s

, s
iz

e.
10

05
2

30
1

PR
C

Su
pp

or
ti

ve
, s

ta
bl

e
ra

ci
ng

 fl
at

. P
le

nt
y

of
fo

re
fo

ot
 c

us
hi

on
in

g
w

it
h

ad
d

ed
 m

ot
io

n
co

nt
ro

l.
W

om
en

’s
 o

nl
y.

 D
 w

id
th

s
av

ai
la

bl
e.

Sp
ec

if
y

si
ze

.
10

05
3

30
1

K
A

R
A

na
to

m
ic

al
 la

st
 h

ol
d

s
yo

ur
 fo

ot
 fi

rm
ly

 in
pl

ac
e.

 F
ea

th
er

-w
ei

gh
t c

us
hi

on
in

g
d

el
iv

er
s

th
e

re
sp

on
si

ve
ne

ss
 o

f a
 r

ac
in

g
fl

at
. S

pe
ci

fy
m

en
s/

w
om

en
’s

, s
iz

e.
10

05
4

30
1

A
N

Z
C

an
ti

le
ve

r
so

le
 p

ro
vi

d
es

 s
ho

ck
 a

bs
or

pt
io

n
an

d
 e

ne
rg

y
re

bo
un

d
. P

os
it

iv
e

tr
ac

ti
on

 s
ho

e
w

it
h

am
pl

e
to

e
bo

x.
 Id

ea
l f

or
 r

un
ne

rs
 w

ho
ne

ed
 a

 w
id

e
sh

oe
. A

va
ila

bl
e

in
 m

en
s

an
d

w
om

en
’s

. S
pe

ci
fy

 s
iz

e.
10

05
5

30
2

K
A

R
R

e-
us

ab
le

 ic
e

pa
ck

 w
it

h
ve

lc
ro

 s
tr

ap
. F

or
ge

ne
ra

l u
se

. V
el

cr
o

st
ra

p
al

lo
w

s
ea

sy
 a

pp
li-

ca
ti

on
 to

 a
rm

s
or

 le
gs

.
10

05
6

30
3

PR
C

N
eo

n
ny

lo
n.

Pe
rf

ec
tf

or
ru

nn
in

g
or

ae
ro

bi
cs

.
In

d
ic

at
e

co
lo

r:
 F

lu
or

es
ce

nt
 p

in
k,

 y
el

lo
w

,
gr

ee
n,

 a
nd

 o
ra

ng
e.

10
05

7
30

3
K

A
R

10
0%

 n
yl

on
 b

le
nd

 fo
r

op
ti

m
al

 w
ic

ki
ng

 a
nd

co
m

fo
rt

. W
e’

ve
 ta

ke
n

ou
t t

he
 c

ot
to

n
to

el
im

in
at

e
th

e
ri

sk
 o

f b
lis

te
rs

 a
nd

 r
ed

uc
e

th
e

op
po

rt
un

it
y

fo
r

in
fe

ct
io

n.
 S

pe
ci

fy
 m

en
s

or
w

om
en

’s
.

ca
ta

lo
g

Ta
bl

e
(5

 o
f 7

)

1-32 IBM Informix Guide to SQL: Reference

Data in the stores5 Database
ca
t_

p
ic

tu
re

ca
t_

ad
ve

rt

<
B

Y
T

E
 v

al
ue

>
A

th
le

ti
c

W
at

ch
 w

/
4-

L
ap

 M
em

or
y

<
B

Y
T

E
 v

al
ue

>
W

at
er

pr
oo

f T
ri

at
hl

et
e

W
at

ch
 In

C
om

pe
ti

ti
on

 C
ol

or
s

<
B

Y
T

E
 v

al
ue

>
C

om
pr

eh
en

si
ve

 F
ir

st
-A

id
 K

it
E

ss
en

ti
al

 fo
r

Te
am

 P
ra

ct
ic

es
, T

ea
m

Tr
av

el
in

g

<
B

Y
T

E
 v

al
ue

>
E

nj
oy

B
ic

yc
lin

g
W

it
h

Yo
ur

C
hi

ld
O

n
a

Ta
nd

em
; M

ak
e

Yo
ur

 F
am

ily
 O

ut
in

g
Sa

fe
r

<
B

Y
T

E
 v

al
ue

>
C

on
si

d
er

 a
 T

ou
ri

ng
 V

ac
at

io
n

Fo
r

th
e

E
nt

ir
e

Fa
m

ily
:A

L
ig

ht
w

ei
gh

t,
To

ur
in

g
Ta

nd
em

 fo
r

Pa
re

nt
 a

nd
 C

hi
ld

<
B

Y
T

E
 v

al
ue

>
In

fa
nt

 Jo
gg

er
 K

ee
ps

 A
 R

un
ni

ng
Fa

m
ily

 T
og

et
he

r

<
B

Y
T

E
 v

al
ue

>
A

s
Yo

ur
 F

am
ily

 G
ro

w
s,

 In
fa

nt
 Jo

gg
er

G
ro

w
s

W
it

h
Yo

u

<
B

Y
T

E
 v

al
ue

>
Sw

im
m

er
s

C
an

 P
re

ve
nt

 E
ar

 In
fe

ct
io

n
A

ll
Se

as
on

 L
on

g
<

B
Y

T
E

 v
al

ue
>

Sw
im

m
er

’s
 E

ar
 D

ro
ps

 S
pe

ci
al

ly
Fo

rm
ul

at
ed

 fo
r

C
hi

ld
re

n

<
B

Y
T

E
 v

al
ue

>
E

xc
ep

ti
on

al
ly

 D
ur

ab
le

, C
om

pa
ct

K
ic

kb
oa

rd
 fo

r
Te

am
 P

ra
ct

ic
e

<
B

Y
T

E
 v

al
ue

>
H

ig
h-

Q
ua

lit
y

K
ic

kb
oa

rd
<

B
Y

T
E

 v
al

ue
>

H
ot

 T
ra

in
in

g
To

ol
 -

W
eb

be
d

 S
w

im
G

lo
ve

s
B

ui
ld

 A
rm

 S
tr

en
gt

h
an

d
E

nd
ur

an
ce

<
B

Y
T

E
 v

al
ue

>
A

nt
i-

Fo
g

Sw
im

m
er

’s
 G

og
gl

es
:

Q
ua

nt
it

y
D

is
co

un
t

<
B

Y
T

E
 v

al
ue

>
Sw

im
 G

og
gl

es
: T

ra
d

it
io

na
l R

ou
nd

ed
L

en
s

Fo
r

G
re

at
er

 C
om

fo
rt

ca
ta

lo
g_

n
u

m
st

oc
k

_n
u

m
m

an
u

_c
od

e
ca

t_
d

es
cr

10
05

8
30

4
A

N
Z

Pr
ov

id
es

 ti
m

e,
 d

at
e,

 d
ua

l d
is

pl
ay

 o
f

la
p/

cu
m

ul
at

iv
e

sp
lit

s,
 4

-l
ap

 m
em

or
y,

10
hr

 c
ou

nt
-d

ow
n

ti
m

er
, e

ve
nt

 ti
m

er
,

al
ar

m
, h

ou
r

ch
im

e,
 w

at
er

pr
oo

f t
o

50
m

,
ve

lc
ro

 b
an

d
.

10
05

9
30

4
H

R
O

Sp
lit

 ti
m

er
, w

at
er

pr
oo

f t
o

50
m

. I
nd

ic
at

e
co

lo
r:

H
ot

pi
nk

,m
in

tg
re

en
,s

pa
ce

bl
ac

k.
10

06
0

30
5

H
R

O
C

on
ta

in
s

ac
e

ba
nd

ag
e,

 a
nt

i-
ba

ct
er

ia
l

cr
ea

m
,a

lc
oh

ol
cl

ea
ns

in
g

pa
d

s,
ad

he
si

ve
ba

nd
ag

es
 o

f a
ss

or
te

d
 s

iz
es

, a
nd

 in
st

an
t-

co
ld

 p
ac

k.
10

06
1

30
6

PR
C

C
on

ve
rt

s
a

st
an

d
ar

d
 ta

nd
em

 b
ik

e
in

to
an

 a
d

ul
t/

ch
ild

 b
ik

e.
 U

se
r-

te
st

ed
A

ss
em

bl
y

In
st

ru
ct

io
ns

10
06

2
30

6
SH

M
C

on
ve

rt
s

a
st

an
d

ar
d

 ta
nd

em
 b

ik
e

in
to

an
ad

ul
t/

ch
ild

bi
ke

.L
ig

ht
w

ei
gh

tm
od

el
.

10
06

3
30

7
PR

C
A

llo
w

s
m

om
 o

r
d

ad
 to

 ta
ke

 th
e

ba
by

ou
t,

to
o.

 F
it

s
ch

ild
re

n
up

 to
 2

1
po

un
d

s.
N

av
y

bl
ue

 w
it

h
bl

ac
k

tr
im

.
10

06
4

30
8

PR
C

A
llo

w
s

m
om

 o
r

d
ad

 to
 ta

ke
 b

ot
h

ch
ild

re
n!

 R
at

ed
 fo

r
ch

ild
re

n
up

 to
 1

8
po

un
d

s.
10

06
5

30
9

H
R

O
Pr

ev
en

ts
 s

w
im

m
er

’s
 e

ar
.

10
06

6
30

9
SH

M
E

xt
ra

-g
en

tl
e

fo
rm

ul
a.

 C
an

 b
e

us
ed

ev
er

y
d

ay
fo

rp
re

ve
nt

io
n

or
tr

ea
tm

en
to

f
sw

im
m

er
’s

 e
ar

.
10

06
7

31
0

SH
M

B
lu

e
he

av
y-

d
ut

y
fo

am
 b

oa
rd

 w
it

h
Sh

im
ar

a
or

 te
am

 lo
go

.
10

06
8

31
0

A
N

Z
W

hi
te

. S
ta

nd
ar

d
 s

iz
e.

10
06

9
31

1
SH

M
Sw

im
 g

lo
ve

s.
 W

eb
bi

ng
 b

et
w

ee
n

fin
ge

rs
pr

om
ot

es
 s

tr
en

gt
he

ni
ng

 o
f a

rm
s.

C
an

no
t b

e
us

ed
 in

 c
om

pe
ti

ti
on

.
10

07
0

31
2

SH
M

H
yd

ro
d

yn
am

ic
 e

gg
-s

ha
pe

d
 le

ns
.

G
ro

un
d

-i
n

an
ti

-f
og

 e
le

m
en

ts
; A

va
ila

bl
e

in
 b

lu
e

or
 s

m
ok

e.
10

07
1

31
2

H
R

O
D

ur
ab

le
 c

om
pe

ti
ti

on
-s

ty
le

 g
og

gl
es

.
A

va
ila

bl
e

in
 b

lu
e,

 g
re

y,
 o

r
w

hi
te

.

ca
ta

lo
g

Ta
bl

e
(6

 o
f 7

)

The stores5 Database 1-33

Data in the stores5 Database
ca
t_

p
ic

tu
re

ca
t_

ad
ve

rt

<
B

Y
T

E
 v

al
ue

>
Te

am
 L

og
o

Si
lic

on
e

Sw
im

 C
ap

<
B

Y
T

E
 v

al
ue

>
D

ur
ab

le
 S

qu
ar

ed
-o

ff
 S

ili
co

ne
 S

w
im

 C
ap

<
B

Y
T

E
 v

al
ue

>
W

at
er

 C
om

pa
rt

m
en

t C
om

bi
ne

s
W

it
h

Ic
e

to
 P

ro
vi

d
e

O
pt

im
al

 O
rt

ho
pe

d
ic

Tr
ea

tm
en

t

ca
ta

lo
g_

n
u

m
st

oc
k

_n
u

m
m

an
u

_c
od

e
ca

t_
d

es
cr

10
07

2
31

3
SH

M
Si

lic
on

e
sw

im
 c

ap
. O

ne
 s

iz
e.

A
va

ila
bl

e
in

w
hi

te
,s

ilv
er

,o
rn

av
y.

Te
am

L
og

o
Im

pr
in

ti
ng

 A
va

ila
bl

e.
10

07
3

31
3

A
N

Z
Si

lic
on

e
sw

im
ca

p.
Sq

ua
re

d
-o

ff
to

p.
O

ne
 s

iz
e.

 W
hi

te
.

10
07

4
30

2
H

R
O

R
e-

us
ab

le
 ic

e
pa

ck
. S

to
re

 in
 th

e
fr

ee
ze

r
fo

r
in

st
an

t fi
rs

t-
ai

d
. E

xt
ra

ca
pa

ci
ty

 to
ac

co
m

m
od

at
e

w
at

er
an

d
 ic

e.

ca
ta

lo
g

Ta
bl

e
(7

 o
f 7

)

1-34 IBM Informix Guide to SQL: Reference

Data in the stores5 Database
re
s_

d
ti

m
e

re
s_

d
es

cr

19
91

-0
6-

12
 8

:2
5

A
ut

ho
ri

ze
d

cr
ed

it
fo

rt
w

o
ca

ns
to

cu
st

om
er

, i
ss

ue
d

 a
po

lo
gy

.
C

al
le

d
 A

N
Z

 b
uy

er
 to

 r
ep

or
t

th
e

Q
A

 p
ro

bl
em

.
19

91
-0

7-
07

 1
0:

30
C

he
ck

ed
 w

it
h

sh
ip

pi
ng

 (E
d

Sm
it

h)
. O

rd
er

 s
en

t y
es

te
rd

ay
-

w
e

w
er

e
w

ai
ti

ng
 fo

r
go

od
s

fr
om

A
N

Z
.N

ex
tt

im
e

w
ill

ca
ll

w
it

h
d

el
ay

 if
 n

ec
es

sa
ry

.
19

91
-0

7-
02

 8
:2

1
Sp

ok
e

w
it

h
Ja

ne
 A

ka
nt

 in
Fi

na
nc

e.
 S

he
 fo

un
d

 th
e

er
ro

r
an

d
 is

 s
en

d
in

g
ne

w
 b

ill
 to

cu
st

om
er

.
19

91
-0

7-
10

 1
4:

06
Se

nt
 n

ot
e

to
 m

ar
ke

ti
ng

 g
ro

up
of

in
te

re
st

 in
 in

fa
nt

 jo
gg

er
s.

Se
nt

 m
em

o
to

 s
hi

pp
in

g
to

se
nd

 A
N

Z
 it

em
 3

04
 to

cu
st

om
er

 a
nd

 p
ic

ku
p

H
R

O
w

at
ch

es
. S

ho
ul

d
 b

e
d

on
e

to
m

or
ro

w
, 8

/
1.

19
90

-1
1-

28
 1

6:
47

Sh
ip

pi
ng

fo
un

d
co

rr
ec

tc
as

e
in

w
ar

eh
ou

se
 a

nd
 e

xp
re

ss
m

ai
le

d
 it

 in
 ti

m
e

fo
r

sw
im

m
ee

t.
19

90
-1

2-
27

 0
8:

19
M

em
o

to
 s

hi
pp

in
g

(A
va

B
ro

w
n)

 to
 s

en
d

 c
as

e
of

 le
ft

-
ha

nd
ed

gl
ov

es
,p

ic
k

up
w

ro
ng

ca
se

; m
em

o
to

 b
ill

in
g

re
qu

es
ti

ng
 5

%
 d

is
co

un
t t

o
pl

ac
at

e
cu

st
om

er
 d

ue
 to

se
co

nd
of

fe
ns

e
an

d
la

te
ne

ss
of

re
so

lu
ti

on
 b

ec
au

se
 o

fh
ol

id
ay

.

cu
st

om
er

_n
u

m
ca

ll
_d

ti
m

e
u

se
r_

id
ca

ll
_c

od
e

ca
ll

_d
es

cr

10
6

19
91

-0
6-

12
 8

:2
0

m
ar

yj
D

O
rd

er
w

as
re

ce
iv

ed
,b

ut
tw

o
of

th
e

ca
ns

 o
f A

N
Z

 te
nn

is
 b

al
ls

w
it

hi
n

th
e

ca
se

 w
er

e
em

pt
y.

11
0

19
91

-0
7-

07
 1

0:
24

ri
ch

c
L

O
rd

er
 p

la
ce

d
 o

ne
 m

on
th

 a
go

(6
/

7)
 n

ot
 r

ec
ei

ve
d

.

11
9

19
91

-0
7-

01
 1

5:
00

ri
ch

c
B

B
ill

d
oe

s
no

tr
efl

ec
tc

re
d

it
fr

om
pr

ev
io

us
 o

rd
er

.

12
1

19
91

-0
7-

10
 1

4:
05

m
ar

yj
O

C
us

to
m

er
 li

ke
s

ou
r

m
er

ch
an

d
is

e.
R

eq
ue

st
s

th
at

w
e

st
oc

k
m

or
e

ty
pe

s
of

 in
fa

nt
jo

gg
er

s.
 W

ill
 c

al
l b

ac
k

to
 p

la
ce

or
d

er
.

12
7

19
91

-0
7-

31
 1

4:
30

m
ar

yj
I

R
ec

ei
ve

d
H

er
o

w
at

ch
es

(i
te

m
#

30
4)

 in
st

ea
d

 o
f A

N
Z

 w
at

ch
es

.

11
6

19
90

-1
1-

28
 1

3:
34

m
an

ny
n

I
R

ec
ei

ve
d

 p
la

in
 w

hi
te

 s
w

im
ca

ps
(3

13
A

N
Z

)i
ns

te
ad

of
na

vy
w

it
h

te
am

 lo
go

 (3
13

 S
H

M
).

11
6

19
90

-1
2-

21
 1

1:
24

m
an

ny
n

I
Se

co
nd

 c
om

pl
ai

nt
 fr

om
 th

is
cu

st
om

er
! R

ec
ei

ve
d

 tw
o

ca
se

s
ri

gh
t-

ha
nd

ed
ou

tfi
el

d
er

gl
ov

es
(1

 H
R

O
) i

ns
te

ad
 o

f o
ne

 c
as

e
le

ft
ie

s.

cu
st

_c
al

ls
 T

ab
le
The stores5 Database 1-35

Data in the stores5 Database
manufact Table

state Table

manu_code manu_name lead_time

ANZ
HSK
HRO
NRG
SMT
SHM
KAR
NKL
PRC

Anza
Husky
Hero
Norge
Smith
Shimara
Karsten
Nikolus
ProCycle

5
5
4
7
3
30
21
8
9

code sname code sname

AK
AL
AR
AZ
CA
CT
CO
D.C.
DE
FL
GA
HI
IA
ID
IL
IN
KS
KY
LA
MA
MD
ME
MI
MN
MO
MS

Alaska
Alabama
Arkansas
Arizona
California
Connecticut
Colorado
DC
Delaware
Florida
Georgia
Hawaii
Iowa
Idaho
Illinois
Indiana
Kansas
Kentucky
Louisiana
Massachusetts
Maryland
Maine
Michigan
Minnesota
Missouri
Mississippi

MT
NE
NC
ND
NH
NJ
NM
NV
NY
OH
OK
OR
PA
PR
RI
SC
SD
TN
TX
UT
VA
VT
WA
WI
WV
WY

Montana
Nebraska
North Carolina
North Dakota
New Hampshire
New Jersey
New Mexico
Nevada
New York
Ohio
Oklahoma
Oregon
Pennsylvania
Puerto Rico
Rhode Island
South Carolina
South Dakota
Tennessee
Texas
Utah
Virginia
Vermont
Washington
Wisconsin
West Virginia
Wyoming
1-36 IBM Informix Guide to SQL: Reference

2
Chapter
System Catalog
In This Chapter . 2-3

Using the System Catalog 2-4
Accessing the System Catalog 2-8
Updating System Catalog Data 2-9

Structure of the System Catalog 2-9
SYSBLOBS . 2-10
SYSCHECKS 2-11
SYSCOLAUTH 2-11
SYSCOLDEPEND 2-12
SYSCOLUMNS 2-13
SYSCONSTRAINTS 2-16
SYSDEFAULTS 2-17
SYSDEPEND 2-18
SYSINDEXES 2-18
SYSOPCLSTR 2-21
SYSPROCAUTH 2-23
SYSPROCBODY 2-24
SYSPROCEDURES 2-25
SYSPROCPLAN 2-26
SYSREFERENCES 2-27
SYSSYNONYMS 2-27
SYSSYNTABLE 2-28
SYSTABAUTH 2-29
SYSTABLES . 2-30
SYSUSERS . 2-32
SYSVIEWS . 2-33

2-2 IBM
System Catalog Map 2-33
 Informix Guide to SQL: Reference

In This Chapter
The system catalog consists of tables that describe the structure of the
database. Each system catalog table contains specific information about an
element in the database. The system catalog also tracks the views, authorized
users, and privileges associated with every table you create.

The system catalog tables are generated automatically when you create a
database, and you can query them as you would query any other table in the
database. The data for a newly created database and the 21 system catalog
tables for that database reside in a common area of the disk called a dbspace.
If you are using the IBM Informix SE database server, the 19 system catalog
tables for a newly created database reside in the databasename.dbs directory.
All tables that make up the system catalog have the prefix “sys” (for example,
the systables system catalog table).

This chapter covers the following topics:

� How to access tables in the system catalog

� How to update statistics in the system catalog

� The structure, including the name and data type of each column, of
the tables that constitute the system catalog.
System Catalog 2-3

Using the System Catalog
Using the System Catalog
The database server accesses the system catalog constantly. Each time an SQL
statement is processed, the database server accesses the system catalog to
determine system privileges, add or verify table names or column names,
and so on. For example, the following CREATE SCHEMA block adds the
customer system catalog table, with its respective indexes and privileges, to
the stores5 database. This block also adds a view, california, that restricts the
view into the customer table to only the first and last name of the customer,
the company name, and the phone number of all customers that reside in
California.

CREATE SCHEMA AUTHORIZATION maryl
CREATE TABLE customer

(customer_num SERIAL(101), fname CHAR(15), lname CHAR(15), company
CHAR(20),

address1 CHAR(20), address2 CHAR(20), city CHAR(15), state CHAR(2),
zipcode CHAR(5), phone CHAR(18))

GRANT ALTER, ALL ON customer TO cathl WITH GRANT OPTION AS maryl
GRANT SELECT ON CUSTOMER TO public
GRANT UPDATE (fname, lname, phone) ON customer TO nhowe
CREATE VIEW california AS

SELECT fname, lname, company, phone FROM customer WHERE state = "CA"
CREATE UNIQUE INDEX c_num_ix ON customer (customer_num)
CREATE INDEX state_ix ON customer (state);

To process this CREATE SCHEMA block, the database server first accesses the
system catalog to verify the following information:

� The new table and view names do not already exist in the database.
(If the database is ANSI-compliant, the database server verifies that
the table and view names do not already exist for the specified
owners.)

� The user has permission to create the tables and grant user
privileges.

� The column names in the CREATE VIEW and CREATE INDEX state-
ments exist in the customer table.

In addition to verifying this information and creating two new tables, the
database server adds new rows to the following system catalog tables:

� systables

� syscolumns

� sysviews
2-4 IBM Informix Guide to SQL: Reference

Using the System Catalog
� systabauth

� syscolauth

� sysindexes

The following two new rows of information are added to the systables
system catalog table after the preceding CREATE SCHEMA block is run.

Each table recorded in the systables system catalog table is assigned a tabid,
a system-assigned sequential id number that uniquely identifies each table in
the database. The system catalog tables receive tabid numbers 1 through 21,
while the user-created tables receive tabid numbers beginning with 100.

tabname customer
owner maryl
partnum 16778361
tabid 101
rowsize 134
ncols 10
nindexes 2
nrows 0
created 04/26/1990
version 1
tabtype T
locklevel P
npused 0
fextsize 16
nextsize 16
flags 0
site
dbname

tabname california
owner maryl
partnum 0
tabid 102
rowsize 134
ncols 4
nindexes 0
nrows 0
created 04/26/1990
version 0
tabtype V
locklevel B
npused 0
fextsize 0
nextsize 0
flags 0
site
dbname
System Catalog 2-5

Using the System Catalog
The CREATE SCHEMA block also adds 13 rows to the syscolumns system
catalog table. These rows correspond to the columns in the table customer
and the view california.

In the syscolumns system catalog table, each column within a table is
assigned a sequential column number, colno, that uniquely identifies the
column within its table. For example, the column fname in the customer
table is assigned the colno 2, while the column fname in the view california
is assigned the colno 1. Note that the colmin and colmax columns contain no
entries. These two columns contain values only when a column has a
composite index, has no null or duplicate values, and the UPDATE STATISTICS
statement has been run.

The following rows are added to the sysviews system catalog table. These
rows correspond to the CREATE VIEW portion of the CREATE SCHEMA block.

The sysviews system catalog table contains the CREATE VIEW statement used
to create the view. Each line of the CREATE VIEW statement in the current
schema is stored in this table. In the viewtext column, the x0 that precedes the
column names in the statement (for example, x0.fname) operates as an alias
name that distinguishes between the same columns used in a self-join.

colname tabid colno coltype collength colmin colmax

customer_num 101 1 262 4
fname 101 2 0 15
lname 101 3 0 15
company 101 4 0 20
address1 101 5 0 20
address2 101 6 0 20
city 101 7 0 15
state 101 8 0 2
zipcode 101 9 0 5
phone 101 10 0 18

fname 102 1 0 15
lname 102 2 0 15
company 102 3 0 20
phone 102 4 0 18

tabid seq viewtext

102 0 create view "maryl".california (customer_num, fname, lname, company
102 1 ,address1, address2, city, state,zipcode,phone) as select x0.custom
102 2 er_num, x0.fname, x0.lname, x0.company, x0.address1, x0.address2
102 3 ,x0.city, x0.state, x0.zipcode, x0.phone from "maryl".customer
102 4 x0 where (x0.state = 'CA');
2-6 IBM Informix Guide to SQL: Reference

Using the System Catalog
The CREATE SCHEMA block also adds the following rows to the systabauth
system catalog table. These rows correspond to the user privileges granted on
customer and california.

The tabauth column of this table specifies the table-level privileges granted
to users on the customer and california tables. This column uses an 8-byte
pattern—s (select), u (update), * (column-level privilege), i (insert), d (delete),
x (index), a (alter), r (references)—to identify the type of privilege granted. In
this example, the user nhowe has column-level privileges on the customer
table.

In addition, three rows are added to the syscolauth system catalog table.
These rows correspond to the user privileges granted on specific columns in
the customer table.

The colauth column of this table specifies the column-level privileges
granted on the customer table. This column uses a 3-byte pattern—s (select),
u (update), r (references)—to identify the type of privilege granted. For
example, the user nhowe has update privileges on the second column
(colno2) of the customer table.

grantor grantee tabid tabauth

maryl public 101 su-idx--
maryl cathl 101 SU-IDXAR
maryl nhowe 101 --*-----

maryl 102 SU-ID---

grantor grantee tabid colno colauth

maryl nhowe 101 2 -u-
maryl nhowe 101 3 -u-
maryl nhowe 101 10 -u-
System Catalog 2-7

Accessing the System Catalog
The CREATE SCHEMA block adds two rows to the sysindexes system catalog
table. These rows correspond to the indexes created on the customer table.

In this table, the idxtype column identifies whether the index created is
unique or a duplicate. For example, the index c_num_ix placed on the
customer_num column of the customer table is unique.

Accessing the System Catalog
Normal user access to the system catalog is read-only. Users with Connect or
Resource privileges cannot alter the system catalog. They can, however,
access data in the system catalog tables on a read-only basis using standard
SELECT statements. For example, the following SELECT statement displays all
the table names and corresponding table id numbers of user-created tables in
the database:

SELECT tabname, tabid FROM systables WHERE tabid > 99

Warning: Although the user “informix” can modify the system catalog tables, we
strongly recommend that you do not update, delete, or alter any rows in them.
Modifying the system catalog tables can destroy the integrity of the database.

idxname c_num_ix state_ix
owner maryl maryl
tabid 101 101
idxtype U D
clustered
part1 1 8
part2 0 0
part3 0 0
part4 0 0
part5 0 0
part6 0 0
part7 0 0
part8 0 0
part9 0 0
part10 0 0
part11 0 0
part12 0 0
part13 0 0
part14 0 0
part15 0 0
part16 0 0
levels
leaves
nunique
clust
2-8 IBM Informix Guide to SQL: Reference

Updating System Catalog Data
Updating System Catalog Data
The optimizer in Informix database servers determines the most efficient
strategy for executing SQL queries. This allows you to query the database
without having to fully consider which tables to search first in a join or which
indexes to use. The optimizer uses information from the system catalog to
determine the best possible query strategy.

By using the UPDATE STATISTICS statement to update the system catalog, you
can optimize these database-searching strategies. When you delete a number
of rows from a table or modify a table, the database server does not automat-
ically update the related statistical data in the system catalog. For example, if
you delete a number of rows in a table using the DELETE statement, the
nrows column in the systables system catalog table, which holds the number
of rows for that table, is not updated. The UPDATE STATISTICS statement
causes the database server to recalculate data in the systables, syscolumns,
and sysindexes system catalog tables. After you run UPDATE STATISTICS, the
systables system catalog table holds the correct value in its nrows column.

Whenever you perform extensive modifications to a table, use the UPDATE
STATISTICS statement to update data in the system catalog. For more infor-
mation on the UPDATE STATISTICS statement, see page 7-335 in this manual.

Structure of the System Catalog
The following system catalog tables describe the structure of the Informix
database:

� sysblobs

� syschecks

� syscolauth

� syscoldepend

� syscolumns

� sysconstraints

� sysdefaults

� sysdepend

� sysindexes
System Catalog 2-9

SYSBLOBS
� sysopclstr

� sysprocauth

� sysprocbody

� sysprocedures

� sysprocplan

� sysreferences

� syssynonyms

� syssyntable

� systabauth

� systables

� sysusers

� sysviews

SYSBLOBS
The sysblobs system catalog table specifies the storage location of a blob
column. It contains one row for each blob column in a table. The sysblobs
system catalog table has the following columns.

A composite index for the tabid and colno columns allows only unique
values.

Column Name Type Explanation

spacename CHAR(18) blobspace, dbspace, or family name

type CHAR(1) media type:

M = magnetic
O = optical

tabid INTEGER table identifier

colno SMALLINT column number
2-10 IBM Informix Guide to SQL: Reference

SYSCHECKS
SYSCHECKS
The syschecks system catalog table describes each check constraint defined
in the database. Since the syschecks system catalog table stores both the
ASCII text and binary encoded form of the check constraint, it contains
multiple rows for each check constraint. The syschecks system catalog table
has the following columns.

A composite index for the constrid, type, and seqno columns allows only
unique values.

SYSCOLAUTH
The syscolauth system catalog table describes each set of privileges granted
on a column. It contains one row for each set of column privileges granted in
the database. The syscolauth system catalog table has the following columns.

Column Name Type Explanation

constrid INTEGER constraint identifier

type CHAR(1) form in which the check constraint is
stored:

B = binary encoded
T = ASCII text

seqno SMALLINT line number of the check constraint

checktext CHAR(32) text of the check constraint

Column Name Type Explanation

grantor CHAR(8) grantor of privilege

grantee CHAR(8) grantee (receiver) of privilege

(1 of 2)
System Catalog 2-11

SYSCOLDEPEND
If the colauth privilege code is uppercase (for example, S for select), the user
who is granted this privilege can also grant it to others. If the colauth
privilege code is lowercase (for example, s for select), the user who is granted
this privilege cannot grant it to others.

A composite index for the tabid, grantor, grantee, and colno columns allows
only unique values. A composite index for the tabid and grantee columns
allows duplicate values.

SYSCOLDEPEND
The syscoldepend system catalog table tracks the table columns specified in
each check constraint. Since a check constraint can involve more than one
column in a table, it can contain multiple rows for each check constraint. The
syscoldepend system catalog table has the following columns.

A composite index for the constrid, tabid, and colno columns allows only
unique values. A composite index for the tabid and colno columns allows
duplicate values.

tabid INTEGER table identifier

colno SMALLINT column number

colauth CHAR(3) 3-byte pattern that specifies column
privileges:

s = select
u = update
r = references

Column Name Type Explanation

constrid INTEGER constraint identifier

tabid INTEGER table identifier

colno SMALLINT column number

Column Name Type Explanation

(2 of 2)
2-12 IBM Informix Guide to SQL: Reference

SYSCOLUMNS
SYSCOLUMNS
The syscolumns system catalog table describes each column in the database.
There is one row for each column defined in a table or view. If you are using
the IBM Informix OnLine database server, the syscolumns system catalog
table has the following columns.

If the coltype column contains a value greater than 256, it does not allow null
values. To determine the data type for a coltype column that contains a value
greater than 256, subtract 256 from the value and evaluate the remainder
based on the possible coltype values. For example, if a column has a coltype
value of 262, subtracting 256 leaves a remainder of 6, which indicates that this
column uses a SERIAL data type.

Column Name Type Explanation

colname CHAR(18) column name

tabid INTEGER table identifier

colno SMALLINT column number sequentially
assigned by the system (ordinally
from left to right within each table)

coltype SMALLINT code for column data type:

0 = CHAR
1 = SMALLINT
2 = INTEGER
3 = FLOAT
4 = SMALLFLOAT
5 = DECIMAL
6 = SERIAL

7 = DATE
8 = MONEY
10 = DATETIME
11 = BYTE
12 = TEXT
13 = VARCHAR
14 = INTERVAL

collength SMALLINT column length (in bytes)

colmin INTEGER second minimum value

colmax INTEGER second maximum value
System Catalog 2-13

SYSCOLUMNS
The value that the collength column holds depends on the data type of the
column. If the data type of the column is BYTE or TEXT, collength holds the
length of the descriptor. A collength value for a MONEY or DECIMAL column
is determined using the following formula:

(precision * 256) + scale

For columns of type VARCHAR, the max-size and min-space values are
encoded in the collength column using the following formula:

(min-space * 256) + max-size

For columns of type DATETIME or INTERVAL, collength is determined using
the following formula:

(length * 256) + (largest_qualifier value x 16) + smallest_qualifier value

The length is the physical length of the DATETIME or INTERVAL field, and the
largest_qualifier and smallest_qualifier have the following values.

Field Qualifier Value

YEAR 0

MONTH 2

DAY 4

HOUR 6

MINUTE 8

SECOND 10

FRACTION(1) 11

FRACTION(2) 12

FRACTION(3) 13

FRACTION(4) 14

FRACTION(5) 15
2-14 IBM Informix Guide to SQL: Reference

SYSCOLUMNS
For example, if a DATETIME YEAR TO MINUTE column has a length of 12
(such as YYYY:DD:MM:HH:MM), a largest_qualifier value 0 (for YEAR), and a
smallest_qualifier value 8 (for MINUTE), the collength value is 3080 ((256 * 12)
+ (0 * 16) + 8).

The colmin and colmax column values hold the second smallest and second
largest data values in the column. For example, if the values in an indexed
column are 1, 2, 3, 4, and 5, 2 is the colmin value and 4 is the colmax value.
Storing the second smallest and second largest data values allows the
database server to make assumptions about the range of values in a given
column and, in turn, further optimize searching strategies. The colmin and
colmax columns contain values only if the column is indexed and you have
run UPDATE STATISTICS. If you store BYTE or TEXT data in the tblspace, the
colmin value is -1. The values for all other noninteger column types are the
initial four bytes of the maximum or minimum value, treated as an integer.

A composite index for the tabid and colno columns allows only unique
values.

If you are using the IBM Informix SE database server, the syscolumns system
catalog table has the following columns.

Column Name Type Explanation

colname CHAR(18) column name

tabid INTEGER table identifier

colno SMALLINT column number sequentially
assigned by the system (ordinally
from left to right within each table)

coltype SMALLINT code for column data type:

0 = CHAR
1 = SMALLINT
2 = INTEGER
3 = FLOAT
4 = SMALLFLOAT

5 = DECIMAL
6 = SERIAL
7 = DATE
8 = MONEY
10 = DATETIME
14 = INTERVAL

collength SMALLINT column length (in bytes)
System Catalog 2-15

SYSCONSTRAINTS
A composite index for the tabid and colno columns allows only unique
values.

SYSCONSTRAINTS
The sysconstraints system catalog table lists the constraints placed on the
columns in each database table. An entry also is placed in the sysindexes
system catalog table for each unique constraint, primary-key constraint, or
referential constraint you create, if the constraint does not already have a
corresponding entry in the sysindexes system catalog table. (Since indexes
can be shared, more than one constraint can be associated with an index.) The
sysconstraints system catalog table has the following columns.

A composite index for the constrname and owner columns allows only
unique values. The index for the tabid column allows duplicate values, while
the index for the constrid column allows only unique values.

Column Name Type Explanation

constrid SERIAL system-assigned sequential
identifier

constrname CHAR(18) constraint name

owner CHAR(8) user name of owner

tabid INTEGER table identifier

constrtype CHAR(1) specifies constraint type

C = check constraint
P = primary key
R = referential
U = unique

idxname CHAR(18) index name
2-16 IBM Informix Guide to SQL: Reference

SYSDEFAULTS
SYSDEFAULTS
The sysdefaults system catalog table lists the user-defined defaults placed on
each column in the database. There is one row for each user-defined default
value. If a default is not explicitly specified, there is no entry is this table. The
sysdefaults system catalog table has the following columns.

If a literal is specified for the default value, it is stored in the default column
as ASCII text. If the literal value is not of type CHAR, the default column
consists of two parts. The first part is the six-bit representation of the binary
value of the default value structure. The second part is the default value in
English text. The two parts are separated by a space.

If the data type of the column is not CHAR or VARCHAR, a binary represen-
tation is encoded in the default column.

A composite index for both the tabid and colno columns allows only unique
values.

Column Name Type Explanation

tabid INTEGER table identifier

colno SMALLINT column identifier

type CHAR(1) default type:

L = literal default
U = USER
C = CURRENT
N = NULL
T = TODAY
S = DBSERVERNAME

default CHAR(256) If default type = L, the literal default
value
System Catalog 2-17

SYSDEPEND
SYSDEPEND
The sysdepend system catalog table describes how each view or table
depends on other views or tables. There is one row in this table for each
dependency, so a view based on three tables has three rows. The sysdepend
system catalog table has the following columns.

The btabid and dtabid columns are indexed and allow duplicate values.

SYSINDEXES
The sysindexes system catalog table describes the indexes in the database. It
contains one row for each index defined in the database. The sysindexes
system catalog table has the following columns.

Column Name Type Explanation

btabid INTEGER tabid of base table or view

btype CHAR(1) base object type

T = table
V = view

dtabid INTEGER tabid of dependent table

dtype CHAR(1) dependent object type (V = view);
only view is currently implemented

Column Name Type Explanation

idxname CHAR(18) index name

owner CHAR(8) owner of index (“informix” for
system catalog tables and user name
for database tables)

tabid INTEGER table identifier

idxtype CHAR(1) index type

U = unique
D = duplicates

(1 of 2)
2-18 IBM Informix Guide to SQL: Reference

SYSINDEXES
clustered CHAR(1) clustered or nonclustered index
(C = clustered)

part1 SMALLINT column number of a single index or
the 1st component of a composite
index

part2 SMALLINT 2nd component of a composite index

part3 SMALLINT 3rd component of a composite index

part4 SMALLINT 4th component of a composite index

part5 SMALLINT 5th component of a composite index

part6 SMALLINT 6th component of a composite index

part7 SMALLINT 7th component of a composite index

part8 SMALLINT 8th component of a composite index

part9 SMALLINT 9th component of a composite index

part10 SMALLINT 10th component of a composite index

part11 SMALLINT 11th component of a composite index

part12 SMALLINT 12th component of a composite index

part13 SMALLINT 13th component of a composite index

part14 SMALLINT 14th component of a composite index

part15 SMALLINT 15th component of a composite index

part16 SMALLINT 16th component of a composite index

levels SMALLINT number of B+ tree levels

leaves INTEGER number of leaves

nunique INTEGER number of unique keys

clust INTEGER degree of clustering: smaller numbers
correspond to greater clustering

Column Name Type Explanation

(2 of 2)
System Catalog 2-19

SYSINDEXES
Changes that affect existing indexes are reflected in this table only after you
run UPDATE STATISTICS.

Each partnth column component of a composite index (the part1 through
part16 columns in this table) holds the column number (colno) of each part
of the 16 possible parts of a composite index.

The tabid column is indexed and allows duplicate values. A composite index
for the idxname, owner, and tabid columns allows only unique values.

If you are using the IBM Informix SE database server, the sysindexes system
catalog table has the following columns.

Column Name Type Explanation

idxname CHAR(18) index name

owner CHAR(8) owner of index (“informix” for
system tables and user name for
database tables)

tabid INTEGER table identifier

idxtype CHAR(1) index type

U = unique
D = duplicates

clustered CHAR(1) clustered or nonclustered index
(C = clustered)

part1 SMALLINT column number of a single index or
the 1st component of a composite
index

part2 SMALLINT 2nd component of a composite index

part3 SMALLINT 3rd component of a composite index

part4 SMALLINT 4th component of a composite index

part5 SMALLINT 5th component of a composite index

(1 of 2)
2-20 IBM Informix Guide to SQL: Reference

SYSOPCLSTR
Each partnth column component of a composite index (the part1 through
part8 columns in this table) holds the column number (colno) of each part of
the 8 possible parts of an index.

The tabid column is indexed and allows duplicate values. A composite index
for both the idxname and tabid columns allows only unique values.

SYSOPCLSTR
The sysopclstr system catalog table defines each optical cluster in the
database. It contains one row for each optical cluster. The sysopclstr system
catalog table has the following columns.

part6 SMALLINT 6th component of a composite index

part7 SMALLINT 7th component of a composite index

part8 SMALLINT 8th component of a composite index

Column Name Type Explanation

owner CHAR(8) owner of the cluster

clstrname CHAR(18) name of the cluster

clstrsize INTEGER size of the cluster

tabid INTEGER table identifier

blobcol1 SMALLINT blob column number 1

blobcol2 SMALLINT blob column number 2

blobcol3 SMALLINT blob column number 3

blobcol4 SMALLINT blob column number 4

blobcol5 SMALLINT blob column number 5

blobco16 SMALLINT blob column number 6

(1 of 3)

Column Name Type Explanation

(2 of 2)
System Catalog 2-21

SYSOPCLSTR
blobcol7 SMALLINT blob column number 7

blobcol8 SMALLINT blob column number 8

blobcol9 SMALLINT blob column number 9

blobcol10 SMALLINT blob column number 10

blobcol11 SMALLINT blob column number 11

blobcol12 SMALLINT blob column number 12

blobcol13 SMALLINT blob column number 13

blobcol14 SMALLINT blob column number 14

blobcol15 SMALLINT blob column number 15

blobcol16 SMALLINT blob column number 16

clstrkey1 SMALLINT cluster key number 1

clstrkey2 SMALLINT cluster key number 2

clstrkey3 SMALLINT cluster key number 3

clstrkey4 SMALLINT cluster key number 4

clstrkey5 SMALLINT cluster key number 5

clstrkey6 SMALLINT cluster key number 6

clstrkey7 SMALLINT cluster key number 7

clstrkey8 SMALLINT cluster key number 8

clstrkey9 SMALLINT cluster key number 9

clstrkey10 SMALLINT cluster key number 10

clstrkey11 SMALLINT cluster key number 11

clstrkey12 SMALLINT cluster key number 12

clstrkey13 SMALLINT cluster key number 13

Column Name Type Explanation

(2 of 3)
2-22 IBM Informix Guide to SQL: Reference

SYSPROCAUTH
A composite index for both the clstrname and owner columns allows only
unique values. The tabid column allows duplicate values.

SYSPROCAUTH
The sysprocauth table describes the privileges granted on a procedure. It
contains one row for each set of privileges granted. The sysprocauth system
catalog table has the following columns.

A composite index for the procid, grantor, and grantee columns allows only
unique values. The composite index for the procid and grantee columns
allows duplicate values.

clstrkey14 SMALLINT cluster key number 14

clstrkey15 SMALLINT cluster key number 15

clstrkey16 SMALLINT cluster key number 16

Column Name Type Explanation

grantor CHAR(8) grantor of procedure

grantee CHAR(8) grantee (receiver) of procedure

procid INTEGER procedure identifier

procauth CHAR(1) type of procedure permission
granted:

e = execute permission on
procedure

E = execute permission and the
ability to grant it to others

Column Name Type Explanation

(3 of 3)
System Catalog 2-23

SYSPROCBODY
SYSPROCBODY
The sysprocbody system catalog table describes the compiled version of each
stored procedure in the database. Since the sysprocbody system catalog table
stores the text of the procedure, there can be multiple rows for each
procedure. The sysprocbody system catalog table has the following columns.

While the datakey column indicates the type of data stored, the data column
contains the actual data, which can be one of the following: the encoded
return values list, the encoded symbol table, constant data, compiled code for
the procedure, or the text of the procedure and its documentation.

A composite index for the procid, datakey, and seqno columns allows only
unique values.

Column Name Type Explanation

procid INTEGER procedure identifier

datakey CHAR(1) data descriptor type:

D = user document text
T = actual procedure source
R = return value type list
S = procedure symbol table
L = constant procedure data string

(i.e, literal numbers or quoted
strings)

P = interpreter instruction code

seqno INTEGER line number of the procedure

data CHAR(256) actual text of the procedure
2-24 IBM Informix Guide to SQL: Reference

SYSPROCEDURES
SYSPROCEDURES
The sysprocedures system catalog table lists the characteristics for each
stored procedure in the database. It contains one row for each procedure. The
sysprocedures system catalog table has the following columns.

A composite index for the procname and owner columns allows only unique
values.

Column Name Type Explanation

procname CHAR(18) procedure name

owner CHAR(8) owner name

procid SERIAL procedure identifier

mode CHAR(1) mode type:

D = DBA
O = OWNER

retsize INTEGER compiled size (in bytes) of values

symsize INTEGER compiled size (in bytes) of symbol
table

datasize INTEGER compiled size (in bytes) constant
data

codesize INTEGER compiled size (in bytes) of procedure
instruction code

numargs INTEGER number of procedure arguments
System Catalog 2-25

SYSPROCPLAN
SYSPROCPLAN
The sysprocplan system catalog table describes the query execution plans
and dependency lists for DML statements within each stored procedure.
Since different parts of a procedure plan can be created on different dates, the
table can contain multiple rows for each procedure. The sysprocplan system
catalog table has the following columns.

A composite index for the procid, planid, datakey, and seqno columns
allows only unique values.

Column Name Type Description

procid INTEGER procedure identifier

planid INTEGER plan identifier

datakey CHAR(1) identifier procedure plan part:

D = dependency list
Q = execution plan

seqno INTEGER line number of plan

created DATE date plan created

datasize INTEGER size (in bytes) of the list or plan

data CHAR(256) encoded (compiled) list or plan
2-26 IBM Informix Guide to SQL: Reference

SYSREFERENCES
SYSREFERENCES
The sysreferences system catalog table lists the referential constraints placed
on columns in the database. It contains a row for each referential constraint
in the database. The sysreferences table has the following columns.

The constrid column is indexed and allows only unique values. The primary
column is indexed and allows duplicate values.

SYSSYNONYMS
The syssynonyms system catalog table lists the synonyms for each table or
view. It contains a row for every synonym defined in the database. The
syssynonyms system catalog table has the following columns.

Column Name Type Explanation

constrid INTEGER constraint identifier

primary INTEGER constrid of the corresponding primary
key

ptabid INTEGER tabid of the primary key

updrule CHAR(1) Reserved for future use; displays an R.

delrule CHAR(1) Reserved for future use; displays an R.

matchtype CHAR(1) Reserved for future use; displays an N.

pendant CHAR(1) Reserved for future use; displays an N.

Column Name Type Explanation

owner CHAR(8) user name of owner

synname CHAR(18) synonym identifier

created DATE date synonym created

tabid INTEGER table identifier
System Catalog 2-27

SYSSYNTABLE
A composite index for the owner and synonym columns allows only unique
values. The tabid column is indexed and allows duplicate values.

Tip: Version 4.0 or later of any IBM Informix product no longer uses this table.
However, any syssynonyms entries made prior to version 4.0 will remain in this
table.

SYSSYNTABLE
The syssyntable system catalog table outlines the mapping between each
synonym and the object it represents. It contains one row for each entry in the
systables table that has a tabtype S. The syssyntable system catalog table has
the following columns.

If you define a synonym for a table that is in your current database, only the
tabid and btabid columns are used. If you define a synonym for a table that
is external to your current database, the btabid column is not used, but the
tabid, servername, dbname, owner, and tabname columns are used.

An index for the tabid column allows only unique values. The btabid column
is indexed to allow duplicate values.

If you are using the IBM Informix SE database server, only the tabid and
btabid columns are used.

Column Name Type Explanation

tabid INTEGER table identifier

servername CHAR(18) server name

dbname CHAR(18) database name

owner CHAR(8) user name of owner

tabname CHAR(18) name of table

btabid INTEGER tabid of base table or view
2-28 IBM Informix Guide to SQL: Reference

SYSTABAUTH
SYSTABAUTH
The systabauth system catalog table describes each set of privileges granted
in a table. It contains one row for each set of table privileges granted in the
database. The systabauth system catalog table has the following columns.

If the tabauth privilege code is uppercase (for example, S for select), the user
who is granted this privilege also can grant it to others. If the tabauth
privilege code is lowercase (for example, s for select), the user who is granted
this privilege cannot grant it to others.

A composite index for the tabid, grantor, and grantee columns allows only
unique values. The composite index for the tabid and grantee columns
allows duplicate values.

Column Name Type Explanation

grantor CHAR(8) grantor of privilege

grantee CHAR(8) grantee (receiver) of privilege

tabid INTEGER table identifier

tabauth CHAR(8) 8-byte pattern that specifies table
privileges:

s = select
u = update
* = column-level authority
i = insert
d = delete
x = index
a = alter
r = references
System Catalog 2-29

SYSTABLES
SYSTABLES
The systables system catalog table describes each table in the database. It
contains one row for each table, view, or synonym defined in the database.
This includes all database tables and the system catalog tables themselves. If
you are using the IBM Informix OnLine database server, the systables system
catalog table has the following columns.

Column Name Type Explanation

tabname CHAR(18) name of table

owner CHAR(8) owner of table (“informix” for
system catalog tables and user name
for database tables)

partnum INTEGER tblspace identifier (similar to tabid)

tabid SERIAL system-assigned sequential ID
number (system tables: 1-21, user
tables: 100-nnn)

rowsize SMALLINT row size

ncols SMALLINT number of columns

nindexes SMALLINT number of indexes

nrows INTEGER number of rows

created DATE date created

version INTEGER number of times table was altered

tabtype CHAR(1) table type

T = table
V = view
P = private synonym
P = synonym (in an ANSI-

compliant database)
S = synonym

(1 of 2)
2-30 IBM Informix Guide to SQL: Reference

SYSTABLES
The tabid column is indexed and must contain unique values. A composite
index for both the tabname and owner columns allows only unique values.

If you are using the IBM Informix SE database server, the systables system
catalog table has the following columns.

locklevel CHAR(1) lock mode for a table

B = page
P = page
R = row

npused INTEGER number of data pages in use

fextsize INTEGER size of initial extent (kilobytes)

nextsize INTEGER size of all subsequent extents
(kilobytes)

flags SMALLINT reserved for future use

site CHAR(18) reserved for future use

dbname CHAR(18) reserved for future use

Column Name Type Explanation

tabname CHAR(18) name of table

owner CHAR(8) owner of table (“informix” for
system tables and user name for
database tables)

dirpath CHAR(64) directory path for the table file

tabid SERIAL system assigned sequential ID
number (system tables: 1-19, user
tables: 100-nnn)

rowsize SMALLINT row size

ncols SMALLINT number of columns

nindexes SMALLINT number of indexes

(1 of 2)

Column Name Type Explanation

(2 of 2)
System Catalog 2-31

SYSUSERS
The tabid column is indexed and must contain unique values. A composite
index for the tabname and owner columns allows only unique values.

SYSUSERS
The sysusers system catalog table describes each set of privileges granted in
the database. It contains one row for each user who is granted privileges in
the database. The sysusers system catalog table has the following columns.

The username column is indexed and allows only unique values.

nrows INTEGER number of rows

created DATE date created

version INTEGER number of times table was altered

tabtype CHAR(1) table type

T = table
V = view
S = synonym
L = log
P = private synonym

audpath CHAR(64) audit filename (full pathname)

Column Name Type Explanation

username CHAR(8) name of the database user

usertype CHAR(1) specifies database-level privileges:

D = DBA (all privileges)
R = Resource (create permanent

tables and indexes)
C = Connect (work within existing

tables)

priority SMALLINT reserved for future use

password CHAR(8) reserved for future use

Column Name Type Explanation

(2 of 2)
2-32 IBM Informix Guide to SQL: Reference

SYSVIEWS
SYSVIEWS
The sysviews system catalog table describes each view defined in the
database. Since the sysviews system catalog table stores the actual SELECT
statement used to create the view, it can contain multiple rows for each view
into the database. The sysviews system catalog table has the following
columns.

A composite index for the tabid and seqno columns allows only unique
values.

System Catalog Map
Figure 2-1 displays the column names of the tables in an IBM Informix OnLine
system catalog. The lines connecting a column in one table to a column in
another table indicate columns that contain the same information.

Column Name Type Explanation

tabid INTEGER table identifier

seqno SMALLINT line number of the SELECT statement

viewtext CHAR(64) actual SELECT statement used to
create the view
System Catalog 2-33

System Catalog Map
Figure 2-1
System catalog map (1 of 2)

ta
bi

d
 ta

bn
am

e
ow

ne
r

d
ir

pa
th

 r
ow

si
ze

 n
co

ls
 n

in
d

ex
es

 n
ro

w
s

cr
ea

te
d

 v
er

si
on

 ta
bt

yp
e

au
d

pa
th

pa
rt

nu
m

 lo
ck

le
ve

l n
pu

se
d

 fe
xt

si
ze

 n
ex

ts
iz

e
fl

ag
s

si
te

 d
bn

am
e

sy
st

ab
le

s

ta
bi

d
 id

xn
am

e
ow

ne
r

id
xt

yp
e

cl
us

te
re

d
 p

ar
t1

—
pa

rt
16

 le
ve

ls
 le

av
es

 n
un

iq
ue

 c
lu

st

ta
bi

d
 c

ol
no

 c
ol

na
m

e
co

lt
yp

e
co

lle
ng

th
 c

ol
m

in
 c

ol
m

ax

sy
si

nd
ex

es

sy
sc

ol
um

ns

ta
bi

d
 c

ol
no

 g
ra

nt
or

 g
ra

nt
ee

 c
ol

au
th

sy
sc

ol
au

th

bt
ab

id
 b

ty
pe

 d
ta

bi
d

 d
ty

pe

sy
sd

ep
en

d
ta

bi
d

 o
w

ne
r

sy
nn

am
e

cr
ea

te
d

sy
ss

yn
oy

m
s

us
er

na
m

e
us

er
ty

pe
 p

ri
or

it
y

pa
ss

w
or

d

sy
su

se
rs

ta
bi

d
 ta

bn
am

e
se

rv
er

na
m

e
d

bn
am

e
ow

ne
 b

ta
bi

d

sy
ss

yn
ta

bl
e

ta
bi

d
 id

xn
am

e
co

ns
tr

id
 c

on
st

rn
am

e
ow

ne
r

co
ns

tr
ty

pe

sy
sc

on
st

ra
in

ts

ta
bi

d
 o

w
ne

r
cl

st
rn

am
e

cl
st

rs
iz

e
bl

ob
co

l1
—

bl
ob

co
l1

6
cl

st
rk

ey
1—

cl
st

rk
ey

16

sy
so

pc
ls

tr
2-34 IBM Informix Guide to SQL: Reference

System Catalog Map
ta
bi

d
 g

ra
nt

or
 g

ra
nt

ee
 ta

ba
ut

h

sy
st

ab
au

th

ta
bi

d
 s

eq
no

 v
ie

w
te

xt

sy
sv

ie
w

s

pr
oc

id
 p

la
ni

d
 d

at
ak

ey
 s

eq
no

 c
re

at
ed

 d
at

as
iz

e
d

at
a

sy
sp

ro
cp

la
n

pr
oc

id
 p

ro
cn

am
e

ow
ne

r
m

od
e

re
ts

iz
e

sy
m

si
ze

d
at

as
iz

e
co

d
es

iz
e

nu
m

ar
gs

sy
sp

ro
ce

du
re

s

pr
oc

id
 d

at
ak

ey
 s

eq
no

 d
at

a

sy
sp

ro
cb

od
y

pr
oc

id
 p

ro
ca

ut
h

gr
an

te
e

gr
an

to
r

sy
sp

ro
ca

ut
h

ta
bi

d
 s

pa
ce

na
m

e
ty

pe
 c

ol
no

sy
sb

lo
bs

ta
bi

d
 c

ol
no

 ty
pe

 d
ef

au
lt

sy
sd

ef
au

lts

ta
bi

d
 c

ol
no

 c
on

st
ri

d

sy
sc

ol
de

pe
nd

co
ns

tr
id

 p
ri

m
ar

y
pt

ab
id

 u
pd

ru
le

 d
el

ru
le

 m
at

ch
ty

pe
 p

en
d

an
t

sy
sr

ef
er

en
ce

s

co
ns

tr
id

 ty
pe

 s
eq

no
 c

he
ck

te
xt

sy
sc

he
ck

s

Figure 2-1 (continued)
System catalog map (2 of 2)
System Catalog 2-35

3
Chapter
Data Types
In This Chapter . 3-3

Database Data Types 3-4
BYTE . 3-5
CHAR(n) . 3-6
CHARACTER(n) 3-7
DATE . 3-7
DATETIME . 3-8
DEC . 3-11
DECIMAL[(p,s)] 3-11
DOUBLE PRECISION(n) 3-12
FLOAT(n). 3-12
INT . 3-13
INTEGER . 3-13
INTERVAL . 3-13
MONEY(p,s). 3-17
NUMERIC(p,s) 3-17
REAL . 3-17
SERIAL(n) . 3-18
SMALLFLOAT 3-19
SMALLINT . 3-19
TEXT . 3-19
VARCHAR(m,r) 3-21

Data Type Conversions 3-22
Converting from Number to Number 3-23
Converting Between Number and CHAR. 3-24
Converting Between DATE and DATETIME 3-24

3-2 IBM
Range of Operations Using DATE, DATETIME, and INTERVAL . . . 3-25
Manipulating DATETIME Values 3-26
Manipulating DATETIME with INTERVAL Values 3-27
Manipulating DATE with DATETIME and INTERVAL Values. . . 3-28
Manipulating INTERVAL Values 3-30
Multiplying or Dividing INTERVAL Values 3-30
 Informix Guide to SQL: Reference

In This Chapter
Every column in a table is assigned a data type. The data type precisely defines
the type of values that you can store in that column.

You assign data types with the CREATE TABLE statement and change them
with the ALTER TABLE statement. When you change an existing data type, all
data is converted to the new data type, if possible. For more information on
the ALTER TABLE and CREATE TABLE statements and data type syntax
conventions, refer to Chapter 7, “Syntax.” Refer to the IBM Informix Guide to
SQL: Tutorial for a detailed discussion of data types.

This chapter covers the following topics:

� Data types supported by IBM Informix products

� Data type conversions

� DATE, DATETIME, and INTERVAL values in arithmetic and relational
expressions
Data Types 3-3

Database Data Types
Database Data Types
IBM Informix products recognize the data types listed in Figure 3-1.

Figure 3-1
Data types recognized by IBM Informix products

Data Type Explanation

BYTE stores any kind of binary data

CHAR stores any string of letters, numbers, and symbols

CHARACTER is a synonym for CHAR

DATE stores calendar date

DATETIME stores calendar date combined with time of day

DEC is a synonym for DECIMAL

DECIMAL stores numbers with definable scale and precision

DOUBLE PRECISION is a synonym for FLOAT

FLOAT stores double-precision floating numbers corresponding to
the double data type in C

INT is a synonym for INTEGER

INTEGER stores whole numbers from -2,147,483,647 to
+2,147,483,647

INTERVAL stores span of time

MONEY stores currency amount

NUMERIC is a synonym for DECIMAL

REAL is a synonym for SMALLFLOAT

SERIAL stores sequential integers

SMALLFLOAT stores single-precision floating numbers corresponding to
the float data type in C

(1 of 2)
3-4 IBM Informix Guide to SQL: Reference

BYTE
The following sections describe each of these data types.

BYTE
The BYTE data type stores any kind of binary data in an undifferentiated byte
stream. Binary data typically consists of saved spreadsheets, program load
modules, digitized voice patterns, and so on. The IBM Informix SE database
server does not support this data type.

The data type BYTE has no maximum size. A BYTE column has a theoretical
limit of 231 bytes and a practical limit determined by your disk capacity.

You can store, retrieve, update, or delete the contents of a BYTE column.
However, you cannot use BYTE data items in arithmetic or string operations
or assign literals to BYTE items with the SET clause of the UPDATE statement.
Nor can you use BYTE items in any of the following ways:

� With aggregate functions

� With the IN clause

� With the MATCHES or LIKE clauses

� With the GROUP BY clause

� With the ORDER BY clause

You only can use BYTE objects in a Boolean expression if you are testing for
null values.

You can insert data into BYTE columns in the following ways:

� With the dbload or tbload utilities

� With the LOAD statement (IBM Informix SQL, IBM Informix 4GL, and
DB-Access)

SMALLINT stores whole numbers from -32,767 to +32,767

TEXT stores any kind of text data

VARCHAR stores character strings of varying length

Data Type Explanation

(2 of 2)
Data Types 3-5

CHAR(n)
� Through a screen form with the PROGRAM attribute (IBM Informix
SQL)

� From BYTE host variables (IBM Informix 4GL and ESQL/C)

� From an embedded SQL program (ESQL/COBOL)

You cannot use a quoted text string, number, or any other actual value to
insert or update BYTE columns.

When you select a BYTE column, you can choose to receive all or part of it. To
see all of it, use the regular syntax for selecting a column. You also can select
any part of a BYTE column by using subscripts as shown in the following
example:

SELECT cat_picture [1,75] FROM catalog WHERE catalog_num = 10001

This statement reads the first 75 bytes of the cat_picture column associated
with the catalog number 10001.

Tip: If you select a BYTE column using the IBM Informix SQL or DB-Access Inter-
active Schema Editor, only the phrase <BYTE value> is returned; no actual value is
displayed.

CHAR(n)
The CHAR data type stores any string of letters, numbers, and symbols. A
character column has a maximum length n, where 1 ≤ n ≤ 32,767. (If you are
using the IBM Informix SE database server, the maximum length is 32,511.) If
you do not specify n, CHAR(1) is assumed.

Character columns typically store names, addresses, phone numbers, and so
on. Since the length of this column is fixed, when a character value is
retrieved or stored, exactly n bytes of data are transferred. If the value is
shorter than n, the string is extended with spaces to make up the n bytes. If
the value is longer than n, the string is truncated.

A CHAR value can include tabs and spaces, but no other nonprinting
characters.
3-6 IBM Informix Guide to SQL: Reference

CHARACTER(n)
If you plan to perform calculations on numbers stored in a column, you
should assign a number data type to that column. Although you can store
numbers in CHAR columns, you might not be able to use them in some arith-
metic operations. For example, if you are inserting the sum of values into a
character column, you might experience overflow problems if the character
column is too small to hold the value. In this case, the insert would fail.
However, numbers that have leading zeros (such as some zip codes) will
have the zeros stripped if they are stored as number types INTEGER or
SMALLINT. You should store these numbers in CHAR columns.

CHAR values are compared to other CHAR values by taking the shorter value
and padding it on the right with spaces until the values have equal length.
Then, the two values are compared for the full length.

CHAR data types require 1 byte per character, or n bytes.

CHARACTER(n)
The CHARACTER data type is a synonym for CHAR.

DATE
The DATE data type stores the calendar date. A calendar date is stored inter-
nally as an integer value equal to the number of days since December 31,
1899.

The default display format of a DATE column is

mm/dd/yyyy

where mm is the month (1-12), dd is the day of the month (1-31), and yyyy is
the year (0001-9999). For month, IBM Informix products accept a number
value 1 or 01 for January, and so on. For days, IBM Informix products accept
a value 1 or 01 that corresponds to the first day of the month, and so on. If you
enter only a two-digit value for year, as in 89 or 90, IBM Informix products
assume that the year is in the twentieth century and assign the numbers 1 and
9 (19) as the first two digits of the year.
Data Types 3-7

DATETIME
Since date values are stored as integers, you can use them in arithmetic
expressions. For example, you can subtract a DATE value from another DATE
value. The result, a positive or negative INTEGER value, indicates the number
of days that elapsed between the two dates.

DATE data types require 4 bytes per item.

Tip: You can change the default date format by changing the DBDATE environment
variable. See Chapter 4, “Environment Variables,” for more information.

DATETIME
The DATETIME data type stores an instant in time expressed as a calendar
date and time of day. You choose how precisely a DATETIME value is stored;
its precision can range from a year to a fraction of a second.

The DATETIME data type is composed of a contiguous sequence of fields that
represents each component of time you want to record and uses the following
syntax:

DATETIME largest_qualifier TO smallest_qualifier

The largest_qualifier and smallest_qualifier can be any one of the fields listed in
Figure 3-2.

Figure 3-2
DATETIME field qualifiers

Qualifier Field Valid Entries

YEAR a year numbered from 1 to 9999 (A.D.)

MONTH a month numbered from 1 to 12

DAY a day numbered from 1 to 31, as appropriate to the month
in question

HOUR an hour numbered from 0 (midnight) to 23

MINUTE a minute numbered from 0 to 59

(1 of 2)
3-8 IBM Informix Guide to SQL: Reference

DATETIME
A DATETIME column need not include all fields from YEAR to FRACTION; it
can include a subset of fields or even a single field. For example, you can
enter a value of MONTH TO HOUR into a column that is defined as YEAR TO
MINUTE, as long as each entered value contains information for a contiguous
sequence of fields. You cannot, however, define a column for just MONTH and
HOUR; this entry must include a value for DAY as well.

Tip: If you are using the IBM Informix SQL or DB-Access TABLE Menu and you do
not specify the DATETIME qualifiers, the default DATETIME qualifier, YEAR TO
YEAR, is assigned.

A valid DATETIME literal must include the DATETIME keyword, the values to
be entered, and the field qualifiers (see the discussion of literal DATETIME on
page 7-416). You must include these qualifiers because, as noted earlier, the
value you are entering can contain fewer fields than defined for that column.
Acceptable qualifiers for the first and last fields are identical to the list of
valid DATETIME fields displayed in Figure 3-2.

Values for the field qualifiers are written as integers and separated by delim-
iters. Figure 3-3 lists the delimiters that are used with DATETIME values.

SECOND a second numbered from 0 to 59

FRACTION a decimal fraction of a second with up to 5 digits of
precision. The default precision is 3 digits (thousandth of a
second). Other precisions are indicated explicitly by
writing FRACTION(n), where n is the desired number of
digits from 1 to 5.

Qualifier Field Valid Entries

(2 of 2)
Data Types 3-9

DATETIME
Figure 3-3
DATETIME field delimiters

Figure 3-4 shows a DATETIME YEAR TO FRACTION(3) value with delimiters.

When you enter a value with fewer fields than the defined column, the value
you enter is expanded automatically to fill all the defined fields. If you leave
out any more-significant fields, that is, fields of larger magnitude than any
value you supply, those fields are filled automatically with the current date.
If you leave out any less-significant fields, those fields are filled with zeros (or
a one for MONTH and DAY) in your entry.

You also can enter DATETIME values as character strings. However, the
character string must include information for each field defined in the
DATETIME column. For example, the following INSERT statement shows a
DATETIME value entered as a character string:

INSERT into cust_calls (customer_num, call_dtime, user_id,
call_code, call_descript)

VALUES (100, "1990-08-14 08:45", "maryj", "D",
"Order late - placed 6/1/90")

Delimiter Placement in DATETIME Expression

hyphen between the YEAR, MONTH, and DAY portions of the
value

space between the DAY and HOUR portions of the value

colon between the HOUR and MINUTE and the MINUTE and
SECOND portions of the value

decimal point between the SECOND and FRACTION portions of the
value

Figure 3-4
Example

DATETIME value
with delimiters

fraction

secondhour

minute

month

dayyear

90-08-16 12:42:06.001
3-10 IBM Informix Guide to SQL: Reference

DEC
In this case, the call_dtime column is defined as DATETIME YEAR TO
MINUTE. This character string must include values for the year, month, day,
hour, and minute fields. If the character string does not contain information
for all defined fields (or adds additional fields), the database server returns
an error. For more information on entering DATETIME values as character
strings, see “Literal DATETIME” on page 7-416.

All fields of a DATETIME column are two-digit numbers except for the year
and fraction fields. The year field is stored as four digits. The fraction field
requires n digits where 1 ≤ n ≤ 5, rounded up to an even number. You can use
the following formula (rounded up to a whole number of bytes) to calculate
the number of bytes required for a DATETIME value:

total number of digits for all fields/2 + 1

For example, a YEAR TO DAY qualifier requires a total of eight digits (four for
year, two for month, and two for day). This data value requires five bytes
(8/2 + 1) of storage.

For information on using DATETIME data in arithmetic and relational expres-
sions, see “Range of Operations Using DATE, DATETIME, and INTERVAL”
on page 3-25. For information on using DATETIME as a constant expression,
see “Constant Expressions” on page 7-376.

DEC
The DEC data type is a synonym for DECIMAL.

DECIMAL[(p,s)]
The DECIMAL data type stores decimal floating-point numbers up to a
maximum of 32 significant digits, where p is the total number of significant
digits (the precision) and s is the number of digits to the right of the decimal
point (the scale). When you assign values to both p and s, the decimal variable
has fixed-point arithmetic. All numbers with an absolute value less than
0.5 ∗ 10-s have the value zero. The largest absolute value of a variable of this
type that you can store without an error is 10p-s -10-s.
Data Types 3-11

DOUBLE PRECISION(n)
Specifying precision and scale parameters is optional. If you do not specify
precision (p), DECIMAL is treated as DECIMAL(16), a floating decimal with a
precision of 16 places. If you do not specify scale (s), DECIMAL(p) has a
precision of p and an absolute value range between 10-128 and 10126.

A DECIMAL data type column typically stores numbers with fractional parts
that must be calculated exactly (for example, rates or percentages). You can
use the following formula (rounded up to a whole number of bytes) to
calculate the byte storage for a decimal data type:

precision/2 + 1

For example, a DECIMAL data type with a precision of 16 and a scale of 2
(DECIMAL(16,2)) requires 9 bytes (16/2 + 1) of storage.

DOUBLE PRECISION(n)
The DOUBLE PRECISION data type is a synonym for FLOAT.

FLOAT(n)
The FLOAT data type stores double-precision floating-point numbers with up
to 16 significant digits. FLOAT corresponds to the double data type in C. The
range of values for the FLOAT data type is the same as the range of values for
the C double data type on your machine.

You can use n to specify the precision of a FLOAT data type, even though SQL
ignores the precision. The value n must be a whole number between 1 and 14.

A column with the FLOAT data type typically stores scientific numbers that
can only be calculated approximately. Since floating-point numbers retain
only their most significant digits, the number you enter in this type of column
and the number the database server displays can differ slightly. This depends
on how your computer stores floating-point numbers internally. For
example, you might enter a value of 1.1 into a FLOAT field and, after
processing the SQL statement, the database server might display this value as
1.1000001. This occurs when a value has more digits than the floating point
number can store. In this case, the value is stored in its approximate form
with the least significant digits treated as zeros.

FLOAT data types usually require eight bytes per value.
3-12 IBM Informix Guide to SQL: Reference

INT
INT
The INT data type is a synonym for INTEGER.

INTEGER
The INTEGER data type stores whole numbers that range from -2,147,483,647
to 2,147,483,647. The maximum negative number, -2,147,483,648, is a reserved
value and cannot be used. The INTEGER data type is stored as a signed binary
integer and is typically used to stores counts, quantities, and so on.

Arithmetic operations and sort comparisons are performed more efficiently
on binary data than on float or decimal data. However, INTEGER columns
only can store a limited range of values. If the data value exceeds the numeric
range, the database server does not store the value.

INTEGER data types require four bytes per value.

INTERVAL
The INTERVAL data type stores a value that represents a span of time.
INTERVAL types are divided into two classes: year-month intervals and day-
time intervals. A year-month interval can represent a span of years and
months, while a day-time interval can represent a span of days, hours,
minutes, seconds, and fractions of a second.

An INTERVAL value always is composed of one value, or a contiguous
sequence of values, that represent a component of time. An INTERVAL data
type is defined using the following syntax:

INTERVAL largest_qualifier(n) TO smallest_qualifier(n)

where the largest_qualifier and smallest_qualifier fields both are taken from one
of the two INTERVAL classes shown in Figure 3-5, and n optionally specifies
the precision of the largest field (and smallest field if it is a FRACTION).
Data Types 3-13

INTERVAL
Figure 3-5
INTERVAL classes and field qualifiers

As with a DATETIME column, you can define an INTERVAL column to include
a subset of the fields you need. However, since the INTERVAL data type repre-
sents a span of time independent of an actual date, you cannot combine the
two INTERVAL classes. For example, since the number of days in a month
depends on which month it is, a single INTERVAL data value cannot combine
both months and days.

A value entered into an INTERVAL column need not include all fields
contained in the column. For example, you can enter a value of HOUR TO
SECOND into a column defined as DAY TO SECOND. However, a value must
always consist of a contiguous sequence of fields. In the previous example,
you cannot enter just HOUR and SECOND values; you must include MINUTE
values as well.

A valid INTERVAL literal contains the INTERVAL keyword, the values to be
entered, and the field qualifiers (see the discussion of literal INTERVAL on
page page 7-419). When a value contains just one field, the largest and
smallest fields are the same.

YEAR-MONTH INTERVAL Class DAY-TIME INTERVAL Class

YEAR a number of years DAY a number of days

MONTH a number of
months

HOUR a number of hours

MINUTE a number of minutes

SECOND a number of seconds

FRACTION a decimal fraction of a
second, with up to 5 digits of
precision. The default
precision is 3 digits
(thousandth of a second).
Other precisions are
indicated explicitly by
writing FRACTION(n),
where n is the desired
number of digits from 1 to 5.
3-14 IBM Informix Guide to SQL: Reference

INTERVAL
When you enter a value in an INTERVAL column, you must specify both the
largest and smallest fields in the value, just as you do for DATETIME values.
In addition, you can use n optionally to specify the precision of the first field
(and the last field if it is a FRACTION). If the largest and smallest field quali-
fiers are both FRACTIONS, you can only specify the precision in the last field.
Acceptable qualifiers for the largest and smallest fields are identical to the list
of INTERVAL fields displayed in Figure 3-5.

Tip: If you are using the IBM Informix SQL or DB-Access TABLE Menu and you do
not specify the INTERVAL field qualifiers, the default INTERVAL qualifier, YEAR TO
YEAR, is assigned.

The largest_qualifier in an INTERVAL value can be up to nine digits long
(except for FRACTION, which cannot be more than five digits long), but if the
value you wish to enter is greater than the default number of digits allowed
for that field, you must explicitly identify the number of significant digits in
the value you are entering. For example, to define an INTERVAL of DAY TO
HOUR that can store more than 99 days, enter

INTERVAL DAY(3) TO HOUR

INTERVAL values use the same delimiters as DATETIME values. The delim-
iters are shown in Figure 3-6.

Figure 3-6
INTERVAL delimiters

Delimiter Placement in DATETIME Expression

hyphen between the YEAR and MONTH

space between the DAY and HOUR portions of the value

colon between the HOUR and MINUTE and the MINUTE and
SECOND portions of the value

decimal point between the SECOND and FRACTION portions of the
value
Data Types 3-15

INTERVAL
You also can enter INTERVAL values as character strings. However, the
character string must include information for the identical sequence of fields
defined for that column. For example, the following INSERT statement shows
an INTERVAL value entered as a character string:

INSERT INTO manufact (manu_code, manu_name, lead_time)
VALUES ("BRO", "Ball-Racquet Originals", "160")

Since the lead_time column is defined as INTERVAL DAY(3) TO DAY, this
INTERVAL value requires only one field, the span of days required for lead
time. Note that if the character string does not contain information for all
fields (or adds additional fields), the database server returns an error. For
more information on entering INTERVAL values as character strings, see
“Literal INTERVAL” on page 7-419.

By default, all fields of an INTERVAL column are two-digit numbers except
for the year and fraction fields. The year field is stored as four digits. The
fraction field requires n digits where 1 ≤ n ≤ 5, rounded up to an even number.
You can use the following formula (rounded up to a whole number of bytes)
to calculate the number of bytes required for an INTERVAL value:

total number of digits for all fields/2 + 1

For example, a YEAR TO MONTH qualifier requires a total of six digits (four
for year and two for month). This data value requires four bytes (6/2 + 1) of
storage.

For information on using INTERVAL data in arithmetic and relational opera-
tions, see “Range of Operations Using DATE, DATETIME, and INTERVAL”
on page 3-25. For information on using INTERVAL as a constant expression,
see “Literal INTERVAL as an Expression” on page 7-381.
3-16 IBM Informix Guide to SQL: Reference

MONEY(p,s)
MONEY(p,s)
The MONEY data type stores currency amounts. Like the DECIMAL data type,
the MONEY data type stores fixed-point numbers up to a maximum of 32
significant digits, where p is the total number of significant digits (the
precision) and s is the number of digits to the right of the decimal point (the
scale).

Unlike the DECIMAL data type, the MONEY data type always is treated as a
fixed-point decimal number. The data type MONEY(p) is defined as
DECIMAL(p,2). If the precision and scale parameters are not specified,
MONEY is interpreted as DECIMAL(16,2).

Values in MONEY columns are displayed with a currency symbol (by default,
a dollar sign) and a decimal point. You can use the following formula
(rounded up to a whole number of bytes) to calculate the byte storage for a
MONEY data type:

precision/2 + 1

For example, a MONEY data type with a precision of 16 and a scale of 2
(MONEY(16,2)) requires 9 bytes (16/2 + 1) of storage.

Tip: You can change the display format for money values by changing the
DBMONEY environment variable. See Chapter 4, “Environment Variables,” for
more information.

NUMERIC(p,s)
The NUMERIC data type is a synonym for DECIMAL.

REAL
The REAL data type is a synonym for SMALLFLOAT.
Data Types 3-17

SERIAL(n)
SERIAL(n)
The SERIAL data type stores a sequential integer assigned automatically by
the database server when a row is inserted. (For more information on
inserting values into SERIAL columns, see “Inserting Values into SERIAL
Columns” on page 7-196.) You can define only one SERIAL column in a table.

The default serial starting number is 1, but you can assign an initial value, n,
when you create or alter the table. You can assign any number greater than 0
as your starting number. The highest serial number you can assign is
2,147,483,647.

Once a serial number is assigned, it cannot be changed. You can, however,
insert a value into a serial column (using the INSERT statement) or reset the
serial value n (using the ALTER TABLE statement), as long as that value does
not duplicate any existing values in the table. When you insert a number into
a SERIAL column or reset the next value of a SERIAL column, your database
server assigns the next number in sequence to the number entered. However,
if you reset the next value of a SERIAL column to a value that is less than the
values already in that column, the next value is computed using the
following formula:

maximum existing value in SERIAL column + 1

For example, if you reset the serial value of the customer_num column in the
customer table to 50 and the highest-assigned customer number is 128, the
next customer number assigned is 129.

The SERIAL data type is not automatically a unique column. You must apply
a unique index to this column to prevent duplicate serial numbers.

Tip: If you are using the interactive schema editor in IBM Informix SQL or
DB-Access to define the table, a unique index is applied automatically to the SERIAL
column.

A SERIAL data column is commonly used to store unique numeric codes (for
example, order, invoice, or customer numbers). SERIAL data values require
four bytes of storage.
3-18 IBM Informix Guide to SQL: Reference

SMALLFLOAT
SMALLFLOAT
The SMALLFLOAT data type stores single-precision floating-point numbers
with approximately eight significant digits. SMALLFLOAT corresponds to the
float data type in C. The range of values for a SMALLFLOAT data type is the
same as the range of values for the C float data type on your machine.

A SMALLFLOAT data type column typically stores scientific numbers that can
only be calculated approximately. Since floating-point numbers retain only
their most significant digits, the number you enter in this type of column and
the number the database displays may differ slightly. This depends on how
your computer stores floating-point numbers internally. For example, you
might enter a value of 1.1 into a SMALLFLOAT field and, after processing the
SQL statement, the application tool might display this value as 1.1000001.
This occurs when a value has more digits than the floating-point number can
store. In this case, the value is stored in its approximate form with the least
significant digits treated as zeros.

SMALLFLOAT data types usually require four bytes per value.

SMALLINT
The SMALLINT data type stores small whole numbers that range from -32,767
to 32,767. The maximum negative number, -32,768, is a reserved value and
cannot be used. The SMALLINT value is stored as a signed binary integer.

Integer columns typically store counts, quantities, and so on. Since the
SMALLINT data type takes up only two bytes per value, arithmetic operations
are performed very efficiently. However, this data type stores a limited range
of values. If the values exceed the range between the minimum and
maximum numbers, the database server does not store the value.

TEXT
The TEXT data type stores any kind of text data. The IBM Informix SE database
server does not support this data type.

The data type TEXT has no maximum size. A TEXT column has a theoretical
limit of 231 bytes and a practical limit determined by your available disk
storage.
Data Types 3-19

TEXT
TEXT columns typically store memos, manual chapters, business documents,
program source files, and so on. A data object of type TEXT can contain a
combination of printable ASCII characters and the following control
characters:

� Tabs (CTRL-I)

� New lines (CTRL-J)

� New pages (CTRL-L)

You can store, retrieve, update, or delete the contents of a TEXT column.
However, you cannot use TEXT data items in arithmetic or string operations,
and you cannot assign literals to TEXT items with the SET clause of the
UPDATE statement. Nor can you use TEXT items in any of the following ways:

� With aggregate functions

� With the IN clause

� With the MATCHES or LIKE clauses

� With the GROUP BY clause

� With the ORDER BY clause

You only can use TEXT objects in Boolean expressions if you are testing for
null values.

You can insert data into TEXT columns in the following ways:

� With the dbload or tbload utilities

� With the LOAD statement (IBM Informix SQL and IBM Informix 4GL)

� Through a screen form with the PROGRAM attribute (IBM Informix
SQL)

� From TEXT host variables (4GL, ESQL/C)

� From an embedded SQL program (ESQL/COBOL)

You cannot use a quoted text string, number, or any other actual value to
insert or update TEXT columns.

When you select a TEXT column, you can choose to receive all or part of it. To
see all of it, use the regular syntax for selecting a column into a variable. You
also can select any part of a TEXT column by using subscripts, as shown in the
following example:

SELECT cat_descr [1,75] FROM catalog WHERE catalog_num = 10001
3-20 IBM Informix Guide to SQL: Reference

VARCHAR(m,r)
This statement reads the first 75 bytes of the cat_descr column associated
with catalog number 10001.

VARCHAR(m,r)
The VARCHAR data type stores a character string of varying length, where m
is the maximum size of the column and r is the minimum amount of space
reserved for that column. The IBM Informix SE database server does not
support this data type.

You must specify the maximum size (m) of the VARCHAR column. The size of
this parameter can range from 1 to 255 bytes. If you are placing an index on
a VARCHAR column, the maximum size is 254 bytes. You can store shorter
character strings than the value you specify, but not longer.

Specifying the minimum reserved space (r) parameter is optional. This value
can range from 0 to 255 bytes but must be less than the maximum size (m) of
the VARCHAR column. If you do not specify a minimum space value, it
defaults to 0. You should specify this parameter when you intend to insert
rows with short or null data in this column initially, but expect the data to be
updated with longer values later.

While the use of VARCHAR economizes on space used in a table, it has no
effect on the size of an index. In an index based on a VARCHAR column, each
index key has length m, the maximum size of the column.

When you store a VARCHAR value in the database, only its defined characters
are stored. The database server does not strip a VARCHAR object of any user-
entered trailing blanks, nor does the database server pad the VARCHAR to the
full length of the column. However, if you specify a minimum reserved space
(r) and some of the data values are shorter than that amount, some of the
space reserved for rows goes unused.

VARCHAR values are compared to other VARCHAR values and to character
values in the same way that character values are compared: the shorter value
is padded on the right with spaces until the values have equal lengths. Then
they are compared for the full length.
Data Types 3-21

Data Type Conversions
Data Type Conversions
You might want to change the data type of a column when you need to store
larger values than the current data type can accommodate. For example, if
you create a SMALLINT column and find later that you need to store integers
larger than 32,768, you must change the data type of that column to store the
larger value. You can use the ALTER TABLE statement to change the data type
of that column.

If you change data types, the new data type must be able to store all the old
values. For example, if you convert a column from the INTEGER data type to
the SMALLINT data type and the following values exist in the INTEGER
column, the database server does not change the data type because
SMALLINT columns cannot accommodate numbers greater than 32,768.

100 400 700 50000 700

The same situation can occur if you attempt to transfer data from FLOAT or
SMALLFLOAT columns to INTEGER, SMALLINT, or DECIMAL columns.
3-22 IBM Informix Guide to SQL: Reference

Converting from Number to Number
Converting from Number to Number
When you convert columns from one number data type to another, you
occasionally can find rounding errors. Figure 3-7 indicates which numeric
data type conversions are acceptable and what kinds of errors you can
encounter when you convert between certain numeric data types.

Figure 3-7
Numeric data type conversion chart

For example, if you convert a FLOAT column to DECIMAL(4,2), your database
server rounds off the floating-point numbers before storing them as decimal
numbers. This conversion can result in an error depending on the precision
assigned to the DECIMAL column.

From:

To:

SMALLINT INTEGER SMALLFLOAT FLOAT DECIMAL

SMALLINT ok ok ok ok O

INTEGER X ok X ok O

SMALLFLOAT X X ok ok O

FLOAT X X F ok O

DECIMAL X X F F O

Legend:

ok = no error
O = error can occur depending on precision of the decimal
X = error can occur depending on data
F = no error, but less significant digits can be lost
Data Types 3-23

Converting Between Number and CHAR
Converting Between Number and CHAR
You can convert a CHAR column to a number column and vice versa.
However, if the CHAR column contains any characters that are not valid in a
number column (for example, the letter l instead of the number 1), your
database server is unable to complete the ALTER TABLE statement and leaves
the column values as characters.

Converting Between DATE and DATETIME
You can convert DATE columns to DATETIME columns. However, if the
DATETIME column contains more fields than the DATE column, the database
server either ignores the fields or fills them with zeros. The following
examples illustrate how these two data types are converted (assuming that
the default date format is mm/dd/yyyy):

� If you convert DATE to DATETIME YEAR TO DAY, the database server
converts the existing DATE values to DATETIME values. For example,
the value 08/15/1990 becomes 1990-08-15.

� If you convert DATETIME YEAR TO DAY to DATE, the value 1990-08-
15 becomes 08/15/1990.

� If you convert DATE to DATETIME YEAR TO SECOND, the database
server converts existing DATE values to DATETIME values and fills in
the additional DATETIME fields with zeros. For example, 08/15/1990
becomes 1990-08-15 00:00:00.

� If you convert DATETIME YEAR TO SECOND to DATE, the database
server converts existing DATETIME to DATE values but drops fields
more precise than DAY. For example, 1990-08-15 12:15:37 becomes
08/15/1990.
3-24 IBM Informix Guide to SQL: Reference

Range of Operations Using DATE, DATETIME, and INTERVAL
Range of Operations Using DATE, DATETIME, and
INTERVAL
You can use DATE, DATETIME, and INTERVAL data in a variety of arithmetic
and relational expressions. You can manipulate a DATETIME value with
another DATETIME value, an INTERVAL value, the current time (identified by
the keyword CURRENT), or a specified unit of time (identified by the
keyword UNITS). In most situations, you can use a DATE value wherever it is
appropriate to use a DATETIME value and vice versa. You also can manip-
ulate an INTERVAL value with the same choices as a DATETIME value. In
addition, you can multiply or divide an INTERVAL value by a number.

An INTERVAL column can hold a value that represents the difference between
two DATETIME values or the difference between (or sum of) two INTERVAL
values. In either case, the result is a span of time, which is an INTERVAL value.
On the other hand, if you add or subtract an INTERVAL value from a
DATETIME value, another DATETIME value is produced because the result is
a specific point in time.

Figure 3-8 indicates the range of expressions that you can use with DATE,
DATETIME, and INTERVAL data, along with the data type that results from
each expression.

Figure 3-8
Range of expression for DATE, DATETIME, and INTERVAL

Data Type of Operand 1 Operator Data Type of Operand 2 Result

DATE - DATETIME INTERVAL

DATETIME - DATE INTERVAL

DATE + or - INTERVAL DATETIME

DATETIME - DATETIME INTERVAL

DATETIME + or - INTERVAL DATETIME

INTERVAL + DATETIME DATETIME

INTERVAL + or - INTERVAL INTERVAL

(1 of 2)
Data Types 3-25

Manipulating DATETIME Values
No other combinations are allowed. You cannot add two DATETIME values
because this operation does not produce either a point in time or a span of
time. For example, you cannot add December 25 and January 1, but you can
subtract one from the other to find the time span between them.

Manipulating DATETIME Values
You can subtract most DATETIME values from each other. Dates can be in any
order and the result is either a positive or a negative INTERVAL value. The
first DATETIME value determines the field precision of the result.

If the second DATETIME value has fewer fields than the first, the shorter value
is extended automatically to match the longer one. (See the EXTEND syntax
explanation on page page 7-387.) In the following example, subtracting the
DATETIME YEAR TO HOUR value from the DATETIME YEAR TO MINUTE value
results in a positive interval value of 60 days, 1 hour, and 30 minutes. Since
minutes were not included in the second value, the database server sets the
minutes for the result to 0.

DATETIME (1990-9-30 12:30) YEAR TO MINUTE
- DATETIME (1990-8-1 11) YEAR TO HOUR

Result: INTERVAL (60 01:30) DAY TO MINUTE

DATETIME - CURRENT INTERVAL

CURRENT - DATETIME INTERVAL

INTERVAL + CURRENT DATETIME

CURRENT + or - INTERVAL DATETIME

DATETIME + or - UNITS DATETIME

INTERVAL + or - UNITS INTERVAL

INTERVAL * or / NUMBER INTERVAL

Data Type of Operand 1 Operator Data Type of Operand 2 Result

(2 of 2)
3-26 IBM Informix Guide to SQL: Reference

Manipulating DATETIME with INTERVAL Values
If the second DATETIME value has more fields than the first (regardless of
whether the precision of the extra fields is larger or smaller than those in the
first value), the additional fields in the second value are ignored in the calcu-
lation. In the following expression (and result), the year is not included for
the second value. Therefore, the year is set automatically to the current year,
in this case 1990, and the resulting INTERVAL is negative, indicating that the
second date is later than the first.

DATETIME (1990-9-30) YEAR TO DAY
- DATETIME (10-1) MONTH TO DAY

Result: INTERVAL (1) DAY TO DAY [assuming current year is 1990]

Manipulating DATETIME with INTERVAL Values
INTERVAL values can be added to or subtracted from DATETIME values. In
either case, the result is a DATETIME value. If you are adding an INTERVAL
value to a DATETIME value, the order of values is unimportant; however, if
you are subtracting, the DATETIME value must come first. Adding or
subtracting an INTERVAL value simply moves the DATETIME value forward
or backward in time. In the following example, the expression moves the date
ahead three years and five months:

DATETIME (1990-8-1) YEAR TO DAY
+ INTERVAL (3-5) YEAR TO MONTH

Result: DATETIME (1994-01-01) YEAR TO DAY

In most situations, the database server automatically adjusts the calculation
when the initial values do not have the same precision. However, in certain
situations you must explicitly adjust the precision of one value to perform the
calculation. If the INTERVAL value you are adding or subtracting has fields
that are not included in the DATETIME value, you must use the EXTEND
function to explicitly extend the field qualifier of the DATETIME value. (For
more information on the EXTEND function, see “EXTEND Function” on
page 7-387.) For example, you cannot subtract a minute INTERVAL value
from the DATETIME value in the previous example that has a YEAR TO DAY
field qualifier. You can, however, use the EXTEND function to perform this
calculation, as shown in the following example:

EXTEND (DATETIME (1990-8-1) YEAR TO DAY, YEAR TO MINUTE)
- INTERVAL (720) MINUTE(3) TO MINUTE

Result: DATETIME (1990-07-31 12:00) YEAR TO MINUTE
Data Types 3-27

Manipulating DATE with DATETIME and INTERVAL Values
The EXTEND function allows you to increase explicitly the DATETIME
precision from YEAR TO DAY to YEAR TO MINUTE. This allows the database
server to perform the calculation, with the resulting extended precision of
YEAR TO MINUTE.

Manipulating DATE with DATETIME and INTERVAL Values
You can use DATE values in arithmetic expressions with DATETIME or
INTERVAL values by writing expressions that allow the manipulations shown
in Figure 3-9.

Figure 3-9
Results of expressions that manipulate DATE with DATETIME or INTERVAL values

In these cases, DATE values are first converted to their corresponding
DATETIME equivalents, and then the expression is computed in the normal
way.

While you can interchange DATE and DATETIME values in many situations,
you must indicate whether a value is a DATE or a DATETIME data type. A
DATE value can come from any of the following sources:

� A column or program variable of type DATE

� The TODAY keyword

� The DATE() function

� The MDY function

Expression Result

DATE - DATETIME INTERVAL

DATETIME - DATE INTERVAL

DATE + or - INTERVAL DATETIME
3-28 IBM Informix Guide to SQL: Reference

Manipulating DATE with DATETIME and INTERVAL Values
A DATETIME value can come from any of the following sources:

� A column or program variable of type DATETIME

� The CURRENT keyword

� The EXTEND function

� A DATETIME literal

When you represent DATE and DATETIME values as quoted character strings,
the fields in the strings must be in proper order. In other words, when a DATE
value is expected, the string must be in DATE format and when a DATETIME
value is expected, the string must be in DATETIME format. For example, you
can use the string “10/30/1990” as a DATE string but not as a DATETIME
string. Instead, you must use “1990-10-30” or “90-10-30” as the DATETIME
string.

You also can subtract one DATE value from another DATE value, but the result
is a positive or negative INTEGER value, rather than an INTERVAL value. If an
INTERVAL value is required, you either can convert the INTEGER value into
an INTERVAL value or one of the DATE values into a DATETIME value before
subtracting.

For example, the following expression uses the DATE() function to convert
character string constants to DATE values, calculates their difference, and
then uses the UNITS DAY keywords to convert the INTEGER result into an
INTERVAL value:

(DATE ("5/2/1990") - DATE ("4/6/1955")) UNITS DAY

Result: INTERVAL (12810) DAY(5) TO DAY

If you need YEAR TO MONTH precision, you can use the EXTEND function on
the first DATE operand, as illustrated in the next example:

EXTEND (DATE ("5/2/1990"), YEAR TO MONTH) - DATE ("4/6/1955")

Result: INTERVAL (35-01) YEAR TO MONTH

Note that the resulting INTERVAL precision is YEAR TO MONTH because the
DATETIME value came first. If the DATE value had come first, the resulting
INTERVAL precision would have been DAY(5) TO DAY.
Data Types 3-29

Manipulating INTERVAL Values
Manipulating INTERVAL Values
You can add INTERVAL values together or subtract them from each other as
long as both values are from the same class; that is, both are year-month or
both are day-time. In the following example, a SECOND TO FRACTION value
is subtracted from a MINUTE TO FRACTION value:

INTERVAL (100:30.0005) MINUTE(3) TO FRACTION(4)
- INTERVAL (120.01) SECOND(3) TO FRACTION

Result: INTERVAL (98:29.9905) MINUTE TO FRACTION(4)

Note the use of numeric qualifiers to alert the database server that the
MINUTE and FRACTION in the first value, and the SECOND in the second
value, exceed the default number of digits.

When you add or subtract INTERVAL values, the second value cannot have a
field with greater precision than the first. For example, the second INTERVAL
cannot be YEAR TO MONTH if the first is MONTH TO MONTH. The second
INTERVAL, however, can have a field of smaller precision than the first. For
example, the second INTERVAL can be HOUR TO SECOND when the first is
DAY TO HOUR. The additional fields (in this case MINUTE and SECOND) in
the second INTERVAL value are ignored in the calculation.

Multiplying or Dividing INTERVAL Values
You can multiply or divide INTERVAL values by a number. The number can
be an integer or a fraction. However, if there is a remainder from the calcu-
lation, it is ignored, and the result is truncated. For example, the following
expression multiplies an INTERVAL by a fraction:

INTERVAL (15:30.0002) MINUTE TO FRACTION(4) * 2.5

Result: INTERVAL (38:45.0005) MINUTE TO FRACTION(4)

In this example, 15 * 2.5 = 37.5 minutes, 30 * 2.5 = 75 seconds, and 2 * 2.5 = 5
fraction(4). The .5 minute is converted into 30 seconds and 60 seconds are
converted into 1 minute, which produces the final result of 38 minutes, 45
seconds, and .0005 of a second. Note that the results of any calculation
include the same amount of precision as the original INTERVAL value.
3-30 IBM Informix Guide to SQL: Reference

4
Chapter
Environment Variables
In This Chapter . 4-3

Setting Environment Variables 4-4

Informix Environment Variables 4-5
DBANSIWARN. 4-7
DBDATE . 4-8
DBDELIMITER 4-9
DBEDIT . 4-10
DBFORMAT . 4-10
DBLANG . 4-11
DBMENU. 4-12
DBMONEY . 4-12
DBNETTYPE 4-13
DBPATH . 4-14
DBPRINT . 4-15
DBREMOTECMD 4-15
DBSRC. 4-16
DBTEMP . 4-17
DBTIME . 4-17
INFORMIXCOB 4-20
INFORMIXCOBDIR 4-20
INFORMIXCOBSTORE 4-21
INFORMIXCOBTYPE 4-21
INFORMIXDIR 4-22
INFORMIXONLINEDIR 4-23
INFORMIXTERM 4-23
NOSORTINDEX 4-24
SQLEXEC. 4-25

4-2 IBM
SQLRM . 4-26
SQLRMDIR . 4-27
TBCONFIG . 4-27

UNIX Environment Variables 4-28
PATH . 4-28
TERM . 4-29
TERMCAP . 4-29
TERMINFO . 4-30
 Informix Guide to SQL: Reference

In This Chapter
To use your IBM Informix products, you must set certain environment
variables that identify your terminal, specify the location of your software,
and define other parameters of the environment of your product. This
chapter describes all the environment variables that apply to one or more
IBM Informix products and tells how to set them. It also shows how to set
certain UNIX system environment variables.

Your IBM Informix product makes the following default assumptions about
your environment:

� Temporary files are stored in the /tmp directory.

� The program, compiler, or preprocessor of your product, and any
associated files and libraries, have been installed in the /usr/informix
directory. For specifics, see your product manual.

� If you are using IBM Informix SE, the target or current database is in
the current directory.

� The field separator for unloaded data files is the vertical bar
(|=ASCII 124).

� The editor for products that use one is the predominant editor for the
operating system, usually vi.

� For products that have a print capability, if the computer is running
UNIX System V, the program that sends files to the printer is usually
lp. For other UNIX systems, the default is lpr.
Environment Variables 4-3

Setting Environment Variables
Setting Environment Variables
You can change any of the preceding defaults by setting one or more of the
environment variables recognized by your IBM Informix product. If you are
already using an IBM Informix product, some or all of the appropriate
environment variables might already be set. Enter printenv (BSD UNIX) or
env (UNIX System V) at the system prompt to view your current environment
settings.

You can set Informix and UNIX environment variables at the system prompt
or in your .login or .cshrc (C shell) or your .profile (Bourne shell) file. (Make
sure that an environment variable is not set differently in your .login and
.cshrc files.)

� When you set an environment variable at the system prompt, you
must reassign it the next time you log into the system.

� When you set an environment variable in your .login, .cshrc, or
.profile file, it is assigned automatically every time you log into the
system.

If you set the variables in a file, you should log out and then log back
in, or source the file before you work with your IBM Informix product,
to allow the shell to read your entries.

You use standard UNIX commands to set environment variables. For
example, you can set the ABCD environment variable to value as follows:

The figure that follows lists all the environment variables specific to
IBM Informix products. These environment variables and their uses are
discussed in the next section. The standard UNIX system environment
variables PATH, TERM, TERMCAP, and TERMINFO are described in the last
section of this chapter.

C shell: setenv ABCD value

Bourne shell: ABCD=value
export ABCD
4-4 IBM Informix Guide to SQL: Reference

Informix Environment Variables
In addition, the IBM Informix OnLine administrator can elect to set additional
environment variables to preserve diagnostic information and for parallel
sort capability. The four consistency checking variables are GCORE,
DUMPCORE, DUMPDIR, and DUMPSHMEM; the two parallel sort variables
are PSORT_NPROCS and PSORT_DBTEMP. Their use and setting are
discussed in IBM Informix OnLine Administrator’s Guide.

Informix Environment Variables
Figure 4-1 lists alphabetically the environment variables that IBM Informix
products support.
Environment Variables 4-5

Informix Environment Variables
Figure 4-1
Environment variables in IBM Informix products

DBANSIWARN

DBDATE

DBDELIMITER

DBEDIT

DBFORMAT

DBLANG

DBMENU

DBMONEY

DBNETTYPE

DBPATH

DBPRINT

DBREMOTECMD

DBSCREENOUT

DBSRC

DBTEMP

DBTIME

INFORMIXCOB

INFORMIXCOBDIR

INFORMIXCOBSTORE

INFORMIXCOBTYPE

INFORMIXDIR

INFORMIXONLINEDIR

INFORMIXTERM

NOSORTINDEX

SQLEXEC

SQLRM

SQLRMDIR

TBCONFIG

ISQL I4GL
Interactive
Debugger ESQL/C

ESQL/
COBOLDB-Access
4-6 IBM Informix Guide to SQL: Reference

DBANSIWARN
DBANSIWARN
The DBANSIWARN environment variable indicates that you want to check
for Informix extensions. Unlike most environment variables, you do not need
to set DBANSIWARN to a value. Setting it to any value or to no value, as
follows, is sufficient:

Setting the DBANSIWARN environment variable for IBM Informix SQL is
functionally equivalent to invoking isql or saceprep with the -ansi flag. (For
DB-Access, it is equivalent to invoking the utility from the command line with
the -ansi flag.) If you set DBANSIWARN before you run isql or saceprep,
warnings are generated when Informix extensions to ANSI standard syntax
are encountered. Within the SQL menu, warnings are displayed on the screen.
From saceprep (or within the REPORT menu), warnings are written to a .err
file.

Setting the DBANSIWARN environment variable before you compile an
IBM Informix 4GL or an IBM Informix ESQL program is functionally equiv-
alent to specifying the -ansi flag in the command line. When Informix
extensions to ANSI standard syntax are encountered in your program,
warning messages are written to the screen for the IBM Informix ESQL
products or to an .err file for IBM Informix 4GL.

At run time, the DBANSIWARN environment variable causes the following
SQL Communication Area (SQLCA) variable to be set to W when a statement
that is not ANSI-compliant is executed. (For more information on SQLCA, see
Chapter 5, “Error Handling with SQLCA.”)

C shell: setenv DBANSIWARN

Bourne shell: DBANSIWARN=
export DBANSIWARN

Product SQLCA Variable

IBM Informix ESQL/C sqlca.sqlwarn.sqlwarn5

IBM Informix ESQL/COBOL SQLWARN5 OF SQLWARN OF SQLCA

IBM Informix 4GL SQLCA.SQLAWARN[6]
Environment Variables 4-7

DBDATE
Once you set DBANSIWARN, Informix extension checking is automatic until
you log out or reset DBANSIWARN. To turn off Informix extension checking,
reset the DBANSIWARN environment variable with the following command:

DBDATE
The DBDATE environment variable specifies the following formats for DATE
values:

� The order of the month, day, and year in a date

� Whether the year should be printed with two digits (Y2) or four
digits (Y4)

� The separator between the month, day, and year

The default value for DBDATE is MDY4/, where M represents the month, D
represents the day, Y4 represents a four-digit year, and the slash (/) is a
separator. For example: 12/25/1990.

Other acceptable characters for the separator are a hyphen (-), a period (.), or
a zero (0). (Use the zero to indicate no separator.)

The slash (/) appears if you attempt to use a character other than a hyphen,
period, or zero as a separator, or if you do not include a separator character
in the DBDATE definition.

You always must specify the separator character last. The number of digits
you specify for the year must always follow the Y.

To make the date appear as mmddyy, set the DBDATE environment variable as
follows:

C shell: unsetenv DBANSIWARN

Bourne shell: unset DBANSIWARN

C shell: setenv DBDATE MDY20

Bourne shell: DBDATE=MDY20
export DBDATE
4-8 IBM Informix Guide to SQL: Reference

DBDELIMITER
Here, MDY represents the order of month, day, and year; 2 indicates two digits
for the year; and 0 specifies no separator. As a result, the date is displayed as
122590.

To make the date appear in European format (dd-mm-yyyy), set the DBDATE
environment variable as follows:

Here, DMY represents the order of day, month, and year; 4 indicates four digits
for the year; and - specifies a hyphen separator. As a result, the date is
displayed as 25-12-1990.

Tip: Certain routines called by ESQL/C and ESQL/COBOL can use the DBTIME
variable, rather than DBDATE, to set DATETIME formats to international specifica-
tions. See the description of DBTIME and your ESQL product manual for more
information.

DBDELIMITER
The DBDELIMITER environment variable specifies the field delimiter used
by the dbload and dbexport utilities in unloaded data files or with the LOAD
and UNLOAD statements in IBM Informix 4GL, IBM Informix SQL, and
DB-Access. The vertical bar (|=ASCII 124) is the default.

For example, to change the field delimiter to a plus (+), set the DBDELIMITER
environment variable as follows:

C shell: setenv DBDATE DMY4-

Bourne shell: DBDATE=DMY4-
export DBDATE

C shell: setenv DBDELIMITER +

Bourne shell: DBDELIMITER=+

export DBDELIMITER
Environment Variables 4-9

DBEDIT
DBEDIT
The DBEDIT environment variable names the text editor you want to use for
the following tasks:

� To modify form specification files, report specification files, and
command files from within IBM Informix SQL

� To work with SQL statements and command files in DB-Access

� To create program files, form specification files, and command files
from within the IBM Informix 4GL Programmer Environment

If DBEDIT is set, the specified editor is called directly. If DBEDIT is not set,
you are prompted to specify an editor as the default for the rest of the session.

Set the DBEDIT environment variable as follows:

where editor is the name of the text editor you want to use.

For most systems, the default is vi. If you use another editor, be sure that it is
installed to create flat ASCII files. Some word processors in “document mode”
introduce printer control characters that can interfere with operation of
IBM Informix 4GL, IBM Informix 4GL Interactive Debugger, IBM Informix SQL
ACE report writer, or IBM Informix SQL PERFORM screen transaction
processor.

DBFORMAT
The DBFORMAT environment variable specifies the format that IBM Informix
SQL and IBM Informix 4GL use in the following situations:

� When you enter values on a screen

� When you use the IBM Informix SQL ACE report writer or PERFORM
screen transaction processor

� When IBM Informix 4GL displays output values on a screen or in a
report

C shell: setenv DBEDIT editor

Bourne shell: DBEDIT=editor
export DBEDIT
4-10 IBM Informix Guide to SQL: Reference

DBLANG
This environment variable is used to format values of the DECIMAL, MONEY,
FLOAT, SMALLFLOAT, INTEGER, and SMALLINT data types. The formatting
specified by the DBFORMAT variable overrides any formatting specified by
the DBMONEY variable, except in the character string generated by the 4GL
CONSTRUCT statement. (See your product manual for details.)

Set the DBFORMAT environment variable as follows:

Here, front is an optional one- to seven-character value for the leading
currency symbol. The optional thousands is one or more characters that
indicate the possible thousands separator. It can be anything except digits, <,
>, |, :, ?, !, =, [, or]; the default is *. The decimal is one or more characters that
determine the possible decimal separators. It can be anything except digits,
<, >, |, :, ?, !, =, [,], *, or any characters specified for the thousands value. The
back represents an optional one- to seven-character value for the trailing
currency symbol.

DBLANG
The DBLANG environment variable specifies the subdirectory of $INFOR-
MIXDIR that contains the compiled message files used by your program. The
default subdirectory is msg and the compiled message files have the suffix
.iem.

If you want to use a message directory other than $INFORMIXDIR/msg,
follow these steps:

1. Use the mkdir command to create the appropriate subdirectory in
$INFORMIXDIR.

2. Set the owner and group of the subdirectory to informix and the
access permission for this directory to 755.

C shell: setenv DBFORMAT 'front:thousands:decimal:back'

Bourne shell: DBFORMAT='front:thousands:decimal:back'
export DBFORMAT
Environment Variables 4-11

DBMENU
3. Set the DBLANG environment variable to the new subdirectory as
follows (specify only the name of the subdirectory and not its
pathname):

4. Copy the .iem files to the new message directory specified by
$INFORMIXDIR/$DBLANG. All files in the message directory should
have the owner and group informix and access permission 644.

5. Run your program or otherwise continue working with your
product.

DBMENU
The DBMENU environment variable specifies the user-menu that
IBM Informix SQL accesses first. The default is the Main Menu of the user-
menu for the current database. For example, to make the “testing” menu the
default, set the DBMENU environment variables as follows:

DBMONEY
The DBMONEY environment variable specifies the display format for
MONEY values and consists of [front][. | ,][back].

Here, front is the optional symbol that precedes the MONEY value. The period
or comma is the optional symbol that separates the integral from the
fractional part of the MONEY value. The back represents the optional symbol
that follows the MONEY value. The front and back symbols can be up to seven
characters long and can contain any character except a comma or period.

C shell: setenv DBLANG dirname

Bourne shell: DBLANG=dirname
export DBLANG

C shell: setenv DBMENU testing

Bourne shell: DBMENU=testing

export DBMENU
4-12 IBM Informix Guide to SQL: Reference

DBNETTYPE
The default value for DBMONEY is $., where a dollar sign precedes the
MONEY value, a period (.) separates the integral from the fractional part of
the MONEY value, and no back symbol appears. For example: $100.50.

Suppose you want to represent MONEY values in DM (Deutsche Mark), which
uses the currency symbol DM and a comma. Set the DBMONEY environment
variable as follows:

Here, DM is the currency symbol preceding the MONEY value, and a comma
separates the integral from the fractional part of the MONEY value. As a
result, the amount is displayed as DM100,50.

Whenever you make a change to the back symbol, you must also supply the
front symbol and the MONEY value separator (comma or period). Similarly, if
you change the value separator from a comma to a period, you must also
supply the front symbol.

DBMONEY specifies the display format for the data types MONEY, DECIMAL,
and FLOAT.

Tip: IBM Informix 4GL uses the DBFORMAT variable, rather than DBMONEY, to
format certain data type values displayed on a screen or in a report. See the
description of DBFORMAT in this chapter and the product manual for more infor-
mation about how IBM Informix 4GL formats output values.

DBNETTYPE
DBNETTYPE is an environment variable specific to certain AT&T platforms
and is used to optimize the identification of a network protocol. You set
DBNETTYPE only if you are using an AT&T machine with IBM Informix NET
or IBM Informix STAR, have both a /dev/starlan and either a /dev/tcp or a
/dev/it file on your client and server machines, and want to use tcp/ip instead
of starlan. Set DBNETTYPE on the server before invoking the sqlexecd
daemon.

C shell: setenv DBMONEY DM,

Bourne shell: DBMONEY=DM,

export DBMONEY
Environment Variables 4-13

DBPATH
If DBNETTYPE is not set, the default is StarLAN. Specify TCP/IP as follows:

For more information on network protocols, see the IBM Informix NET and
IBM Informix STAR Installation and Configuration Guide.

DBPATH
The DBPATH environment variable specifies a list of directories (in addition
to the current directory) for your product to search for reports, forms, query
files, command scripts, and so on. If you are using the IBM Informix SE
database server, DBPATH also identifies directories that contain databases. If
you are using IBM Informix NET or IBM Informix STAR, DBPATH also can
include remote host names and paths. See the IBM Informix NET and
IBM Informix STAR Installation and Configuration Guide for details.

Use the same format that you use to set the PATH variable. Make sure you
enter a colon between the directory names. For example, the following
DBPATH setting causes your product to search for database files in Nigel’s
and Zooie’s directories as well as in your current directory:

In an IBM Informix NET or IBM Informix STAR environment, you can set
DBPATH to directories on either local or remote machines by including a
double slash (//) in front of the machine name.

For example, this setting specifies the /results directory on the quality
machine:

C shell: setenv DBNETTYPE tcp/ip

Bourne shell: DBNETTYPE=tcp/ip

export DBNETTYPE

C shell: setenv DBPATH /usr/Nigel:/usr/Zooie

Bourne shell: DBPATH=/usr/Nigel:/usr/Zooie

export DBPATH

C shell: setenv DBPATH //quality/results

Bourne shell: DBPATH=//quality/results

export DBPATH
4-14 IBM Informix Guide to SQL: Reference

DBPRINT
The following example sets DBPATH to access remote IBM Informix OnLine
databases on the prodmar machine:

Tip: The IBM Informix 4GL Interactive Debugger uses the DBSRC variable, rather
than DBPATH, to search for 4GL program source files. See the description of DBSRC
in this chapter and your product manual for more information about how the
IBM Informix 4GL Interactive Debugger searches for 4GL source files.

DBPRINT
The DBPRINT environment variable specifies the print program for your
computer. You can name any command, shell script, or UNIX utility that
handles standard ASCII input. For most BSD UNIX systems, the default
program is lpr. For UNIX System V, the default program is usually lp.

Set the DBPRINT environment variable as follows:

where progname is the name of the print program you want to use.

DBREMOTECMD
You can set the DBREMOTECMD environment variable to override the
default remote shell specified for your implementation of IBM Informix
OnLine. Set it using either a simple command or the full pathname. If you use
the full pathname, the database server searches your PATH for the specified
command.

The full pathname syntax is highly recommended on the interactive UNIX
platform to avoid problems with like-named programs in other directories
and possible confusion with the “restricted shell” (/usr/bin/rsh).

C shell: setenv DBPATH //prodmar

Bourne shell: DBPATH=//prodmar

export DBPATH

C shell: setenv DBPRINT progname

Bourne shell: DBPRINT=progname
export DBPRINT
Environment Variables 4-15

DBSRC
Set the DBREMOTECMD environment variable as follows for a simple
command name:

Set the DBREMOTECMD environment variable as follows to specify the full
pathname:

For more information, see the discussion of the remote tape facility for
IBM Informix OnLine archives, restores, and logical log backups in
IBM Informix OnLine Administrator’s Guide.

DBSRC
DBSRC is an environment variable specific to the IBM Informix 4GL Inter-
active Debugger. It specifies directory pathnames that are part of the search
path only during debugging sessions. Make sure you enter a colon between
the directory names.

For example, the following DBSRC setting causes the IBM Informix 4GL Inter-
active Debugger to search for files in the programs and june directories:.

If you do not specify a DBSRC variable, the current directory is the default.

When you exit from the IBM Informix 4GL Interactive Debugger and return to
the 4GL Programmer Environment or to the operating system, the pathnames
specified in DBSRC are no longer part of the search path.

C shell: setenv DBREMOTECMD rcmd

Bourne shell: DBREMOTECMD=rcmd
export DBREMOTECMD

C shell: setenv DBREMOTECMD /usr/bin/remsh

Bourne shell: DBREMOTECMD=/usr/bin/remsh
export DBREMOTECMD

C shell: setenv DBSRC /b/shawn/programs:/b/june

Bourne shell: DBSRC=/b/shawn/programs:/b/june

export DBSRC
4-16 IBM Informix Guide to SQL: Reference

DBTEMP
See your Guide to the IBM Informix 4GL Interactive Debugger for more infor-
mation on specifying the order of directory search during debugging
sessions.

DBTEMP
The DBTEMP environment variable specifies the directory into which your
product places its temporary files. You need not set DBTEMP if the default,
/tmp, is satisfactory. Set the DBTEMP environment variable as follows:

where dirname is the full pathname of the directory you want to hold
temporary files.

DBTIME
The DBTIME environment variable can be set to allow you to manipulate
DATETIME formats so they conform more closely to various international or
local TIME conventions. DBTIME takes effect only when you call certain
IBM Informix ESQL DATETIME routines; otherwise, you should use the
DBDATE environment variable. (See your IBM Informix ESQL/C Programmer’s
Manual or IBM Informix ESQL/COBOL Programmer’s Manual for details.)

You can set DBTIME to specify the exact format of an input/output (I/O)
DATETIME string field by using the following formatting directives.
Otherwise, the behavior of the DATETIME formatting routine is undefined.

C shell: setenv DBTEMP dirname

Bourne shell: DBTEMP=dirname
export DBTEMP

String Use

%b is replaced by the abbreviated month name.

%B is replaced by the full month name.

%d is replaced by the day of the month as a decimal number [01,31].

(1 of 2)
Environment Variables 4-17

DBTIME
For example, to convert a DATETIME year to second to an ASCII string format
that looks like this:

Mar 21, 1990 at 16 h 30 m 28 s

you set DBTIME as follows:

The default DBTIME, which produces the conventional ANSI SQL string
format that looks like this:

1990-03-21 16:30:28

%Fn is replaced by the value of the fraction with precision specified by the
integer n. The default value of n is 2; the range of n is 0 ≤ n ≤ 5.

%H is replaced by the hour (24-hour clock) as a decimal number [00,23].

%I is replaced by the hour (12-hour clock) as a decimal number [01,12].

%M is replaced by the minute as a decimal number [00,59].

%m is replaced by the month as a decimal number [01,12].

%p is replaced by “a.m.” or “p.m.” (or the equivalent in the local standards).

%S is replaced by the second as a decimal number [00,59].

%y is replaced by the year as a 2-digit decimal number [00,99]. The format
for an interval value is taken literally: “88” means “0088”, not “1988.”

%Y is replaced by the year as a 4-digit decimal number; use Y for an interval
of more than 99 years.

%% is replaced by % (to allow % in the format string).

C shell: setenv DBTIME "%b %d, %Y at %H h %M m %S s"

Bourne shell: DBTIME="%b %d, %Y at %H h %M m %S s"
export DBTIME

String Use

(2 of 2)
4-18 IBM Informix Guide to SQL: Reference

DBTIME
is set as follows:

An optional field width and precision specification can immediately follow
the % character; it is interpreted as follows:

� If a conversion specification supplies fewer digits than specified by a
precision, it is padded with leading zeroes.

� If a conversion specification supplies more characters than specified
by a precision, excess characters are truncated on the right.

� If no field width or precision is specified for d, H, I, m, M, S, or y
conversions, a default of .2 is used. A default of .4 is used for Y
conversions.

The F conversion does not follow the field width and precision format
conversions described earlier.

C shell: setenv DBTIME "%Y-%m-%d %H:%M:%S"

Bourne shell: DBTIME="%Y-%m-%d %H:%M:%S"
export DBTIME

[-|0]w where w is a decimal digit string specifying the minimum field
width. By default, the value is right-justified with spaces on
the left.

If - is specified, it is left-justified with spaces on the right.

If 0 is specified, it is right-justified and padded with zeroes on
the left.

.p where p is a decimal digit string specifying the number of dig-
its to appear for d, H, I, m, M, S, y, and Y conversions, and the
maximum number of characters to be used for b and B conver-
sions. A precision specification is significant only when con-
verting a DATETIME value to an ASCII string and not vice
versa.
Environment Variables 4-19

INFORMIXCOB
INFORMIXCOB
The INFORMIXCOB environment variable specifies the program name of the
COBOL compiler you use with IBM Informix ESQL/COBOL. (Refer to your
COBOL system manual for the name of your COBOL compiler.) Set the INFOR-
MIXCOB environment variable as follows:

where program is the program name of the COBOL compiler, that is, the
command that calls up the compiler environment.

INFORMIXCOBDIR
The INFORMIXCOBDIR environment variable is the directory where the run-
time library and objects reside. This environment variable is used only when
you create a COBOL run-time program with IBM Informix ESQL/COBOL.

Set the INFORMIXCOBDIR environment variable as follows:

where dirname is the name of the directory you want.

C shell: setenv INFORMIXCOB program

Bourne shell: INFORMIXCOB=program
export INFORMIXCOB

C shell: setenv INFORMIXCOBDIR dirname

Bourne shell: INFORMIXCOBDIR=dirname
export INFORMIXCOBDIR
4-20 IBM Informix Guide to SQL: Reference

INFORMIXCOBSTORE
INFORMIXCOBSTORE
You can set the INFORMIXCOBSTORE environment variable to indicate to
ESQL/COBOL the type of storage for IBM Informix ESQL/COBOL to use
during compilation in the MF COBOL/2 environment. This variable enables
ESQL/COBOL to allow or disallow certain PICTURE clauses that are mapped
to internal C variable types.

The number of bytes needed to store BINARY or COMPUTATIONAL data is
based on the size (maximum number of digits) specified in the PICTURE
clause. The MF COBOL/2 compiler also considers whether byte or word
storage is specified when determining the number of bytes needed to store
BINARY and COMPUTATIONAL data. (MF COBOL/2 uses only byte storage.)

If left undefined, the default storage mode is byte, which is more restrictive
of available data type choices. If you are using byte storage, the only legal PIC
sizes are 3, 4, 7, 8, and 9. If you are using word storage, PIC sizes can range
from 1 through 9.

To specify word storage, set the INFORMIXCOBSTORE environment variable
as follows:

For a table showing the storage allocation for Micro Focus compilers, see
your IBM Informix ESQL/COBOL Programmer’s Manual.

INFORMIXCOBTYPE
The INFORMIXCOBTYPE environment variable is a two-character code that
specifies the manufacturer of your COBOL compiler. Set the INFORMIX-
COBTYPE environment variable as follows:

C shell: setenv INFORMIXCOBSTORE word

Bourne shell: INFORMIXCOBSTORE=word

export INFORMIXCOBSTORE

C shell: setenv INFORMIXCOBTYPE type

Bourne shell: INFORMIXCOBTYPE=type
export INFORMIXCOBTYPE
Environment Variables 4-21

INFORMIXDIR
where type is the manufacturer of the COBOL compiler that you use with
IBM Informix ESQL/COBOL. For example:

See your IBM Informix ESQL/COBOL Programmer’s Manual for compiler-specific
information.

INFORMIXDIR
The INFORMIXDIR environment variable specifies the directory that
contains the subdirectories in which your product files are installed. If you
have multiple versions of IBM Informix OnLine or IBM Informix SE, set
INFORMIXDIR to the appropriate directory name for the version that you
want to access.

Set the INFORMIXDIR environment variable to the following recommended
installation directory:

Type Manufacturer

mf2 Micro Focus

rm85 Ryan-McFarland

C shell: setenv INFORMIXDIR /usr/informix

Bourne shell: INFORMIXDIR=/usr/informix
export INFORMIXDIR
4-22 IBM Informix Guide to SQL: Reference

INFORMIXONLINEDIR
INFORMIXONLINEDIR
The INFORMIXONLINEDIR environment variable specifies the directory in
which your IBM Informix OnLine server is installed. If you have multiple
versions of IBM Informix OnLine, set INFORMIXONLINEDIR to the appro-
priate directory name for the version that you want to access.

Set the INFORMIXONLINEDIR environment variable to the following recom-
mended installation directory:

See the IBM Informix OnLine Administrator’s Guide for information on when to
use this variable.

INFORMIXTERM
The INFORMIXTERM environment variable specifies whether IBM Informix
SQL, IBM Informix 4GL, and DB-Access should use the information in the
termcap file or the terminfo directory. INFORMIXTERM determines
terminal-dependent keyboard and screen capabilities such as the operation
of function keys, color and intensity attributes in screen displays, and the
definition of window border and graphics characters.

If INFORMIXTERM is not set, the default is termcap. When IBM Informix SQL,
IBM Informix 4GL, or DB-Access is installed on your system, a termcap file is
placed in the etc subdirectory of $INFORMIXDIR. This file is a superset of an
operating system termcap file.

You can use the termcap file supplied by Informix, the system termcap file,
or a termcap file that you created yourself. You must set the TERMCAP
environment variable if you do not use the default termcap file.

The terminfo directory contains a file for each terminal name that has been
defined. It is supported only on machines that provide full support for the
UNIX System V terminfo library.

C shell: setenv INFORMIXONLINEDIR /usr/informix

Bourne shell: INFORMIXONLINEDIR=/usr/informix
export INFORMIXONLINEDIR
Environment Variables 4-23

NOSORTINDEX
The entry for your terminal might allow you to use the REVERSE and
UNDERLINE intensity attributes. However, you must set INFORMIXTERM to
termcap if you use color or the intensity attributes BLINK or BOLD in
IBM Informix SQL screen forms, or if you use color or the BLINK, BOLD, DIM,
or INVISIBLE attributes in IBM Informix 4GL programs and screen displays.

Set the INFORMIXTERM environment variable to terminfo as follows:

Set the INFORMIXTERM environment variable to termcap as follows.

Tip: If INFORMIXTERM is set to termcap, you must set the TERMCAP UNIX
environment variable; if it is set to terminfo, you must set the TERMINFO UNIX
environment variable.

NOSORTINDEX
The NOSORTINDEX environment variable can be defined to disable the
default fast-indexing functionality in version 5.0 of IBM Informix OnLine. If
the NOSORTINDEX environment variable is set, all indexes are built as they
were in versions prior to 5.0. (The database server reads through the data
pages and adds each index entry as it is encountered in the data row.)

If NOSORTINDEX is not set, then larger indexes automatically are created
differently than in versions prior to 5.0. (For larger tables, those spanning
more than 30 pages or containing more than 500 rows, the database server
first reads through all of the data pages for a table and extracts the data to be
indexed. Before inserting the index entries into the B+ tree, the index entries
are sorted, resulting in faster index creation.)

Before you decide whether to set NOSORTINDEX, read the discussion of
indexing and optimization in the IBM Informix Guide to SQL: Tutorial.

C shell: setenv INFORMIXTERM terminfo

Bourne shell: INFORMIXTERM=terminfo

export INFORMIXTERM

C shell: setenv INFORMIXTERM termcap

Bourne shell: INFORMIXTERM=termcap

export INFORMIXTERM
4-24 IBM Informix Guide to SQL: Reference

SQLEXEC
Set the NOSORTINDEX environment variable as follows:

SQLEXEC
The SQLEXEC environment variable directs the processes of your application
development tool to the appropriate database server. The processes first look
for the IBM Informix OnLine database server. Therefore, you must set
SQLEXEC only if you have both the IBM Informix SE and IBM Informix OnLine
database servers installed on your system and you want to access
IBM Informix SE.

SQLEXEC must contain the full pathname of the database server, which is
found in the lib subdirectory of your $INFORMIXDIR directory.

To specify the IBM Informix SE database server, set the SQLEXEC environment
variable as follows:

Reset SQLEXEC to the IBM Informix OnLine database server as follows:

C shell: setenv NOSORTINDEX

Bourne shell: NOSORTINDEX=

export NOSORTINDEX

C shell: setenv SQLEXEC $INFORMIXDIR/lib/sqlexec

Bourne shell: SQLEXEC=$INFORMIXDIR/lib/sqlexec

export SQLEXEC

C shell: setenv SQLEXEC $INFORMIXDIR/lib/sqlturbo

Bourne shell: SQLEXEC=$INFORMIXDIR/lib/sqlturbo

export SQLEXEC
Environment Variables 4-25

SQLRM
SQLRM
In an IBM Informix NET or IBM Informix STAR environment, you can
configure clients to use a Relay Module. To do this, set the SQLRM
environment variable to indicate that your IBM Informix product should use
a Relay Module instead of a database server when you specify a database on
another network server. The Relay Module is similar to the sqlexec process
on a network server.

If SQLRM is set, a Relay Module is used (instead of a database server) to
access a database on another server. If SQLRM is not set, a Relay Module is
not used.

If SQLRM is set, the database server looks for the Relay Module directory
according to the path specified by SQLRMDIR. Set SQLRM as follows:

where iii is a code that indicates the network interface and ttt is a code
that determines the network transport. For example:

There is a separate Relay Module for each network transport/interface
supported in Version 5.0. Each port has a default Relay Module that is
displayed when the installation script is run. Contact your Database Admin-
istrator for the names of the Relay Modules for your port. For more
information on the Relay Module and network protocols, see IBM Informix
NET and IBM Informix STAR Installation and Configuration Guide.

C shell: setenv SQLRM /usr/rm/sqlrmiiittt

Bourne shell: SQLRM=/usr/rm/sqlrmiiittt
export SQLRM

iii Interface ttt Transport

soc Berkeley Sockets tcp TCP/IP

tli tli grp AT&T StarGROUP

usr user-written usr Other user-supplied network
4-26 IBM Informix Guide to SQL: Reference

SQLRMDIR
SQLRMDIR
In an IBM Informix NET or IBM Informix STAR environment, you can set the
SQLRMDIR environment variable to point to the directory in which all the
Relay Module executable files defined by the SQLRM environment variable
reside. If you do not set SQLRMDIR, the default is $INFORMIXDIR/lib.

To specify the path to the Relay Module executable files in /usr/rm set
SQLRMDIR as follows:

For more information on the Relay Module and network protocols, see
IBM Informix NET and IBM Informix STAR Installation and Configuration Guide.

TBCONFIG
The TBCONFIG environment variable contains the name of the tbconfig file
that holds the configuration parameters for IBM Informix OnLine. You need
to set TBCONFIG only if there is more than one IBM Informix OnLine system
initialized in your $INFORMIXDIR directory. If you do not set TBCONFIG, the
default is tbconfig.

Each IBM Informix OnLine system has its own tbconfig file that must be
stored in the $INFORMIXDIR/etc directory. You might prefer to name
tbconfig so it easily can be related to a specific IBM Informix OnLine system.
For example, when the desired filename is tbconfig3, set the TBCONFIG
environment variable as follows:

C shell: setenv SQLRMDIR /usr/rm

Bourne shell: SQLRMDIR=/usr/rm
export SQLRMDIR

C shell: setenv TBCONFIG tbconfig3

Bourne shell: TBCONFIG=tbconfig3

export TBCONFIG
Environment Variables 4-27

UNIX Environment Variables
UNIX Environment Variables
IBM Informix products also rely on the correct setting of standard UNIX
system environment variables. All require that the PATH and TERM
environment variables be set, and some also require that the TERMCAP or
TERMINFO environment variables be set. As with Informix environment
variables, you can set UNIX environment variables at the system prompt or
in your .login or .cshrc (C shell) or your .profile (Bourne shell) file.

PATH
The PATH environment variable tells the shell the order in which to search
directories for executable programs. You must include the directory that
contains your IBM Informix product in your PATH environment variable
before you can use the product.

You can specify the correct search path in various ways. Be sure to include a
colon between the directory names.

The following example uses the explicit path /usr/informix. This path must
correspond to the INFORMIXDIR setting.

The next example specifies $INFORMIXDIR instead of /usr/informix. It tells
the shell to search the directories that were specified when INFORMIXDIR
was set. You might prefer to use this version to ensure that your PATH entry
does not contradict the path that was set in INFORMIXDIR, and so that you
do not have to reset PATH whenever you change INFORMIXDIR.

C shell: setenv PATH $PATH:/usr/informix/bin

Bourne shell: PATH=$PATH:/usr/informix/bin

export PATH

C shell: setenv PATH $PATH:$INFORMIXDIR/bin

Bourne shell: PATH=$PATH:$INFORMIXDIR/bin

export PATH
4-28 IBM Informix Guide to SQL: Reference

TERM
If you set the PATH environment variable at the command line instead of in
your .login or .cshrc file, you must include curly braces with the existing
INFORMIXDIR and PATH, as follows:

TERM
The TERM environment variable is used for terminal handling. It enables
DB-Access, IBM Informix 4GL, and IBM Informix SQL to recognize and
communicate with the terminal you are using. The terminal type specified in
the TERM setting must correspond to an entry in the termcap file or terminfo
directory. Before you can set the TERM environment variable, you must
obtain the code for your terminal from the OnLine or SE administrator.

For example, to specify the vt100 terminal, set the TERM environment
variable as follows:

TERMCAP
The TERMCAP environment variable is used for terminal handling. It tells
DB-Access, IBM Informix 4GL, and IBM Informix SQL to communicate with the
termcap file instead of the terminfo directory. The termcap file contains a list
of various types of terminals and their characteristics. If you use TERMCAP,
you also must set INFORMIXTERM to termcap.

C shell: setenv PATH ${INFORMIXDIR}/bin:${PATH}

C shell: setenv TERM vt100

Bourne shell: TERM=vt100

export TERM

C shell: setenv TERMCAP /usr/informix/etc/termcap

Bourne shell: TERMCAP=/usr/informix/etc/termcap

export TERMCAP
Environment Variables 4-29

TERMINFO
TERMINFO
The TERMINFO environment variable is used for terminal handling. It is
supported only on machines that provide full support for the UNIX System V
terminfo library.

TERMINFO tells DB-Access, IBM Informix 4GL, and IBM Informix SQL to
communicate with the terminfo directory instead of the termcap file. The
terminfo directory has subdirectories that contain files pertaining to
terminals and their characteristics. If you use TERMINFO, you also must set
INFORMIXTERM to terminfo.

C shell: setenv TERMINFO /usr/lib/terminfo

Bourne shell: TERMINFO=/usr/lib/terminfo

export TERMINFO
4-30 IBM Informix Guide to SQL: Reference

5
Chapter
Error Handling with SQLCA
In This Chapter . 5-3

The SQLCA Record in IBM Informix 4GL 5-5

The sqlca Structure in IBM Informix ESQL/C 5-7

The SQLCA Record in IBM Informix ESQL/COBOL 5-10

5-2 IBM
 Informix Guide to SQL: Reference

In This Chapter
When you execute an SQL statement, the database server always returns a
result code, along with other information concerning the operation, in a data
structure known as the SQL Communication Area (SQLCA). The SQLCA data
structure only stores information about the most recently executed SQL
statement. Any 4GL or embedded-language (ESQL) program can check the
contents of this structure to ensure that SQL statements execute as
anticipated.

You can access the SQLCA data structure with any of the following
IBM Informix programming-language products:

� 4GL

� ESQL/C

� ESQL/COBOL

Figure 5-1 summarizes the SQLCA fields available with each IBM Informix
programming-language product.
Error Handling with SQLCA 5-3

Figure 5-1
Summary table of SQLCA data structure information for IBM Informix products

IBM Informix programming-language products return a result code (see the
second column in Figure 5-1) into the SQLCA data structure after executing
every SQL statement except the DECLARE statement. If the result code is a
negative value, the statement was not executed successfully. Additionally,
the SQLCA data structure provides information about any exceptional condi-
tions or problems that were detected during execution of the statement.

This chapter describes the fields of the SQLCA data structure in the different
IBM Informix programming-language products.

Programming
Language Provides Result Code

Provides Details of Statement
Execution Reports Special Conditions

4GL *STATUS

or

SQLCA.SQLCODE

SQLCA.SQLERRD[1]

through

SQLCA.SQLERRD[6]

SQLCA.SQLAWARN[1]

through

SQLCA.SQLAWARN[8]

ESQL/C sqlca.sqlcode

or

SQLCODE

sqlca.sqlerrd[0]

through

sqlca.sqlerrd[5]

sqlca.sqlwarn.sqlwarn0

through

sqlca.sqlwarn.sqlwarn7

ESQL/COBOL SQLCODE OF SQLCA SQLERRD[1] OF SQLCA

through

SQLERRD[6] OF SQLCA

SQLWARN0 OF SQLWARN OF
SQLCA

through

SQLWARN7 OF SQLWARN OF
SQLCA

* STATUS is equivalent to SQLCA.SQLCODE only after SQL statements. Other IBM Informix 4GL
statements also set STATUS
5-4 IBM Informix Guide to SQL: Reference

The SQLCA Record in IBM Informix 4GL
The SQLCA Record in IBM Informix 4GL
The IBM Informix 4GL SQLCA record is shown here:

DEFINE SQLCA RECORD
SQLCODE INTEGER,
SQLERRM CHAR(71),
SQLERRP CHAR(8),
SQLERRD ARRAY [6] OF INTEGER ,
SQLAWARN CHAR (8)

END RECORD

The following list describes each field in this record:

SQLCODE indicates the result of executing an SQL statement.

It is set as follows:

� To zero for a successful execution of most statements

� To NOTFOUND (defined as 100) for a successfully
executed query that returns zero rows or for a FETCH
that seeks beyond the end of an active set

� To a negative value for an unsuccessful execution

IBM Informix 4GL sets the global variable STATUS equal to
SQLCODE after each SQL statement. However, any subsequent
4GL statement can reset STATUS.

SQLERRM contains the error message (maximum of 71 characters).

SQLERRP is reserved for future use.

SQLERRD is an array of the following six variables of type INTEGER:

SQLERRD[1]

SQLERRD[2]

SQLERRD[3]

SQLERRD[4]

SQLERRD[5]

SQLERRD[6]

is not used at this time.

is the SERIAL value returned or an error code.

is the number of rows processed.

is the estimated CPU cost of the query.

is the offset of error into the SQL statement.

is the rowid of the last row processed.
Error Handling with SQLCA 5-5

The SQLCA Record in IBM Informix 4GL
SQLAWARN is a character string of length eight whose individual charac-
ters signal various warning conditions (as opposed to errors)
following the execution of an SQL statement. The characters
are blank if no problems or exceptional conditions are
detected.

SQLAWARN[1] is set to W if one or more of the other warning
characters has been set to W. If SQLAWARN[1]
is blank, you do not have to check the remain-
ing warning characters.

SQLAWARN[2] is set to W if one or more data items were trun-
cated to fit into a CHAR program variable or
if a DATABASE statement selected a database
with transactions.

SQLAWARN[3] is set to W if an aggregate function (SUM, AVG,
MAX, or MIN encountered a null value in its
evaluation or if a DATABASE statement
selected an ANSI-compliant database.

SQLAWARN[4] is set to W if a DATABASE statement selected
an IBM Informix OnLine database or when
the number of items in the select-list of a
SELECT clause is not the same as the number
of program variables in the INTO clause. In
the latter case, the number of values returned
by 4GL is the smaller of these two numbers.

SQLAWARN[5] is set to W if float-to-decimal conversion is
used.

SQLAWARN[6] is set to W when your program executes an
4GL extension to ANSI-compliant standard
syntax and the DBANSIWARN environment
variable is set or the -ansi option is specified.

SQLAWARN[7] is reserved for future use.

SQLAWARN[8] is reserved for future use.
5-6 IBM Informix Guide to SQL: Reference

The sqlca Structure in IBM Informix ESQL/C
The sqlca Structure in IBM Informix ESQL/C
The ESQL/C sqlca structure is defined in the sqlca.h file and is shown here.
The sqlca.h header file is included automatically in an ESQL/C program.

#ifndef SQLCA_INCL

#define SQLCA_INCL

struct sqlca_s
{
long sqlcode;
char sqlerrm[72]; /* error message parameters */
char sqlerrp[8];
long sqlerrd[6];

/* 0 - estimated number of rows returned */
/* 1 - serial value after insert or ISAM error code */
/* 2 - number of rows processed */
/* 3 - estimated cost */
/* 4 - offset of the error into the SQL statement */
/* 5 - rowid after insert */

struct sqlcaw_s
{
char sqlwarn0; /* = W if any of sqlwarn[1-7] = W */
char sqlwarn1; /* = W if any truncation occurred or

database has transactions */
char sqlwarn2; /* = W if a null value returned or

ANSI database */
char sqlwarn3; /* = W if no. in select list != no. in into

list or OnLine backend */
char sqlwarn4; /* = W if no where clause on prepared update,

delete or incompatible float format */
char sqlwarn5; /* = W if non-ANSI statement */
char sqlwarn6; /* reserved */
char sqlwarn7; /* reserved */
} sqlwarn;
};

extern struct sqlca_s sqlca;

extern long SQLCODE;

#define SQLNOTFOUND 100

#endif /* SQLCA_INCL */
Error Handling with SQLCA 5-7

The sqlca Structure in IBM Informix ESQL/C
The following list describes the fields in this structure:

sqlcode indicates the result of executing an IBM Informix ESQL/C
statement. It is set as follows:

� To zero for a successful execution of most statements

� To SQLNOTFOUND (defined as 100 in sqlca.h) for a
successfully executed query that returns zero rows or
for a FETCH that seeks beyond the end of an active set
(However, in an ANSI-compliant database, if an
INSERT INTO/SELECT statement or a DELETE,
UPDATE, or SELECT INTO TEMP statement fails to
access any rows, the value of SQLCODE OF SQLCA is
set to 100 rather than 0.)

� To a negative value for an unsuccessful execution

SQLCODE is another name for sqlca.sqlcode and is available
in ESQL/C files and in C modules that include sqlca.h.

sqlerrm contains the error message (maximum of 71 characters).

sqlerrp is reserved for future use.

sqlerrd is an array of six long integers.

sqlerrd(0) is the estimated number of rows returned.

sqlerrd(1) is a SERIAL value returned or an error code.

sqlerrd(2) is the number of rows processed.

sqlerrd(3) is a weighted sum of disk accesses and total
rows processed.

sqlerrd(4) is the offset of error into the SQL statement.

sqlerrd(5) is the rowid of the last row processed.
5-8 IBM Informix Guide to SQL: Reference

The sqlca Structure in IBM Informix ESQL/C
sqlwarn is a structure containing eight characters whose individual
characters signal various warning conditions (as opposed to
errors) following the execution of an SQL statement. The char-
acters are blank if no problems are detected.

sqlwarn0 is set to W if one or more of the other warning
characters has been set to W. If sqlwarn0 is
blank, you do not have to check the remain-
ing warning characters.

sqlwarn1 is set to W if one or more data items were trun-
cated to fit into a character host variable or if
a DATABASE statement selected a database
with transactions. You can discover which
item was truncated by examining the associ-
ated indicator variables.

sqlwarn2 is set to W if an aggregate function (SUM, AVG,
MAX, MIN) encountered a null value in its
evaluation or if a DATABASE statement
selected an ANSI-compliant database (with
transactions).

sqlwarn3 is set to W if a DATABASE statement selected
an IBM Informix OnLine database or when
the number of items in the select-list of a
SELECT clause is not the same as the number
of host variables in the INTO clause. The
number of items that IBM Informix ESQL/C
returns is the smaller of these two numbers.

sqlwarn4 is set to W if float-to-decimal conversion is
used. It is also set to W by the DESCRIBE state-
ment when an UPDATE or DELETE statement
is prepared without a WHERE clause. Without
a WHERE clause, the UPDATE or DELETE
statement applies to the entire table. By
checking this variable, you can avoid unin-
tended global changes to your table.
Error Handling with SQLCA 5-9

The SQLCA Record in IBM Informix ESQL/COBOL
The SQLCA Record in IBM Informix ESQL/COBOL
The IBM Informix ESQL/COBOL SQLCA record is included in each program
automatically. These records vary depending on the COBOL compiler.

The SQLCA record for Ryan-McFarland compilers is as follows:

77 SQLNOTFOUND PIC S9(10) VALUE 100.
01 SQLCA.

05 SQLCODEPIC S9(5) COMPUTATIONAL-4.
05 SQLERRM.

49 SQLERRML PIC S9(4) COMPUTATIONAL-4.
49 SQLERRMC PIC X(70).

05 SQLERRP PIC X(8).
05 SQLERRD OCCURS 6 TIMES

PIC S9(5) COMPUTATIONAL-4.
05 SQLWARN.

10 SQLWARN0 PIC X(1).
10 SQLWARN1 PIC X(1).
10 SQLWARN2 PIC X(1).
10 SQLWARN3 PIC X(1).
10 SQLWARN4 PIC X(1).
10 SQLWARN5 PIC X(1).
10 SQLWARN6 PIC X(1).
10 SQLWARN7 PIC X(1).

sqlwarn5 is set to W when your program executes an
Informix extension to an ANSI-compliant
standard syntax and the DBANSIWARN envi-
ronment variable is defined or the -ansi
option is specified.

sqlwarn6 is reserved for future use.

sqlwarn7 is reserved for future use.
5-10 IBM Informix Guide to SQL: Reference

The SQLCA Record in IBM Informix ESQL/COBOL
The SQLCA record for Micro Focus compilers is as follows:

77 SQLNOTFOUND PIC S9(10) VALUE 100.
01 SQLCA.

05 SQLCODE PIC S9(9) COMPUTATIONAL-5.
05 SQLERRM.

49 SQLERRML PIC S9(4) COMPUTATIONAL-5.
49 SQLERRMC PIC X(70).

05 SQLERRP PIC X(8).
05 SQLERRD OCCURS 6 TIMES

PIC S9(9) COMPUTATIONAL-5.
05 SQLWARN.

10 SQLWARN0 PIC X(1).
10 SQLWARN1 PIC X(1).
10 SQLWARN2 PIC X(1).
10 SQLWARN3 PIC X(1).
10 SQLWARN4 PIC X(1).
10 SQLWARN5 PIC X(1).
10 SQLWARN6 PIC X(1).
10 SQLWARN7 PIC X(1).

The following list describes the components of these records:

SQLCODE indicates the result of executing an SQL statement. It is set as
follows:

� To zero for a successful execution of most statements

� To SQLNOTFOUND (defined as 100) for a successfully
executed query that returns zero rows or for a FETCH
that seeks beyond the end of an active set (However,
in an ANSI-compliant database, if an INSERT
INTO/SELECT statement or a DELETE, UPDATE, or
SELECT INTO TEMP statement fails to access any rows,
the value of SQLCODE OF SQLCA is set to 100 rather
than 0.)

� To a negative value for an unsuccessful execution

SQLERRM contains the error message.

SQLERRML

SQLERRMC

contains the length of the string.

denotes the character buffer (maximum of 70
characters).

SQLERRP is reserved for future use.
Error Handling with SQLCA 5-11

The SQLCA Record in IBM Informix ESQL/COBOL
SQLERRD is an array of six numerics.

SQLERRD[1] is the estimated number of rows returned.

SQLERRD[2] is the SERIAL value returned or an error code.

SQLERRD[3] is the number of rows processed.

SQLERRD[4] is a weighted sum of disk accesses and total
rows processed.

SQLERRD[5] is the offset of error into the SQL statement.

SQLERRD[6] is the rowid of the last row processed.

SQLWARN is a group item containing eight characters whose individual
characters signal various warning conditions (as opposed to
errors) following the execution of an SQL statement. The char-
acters are blank if no problems are detected.

SQLWARN0 is set to W if one or more of the other warning
characters has been set to W. If SQLWARN0 is
blank, you do not have to check the remain-
ing warning characters.

SQLWARN1 is set to W if one or more data items was trun-
cated to fit into a character host variable, a
conversion error occurred for a numeric vari-
able, or a DATABASE statement selected a
database with transactions. You can discover
which item was truncated or incorrectly con-
verted by examining the associated indicator
variables.

SQLWARN2 is set to W if an aggregate function (SUM, AVG,
MAX, MIN) encountered a null in its evalua-
tion or if a DATABASE statement selected an
ANSI-compliant database (with transactions).
5-12 IBM Informix Guide to SQL: Reference

The SQLCA Record in IBM Informix ESQL/COBOL
SQLWARN3 is set to W if a DATABASE statement selected
an IBM Informix OnLine database or when
the number of items in the select-list of a
SELECT clause is not the same as the number
of host variables in the INTO clause. The
number of values that IBM Informix
ESQL/COBOL returns is the smaller of these
two numbers.

SQLWARN4 is set to W if float-to-decimal conversion is
used. It is also set to W by the DESCRIBE state-
ment when an UPDATE or DELETE statement
is prepared without a WHERE clause. Without
a WHERE clause, the UPDATE or DELETE
statement applies to the entire table. By
checking this variable, you can avoid unin-
tended global changes to your table.

SQLWARN5 is set to W when your program executes an
Informix extension to an ANSI-compliant
standard syntax and the DBANSIWARN envi-
ronment variable is defined or the -ansi
switch is specified.

SQLWARN6 is reserved for future use.

SQLWARN7 is reserved for future use.
Error Handling with SQLCA 5-13

6
Chapter
Using Descriptors
In This Chapter . 6-3

The System Descriptor Area and the sqlda Structure in ESQL/C . . . 6-4
Using a System Descriptor Area 6-5

The System Descriptor Area 6-7
Using Pointers to an sqlda Structure 6-9

The sqlda.h Header File 6-10

The System Descriptor Area in ESQL/COBOL 6-13
Using a System Descriptor Area 6-13

The System Descriptor Area 6-16

6-2 IBM
 Informix Guide to SQL: Reference

In This Chapter
Use the system descriptor area or a structure known as the SQL Descriptor Area
(sqlda) to hold descriptive information about data in dynamic SQL state-
ments. The following IBM Informix programming-language products use the
system descriptor area or the sqlda structure when handling dynamic SQL
statements:

� IBM Informix ESQL/C

� IBM Informix ESQL/COBOL

IBM Informix ESQL/C can use both the sqlda structure and the system
descriptor area. The declaration of the sqlda structure is stored in the sqlda.h
header file. IBM Informix ESQL/COBOL can use only the system descriptor
area.

This chapter describes the components of the system descriptor area and of
the sqlda structure. It tells how these fields are used in the three ESQL
products and briefly discusses the SQL statements that support dynamic
memory allocation. See the discussion of dynamic SQL in the IBM Informix
Guide to SQL: Tutorial and the chapter on dynamic management in your ESQL
product manual for more information.
Using Descriptors 6-3

The System Descriptor Area and the sqlda Structure in ESQL/C
The System Descriptor Area and the sqlda Structure
in ESQL/C
In ESQL/C, you can allocate memory dynamically by using either a system
descriptor area or an sqlda structure.

You use the system descriptor area when you issue the ALLOCATE
DESCRIPTOR, GET DESCRIPTOR, and SET DESCRIPTOR statements. These
statements let you determine the contents of a prepared statement at run time
and allocate memory dynamically. They also allow you to create WHERE
clauses for statements that receive WHERE-clause values at run time.

� The ALLOCATE DESCRIPTOR statement allocates memory for a
system descriptor area that is identified by a descriptor. It creates a
place in memory to hold information obtained by a DESCRIBE
statement or information about the WHERE clause of a statement.
(The DEALLOCATE DESCRIPTOR statement frees the allocated system
descriptor area.)

� The GET DESCRIPTOR statement allows you to determine how many
values have been described in a system descriptor area, determine
the characteristics of each of the columns or expressions described in
the system descriptor area, or copy a value out of the system
descriptor area and into a host variable after a FETCH statement.

� The SET DESCRIPTOR statement assigns values to a system descriptor
area identified by a descriptor.

The DESCRIBE statement returns information about a prepared statement
before you execute it. In ESQL/C, the information can be stored in a system
descriptor area (identified by a descriptor) or in an sqlda structure (identified
by a pointer).
6-4 IBM Informix Guide to SQL: Reference

Using a System Descriptor Area
Using a System Descriptor Area
The X/Open implementation of dynamic SQL lets you allocate space in
memory with a system descriptor area. Thus, you can use a standardized
descriptor area structure and write more portable code.

You can allocate a system descriptor area identified by a descriptor or
descriptor variable and specify its size with the ALLOCATE DESCRIPTOR
statement. You can direct the output of a DESCRIBE statement on a SELECT or
INSERT statement to a system descriptor area. You also can set the contents of
a system descriptor explicitly. You can retrieve information stored in such
system descriptor areas by executing a GET DESCRIPTOR statement following
a DESCRIBE statement.

Use the SET DESCRIPTOR statement to assign values to an allocated system
descriptor area. Space for the DATA field of the system descriptor area is
allocated automatically by a DESCRIBE or SET DESCRIPTOR statement.

You can use the system descriptor area to provide storage for values returned
from a FETCH statement. Release memory associated with the system
descriptor area with the DEALLOCATE DESCRIPTOR statement.

Other statements that support the use of a system descriptor area are
EXECUTE, OPEN, and PUT. For more information on dynamic SQL and system
descriptors, see the discussion of ALLOCATE DESCRIPTOR on page 7-13,
DEALLOCATE DESCRIPTOR on page 7-105, GET DESCRIPTOR on page 7-169,
SET DESCRIPTOR on page 7-293, DESCRIBE on page 7-125, and FETCH on
page 7-153. See also EXECUTE on page 7-142, OPEN on page 7-207, and PUT
on page 7-230.
Using Descriptors 6-5

Using a System Descriptor Area
A system descriptor area has a field for the count of values returned by a
SELECT statement or inserted into an INSERT statement. It also has a set of
fields for each value or item that is input or returned. Figure 6-1 illustrates a
descriptor area for two values.

Figure 6-1
A system

descriptor area for
two values

COUNT = 2

DATA
TYPE
LENGTH
INDICATOR
NAME
SCALE

PRECISION

NULLABLE

IDATA

ITYPE

Value 1

Value 2

ILENGTH

DATA

TYPE

LENGTH
INDICATOR
NAME
SCALE
PRECISION

NULLABLE

IDATA

ITYPE

ILENGTH
6-6 IBM Informix Guide to SQL: Reference

Using a System Descriptor Area
The System Descriptor Area

These are the fields in the system descriptor area.

Field Description

COUNT is the number of VALUES, items, or occurrences in the
system descriptor area, as follows: After ALLOCATE
DESCRIPTOR, it is set to the number of occurrences;
DESCRIBE sets it to the number of values in the SELECT or
INSERT list. (This can be obtained using GET
DESCRIPTOR.) If you are using a system descriptor area to
hold parameters for a PUT, OPEN, or EXECUTE statement,
you must set the COUNT field to the number of
parameters.

DATA is the data. It can be a host variable or a numeric literal,
character string literal, DATETIME literal, or INTERVAL
literal.

TYPE is a short integer corresponding to the data type being
transferred. The integer correspondences are defined in
Figure 6-2 and in Figure 6-3.

LENGTH is a short integer that gives the size in bytes of CHAR type
data, the encoded qualifiers of DATETIME or INTERVAL
data, or the size of a DECIMAL or MONEY value.

INDICATOR is a short integer indicator variable. INDICATOR can
contain two values: 0, meaning there is non-null data in the
DATA field, and -1, meaning there is NULL data in the
DATA field.

NAME is a character string containing the column name or display
label being transferred.

SCALE is defined only for the DECIMAL or MONEY data type.
After a DESCRIBE statement is executed, it contains the
scale of the column. In a SET DESCRIPTOR statement, it
must be set to indicate the scale of the value in the DATA
field.

PRECISION is defined only for the DECIMAL or MONEY data type.
After a DESCRIBE statement is executed, it contains the
precision of the column. Otherwise, it must be set to
indicate the precision of the value in the DATA field.

(1 of 2)
Using Descriptors 6-7

Using a System Descriptor Area
Figure 6-2 and Figure 6-3 show the values for TYPE and ITYPE in X/Open
mode and in standard mode.

Figure 6-2
Values for the TYPE and ITYPE fields for X/Open SQL

NULLABLE specifies whether a resulting column can contain a null
value after a DESCRIBE statement is executed, as follows:
1, meaning the column allows null values, and 0, meaning
the column does not allow null values.

Before an EXECUTE statement or a dynamic OPEN
statement is executed, it must be set to 1 to indicate that an
indicator value is specified in the INDICATOR field, and to
0 if it is not specified. (When executing a dynamic FETCH
statement, the NULLABLE field is ignored.)

IDATA is user-defined indicator data or the name of a host variable
that contains indicator data for the DATA field.

ITYPE is the data type for a user-defined, short-integer indicator.
The integer correspondences are defined in Figure 6-2 and
in Figure 6-3.

ILENGTH is the length, in bytes, of the user-defined indicator.

Data Type Integer

CHARACTER 1

DECIMAL 3

INTEGER 4

SMALLINT 5

FLOAT 6

Field Description

(2 of 2)
6-8 IBM Informix Guide to SQL: Reference

Using Pointers to an sqlda Structure
Figure 6-3
Values for the TYPE and ITYPE fields when not using X/Open SQL

Using Pointers to an sqlda Structure
You use a pointer to the sqlda structure when your ESQL/C program
performs the dynamic memory allocation and you allocate the memory for
each of the dynamic variables in your code.

The DESCRIBE statement sets a pointer to an sqlda structure and describes the
data that is retrieved when the described statement identifier is executed.
You can use this information in statements that support pointers to the sqlda
structure, such as EXECUTE, FETCH, OPEN, and PUT.

Data Type Integer

CHARACTER 0

DECIMAL 5

INTEGER 2

SMALLINT 1

FLOAT 3

SMALLFLOAT 4

SERIAL 6

DATE 7

MONEY 8

DATETIME 10

BYTE 11

TEXT 12

VARCHAR 13

INTERVAL 14

FILE 116
Using Descriptors 6-9

Using Pointers to an sqlda Structure
The allocation of memory for an sqlda structure is done at run time. When all
of its components are fully defined, the sqlda structure points to the
beginning of a sequence of sqlvar_struct structures that contain the
necessary information for each variable in the set.

For more information on dynamic SQL and the use of pointers, see the discus-
sions of DESCRIBE on page 7-125, EXECUTE on page 7-142, FETCH on
page 7-153, OPEN on page 7-207, and PUT on page 7-230.

The sqlda.h Header File

The declaration of the sqlda structure is stored in the sqlda.h header file, as
shown in Figure 6-4. It comprises an sqlda structure that points to an
sqlvar_struct structure.

Figure 6-4
The sqlda.h header file

struct sqlvar_struct
{
short sqltype;
short sqllen;
char *sqldata;
short *sqlind;
char *sqlname;
char *sqlformat;
short sqlitype;
short sqlilen;
char *sqlidata;
}

struct sqlda
{
short sqld;
struct sqlvar_struct *sqlvar;
char *desc_name;
short desc_occ;
struct sqlda *desc_next;
}

Tip: Because of the additional fields in the sqlda structure in Version 5.0, you must
recompile old applications that use this structure to make use of the new libraries.
6-10 IBM Informix Guide to SQL: Reference

Using Pointers to an sqlda Structure
The sqlda Structure

The sqlda structure specifies the number of sqlvar occurrences that contain
descriptions.

� After a DESCRIBE statement is executed, sqld is set to the number of
the select-list columns and expressions or insert-list columns, if the
described statement is a cursor specification; or to zero, if the
described statement is not a cursor specification.

� Before an EXECUTE statement or a dynamic OPEN statement is
executed, sqld must be set to the number of input values.

� Before a dynamic FETCH statement is executed, sqld must corre-
spond to the number of output values.

Figure 6-5 shows the fields in the sqlda structure.

Figure 6-5
Fields in the sqlda structure

The sqlvar_struct Structure

The sqlvar_struct structure holds a group of fields that contains one of the
following pieces of information, depending on the statement:

� A description of a resulting column of the cursor specification

� An input value and its description

� An output value and its description

Figure 6-6 shows the fields in the sqlvar_struct structure.

Field Description

sqld is a short integer representing the number of values in the sqlvar
array.

sqlvar is a pointer to an array of sqlvar_struct structures.
Using Descriptors 6-11

Using Pointers to an sqlda Structure
Figure 6-6
Fields in the sqlvar_struct structure

Field Description

sqltype is a short integer corresponding to the data type being
transferred.

sqllen is a short integer that gives the size, in bytes, of CHAR type
data or the qualifier of a DATETIME or INTERVAL value.

sqldata is a pointer to the character data.

sqlind is a pointer to a short integer indicator variable.

sqlname is a pointer to a character array containing the column
name or display label being transferred.

sqlformat is a character field reserved for future use.

sqlitype is a short integer indicator variable type. The integer corre-
spondences are defined in the sqltypes.h header file.

sqlilen is a short integer indicator length in bytes.

sqlidata is a pointer to character indicator data.
6-12 IBM Informix Guide to SQL: Reference

The System Descriptor Area in ESQL/COBOL
The System Descriptor Area in ESQL/COBOL
In ESQL/COBOL, you can allocate memory dynamically by using a system
descriptor area.

You use the system descriptor area when you use the ALLOCATE
DESCRIPTOR, GET DESCRIPTOR, and SET DESCRIPTOR statements. These
statements let you determine the contents of a prepared statement at run time
and allocate memory dynamically. They also let you create WHERE clauses
for statements that receive WHERE-clause values at run time.

� The ALLOCATE DESCRIPTOR statement allocates memory for a
system descriptor area that is identified by a descriptor. It creates a
place in memory to hold information obtained by a DESCRIBE
statement or information about the WHERE clause of a statement.
(The DEALLOCATE DESCRIPTOR statement frees the allocated system
descriptor area.)

� The GET DESCRIPTOR statement allows you to determine how many
values have been described in a system descriptor area, determine
the characteristics of each of the columns or expressions described in
the system descriptor area, or copy a value out of the system
descriptor area and into a host variable after a FETCH statement.

� The SET DESCRIPTOR statement assigns values to a system descriptor
area identified by a descriptor.

The DESCRIBE statement returns information about a prepared statement
before you execute it. The information is stored in a system descriptor area.

Using a System Descriptor Area
The X/Open implementation of dynamic SQL lets you allocate space in
memory with a system descriptor area. Thus, you can use a standardized
system descriptor area and write more portable code.

You can allocate a system descriptor area identified by a descriptor or
descriptor variable and specify its size with the ALLOCATE DESCRIPTOR
statement. Only system descriptor areas that have been allocated with the
ALLOCATE DESCRIPTOR statement can be used in a DESCRIBE statement in
ESQL/COBOL.
Using Descriptors 6-13

Using a System Descriptor Area
You can direct the output of a DESCRIBE statement on a SELECT or INSERT
statement to a system descriptor area. You also can set the contents of a
system descriptor explicitly. You can retrieve information stored in such
system descriptor areas by executing a GET DESCRIPTOR statement following
a DESCRIBE statement.

Use the SET DESCRIPTOR statement to assign values to an allocated system
descriptor area. Space for the DATA field of the system descriptor area is
allocated automatically by a DESCRIBE or SET DESCRIPTOR statement.

You can use the system descriptor area to provide a storage area for values
returned from a FETCH statement. Release memory associated with the
system descriptor area with the DEALLOCATE DESCRIPTOR statement.

Other statements that support the use of a system descriptor area are
EXECUTE, OPEN, and PUT. For more information on dynamic SQL and system
descriptors, see the discussion of ALLOCATE DESCRIPTOR on page 7-13,
DEALLOCATE DESCRIPTOR on page 7-105, GET DESCRIPTOR on page 7-169,
SET DESCRIPTOR on page 7-293, DESCRIBE on page 7-125, and FETCH on
page 7-153. See also EXECUTE on page 7-142, OPEN on page 7-207, and PUT
on page 7-230.
6-14 IBM Informix Guide to SQL: Reference

Using a System Descriptor Area
A system descriptor area has a field for the count of values returned by a
SELECT statement or inserted into an INSERT statement. It also has a set of
fields for each value or item that is input or returned. Figure 6-7 illustrates a
descriptor area for two values.

Figure 6-7
A system

descriptor area for
two values

COUNT = 2

DATA
TYPE
LENGTH
INDICATOR
NAME
SCALE

PRECISION

NULLABLE

IDATA

ITYPE

Value 1

Value 2

ILENGTH

DATA

TYPE

LENGTH
INDICATOR
NAME
SCALE
PRECISION

NULLABLE

IDATA

ITYPE

ILENGTH
Using Descriptors 6-15

Using a System Descriptor Area
The System Descriptor Area

These are the fields in the system descriptor area.

Field Description

COUNT is the number of VALUES, items, or occurrences in the
system descriptor area, as follows: After ALLOCATE
DESCRIPTOR, it is set to the number of occurrences;
DESCRIBE sets it to the number of values in the SELECT or
INSERT list. (This can be obtained using GET
DESCRIPTOR.) If you are using a system descriptor area to
hold parameters for a PUT, OPEN, or EXECUTE statement,
you must set the COUNT field to the number of
parameters.

DATA is the data. It can be a host variable or a numeric literal,
character string literal, DATETIME literal, or INTERVAL
literal.

TYPE is a short integer corresponding to the data type being
transferred. The integer correspondences are defined in
Figure 6-8 and in Figure 6-9.

LENGTH is a short integer that gives the size in bytes of CHAR type
data, the encoded qualifiers of DATETIME or INTERVAL
data, or the size of a DECIMAL or MONEY value.

INDICATOR is a short integer indicator variable. INDICATOR can
contain two values: 0, meaning there is non-null data in the
DATA field, and -1, meaning there is NULL data in the
DATA field.

NAME is a character string containing the column name or display
label being transferred.

SCALE is defined only for the DECIMAL or MONEY data type.
After a DESCRIBE statement is executed, it contains the
scale of the column. In a SET DESCRIPTOR statement, it
must be set to indicate the scale of the value in the DATA
field.

PRECISION is defined only for the DECIMAL or MONEY data type.
After a DESCRIBE statement is executed, it contains the
precision of the column. Otherwise, it must be set to
indicate the precision of the value in the DATA field.

(1 of 2)
6-16 IBM Informix Guide to SQL: Reference

Using a System Descriptor Area
Figure 6-8 and Figure 6-9 show the values for TYPE and ITYPE in X/Open
mode and in standard mode.

Figure 6-8
Values for the TYPE and ITYPE fields for X/Open SQL

NULLABLE specifies whether a resulting column can contain a null
value after a DESCRIBE statement is executed, as follows:
1, meaning the column allows null values, and 0, meaning
the column does not allow null values.

Before an EXECUTE statement or a dynamic OPEN
statement is executed, it must be set to 1 to indicate that an
indicator value is specified in the INDICATOR field, and to
0 if it is not specified. (When executing a dynamic FETCH
statement, the NULLABLE field is ignored.)

IDATA is user-defined indicator data or the name of a host variable
that contains indicator data for the DATA field.

ITYPE is the data type for a user-defined, short-integer indicator.
The integer correspondences are defined in Figure 6-8 and
Figure 6-9.

ILENGTH is the length, in bytes, of the user-defined indicator.

Data Type Integer

CHARACTER 1

DECIMAL 3

INTEGER 4

SMALLINT 5

FLOAT 6

Field Description

(2 of 2)
Using Descriptors 6-17

Using a System Descriptor Area
Figure 6-9
Values for the TYPE and ITYPE fields when not using X/Open SQL

Data Type Integer

CHARACTER 0

DECIMAL 5

INTEGER 2

SMALLINT 1

FLOAT 3

SMALLFLOAT 4

SERIAL 6

DATE 7

MONEY 8

DATETIME 10

BYTE 11

TEXT 12

VARCHAR 13

INTERVAL 14

FILE 116
6-18 IBM Informix Guide to SQL: Reference

7
Chapter
Syntax
In This Chapter . 7-9

SQL Statements . 7-9
Data Definition Statements 7-10
Data Manipulation Statements 7-10
Cursor Manipulation Statements 7-10
Dynamic Management Statements 7-11
Data Access Statements 7-11
Data Integrity Statements 7-11
Query Optimization Information Statements 7-11
Stored Procedure Statements 7-12
Auxiliary Statements 7-12

ALLOCATE DESCRIPTOR. 7-13
The WITH MAX Clause 7-15

ALTER INDEX 7-17
The TO CLUSTER Option 7-18
The TO NOT CLUSTER Option 7-19

ALTER TABLE 7-20
DEFAULT Clause. 7-23
Subset of Constraint-Definition Option 7-25

BEGIN WORK 7-37
CHECK TABLE 7-39
CLOSE . 7-41
CLOSE DATABASE 7-44
COMMIT WORK 7-46
CREATE AUDIT 7-47
CREATE DATABASE 7-49

Designating Buffered Logging 7-52
Designating an ANSI-Compliant Database 7-52
Designating an ANSI-Compliant IBM Informix SE Database . . 7-53

7-2 IBM
CREATE INDEX 7-54
UNIQUE Option 7-55
CLUSTER Option 7-55
Composite Indexes 7-56
The ASC and DESC Keywords 7-56

CREATE PROCEDURE 7-58
DBA Option 7-59
Subset of SQL Data Types Allowed in the Parameter List . . . 7-60
Subset of SQL Statements Allowed in the Statement Block. . . 7-64

CREATE PROCEDURE FROM 7-67
CREATE SCHEMA 7-68
CREATE SYNONYM 7-70

Synonyms with the Same Name 7-72
CREATE TABLE 7-75

Limits on Constraint Definitions 7-77
Adding or Dropping Constraints 7-77
Enforcing Primary Key, Unique, and Referential Constraints . . 7-78
Constraint Names 7-78
The DEFAULT Clause 7-81
Specifying NOT NULL in a Column Definition 7-83
Defining a Column as Unique 7-85
The CHECK Clause 7-89
Subset of Column-Definition Option 7-91
Subset of Constraint-Definition Option 7-91
WITH NO LOG Option for Temporary Tables 7-91
The IN dbspace Clause 7-92
Extent Option 7-94
LOCK MODE Clause 7-95
The IN pathname Option 7-96

CREATE VIEW 7-97
DATABASE . 7-101
DEALLOCATE DESCRIPTOR 7-105
DECLARE . 7-107

Select Cursor 7-110
Update Cursor 7-111
Insert Cursor 7-111
Sequential Cursor. 7-111
Scroll Cursor 7-112
Hold Cursor 7-112
Subset of the SELECT Statement Associated with an

Update Cursor 7-115
 Informix Guide to SQL: Reference

Locking with an Update Cursor 7-115
Using FOR UPDATE with a List of Columns 7-116
Using an Insert Cursor with Hold. 7-120

DELETE . 7-122
CURRENT OF Clause 7-123

DESCRIBE . 7-125
DROP AUDIT . 7-131
DROP DATABASE 7-132
DROP INDEX . 7-134
DROP PROCEDURE 7-136
DROP SYNONYM 7-137
DROP TABLE . 7-139
DROP VIEW . 7-141
EXECUTE . 7-142

USING Clause 7-144
EXECUTE IMMEDIATE 7-147

Restricted Statement Types 7-148
EXECUTE PROCEDURE 7-150
FETCH . 7-153

Row Numbers 7-156
How the Database Server Stores Rows 7-156
Using the INTO Clause of SELECT 7-157
Using the INTO Clause of FETCH 7-158
Using a System Descriptor 7-158

FLUSH . 7-162
Counting Total and Pending Rows 7-164

FREE . 7-165
GET DESCRIPTOR 7-169

Using the COUNT Keyword 7-171
VALUE Clause 7-172

GRANT . 7-175
INFO . 7-185

Displaying Tables, Columns, and Indexes 7-186
Displaying Privileges, References, and Status. 7-187

INSERT . 7-189
Value and Column Type Compatibility 7-195
Inserting Values into SERIAL Columns 7-196
Using Functions in the VALUES Clause. 7-196
Inserting Nulls with the VALUES Clause 7-196
Syntax 7-3

7-4 IBM
LOAD . 7-199
The LOAD FROM File 7-200
DELIMITER Clause 7-203
INSERT INTO Clause 7-203

LOCK TABLE 7-204
OPEN . 7-207

Naming Variables in USING 7-211
USING SQL DESCRIPTOR Clause 7-212

OUTPUT . 7-216
PREPARE . 7-219

Statement Identifier 7-220
Releasing a Statement Identifier 7-221
Statement Text 7-222
Permitted Statements 7-223

PUT . 7-231
Using Constant Values in INSERT 7-233
Naming Program Variables in INSERT 7-234
Naming Program Variables in PUT. 7-235
Using a System Descriptor Area 7-235
Using an sqlda Structure 7-236
Counting Total and Pending Rows 7-238

RECOVER TABLE 7-239
RENAME COLUMN 7-242
RENAME TABLE 7-244
REPAIR TABLE 7-246
REVOKE . 7-248
ROLLBACK WORK 7-255
ROLLFORWARD DATABASE. 7-257
SELECT . 7-259

Allowing Duplicates 7-262
Expressions in the Select List 7-262
Using a Display Label 7-265
INTO Clause with Indicator Variables 7-266
INTO Clause with Cursors 7-267
Preparing a SELECT...INTO Query 7-268
Using Array Variables with the INTO Clause 7-268
Error Checking. 7-269
AS Keyword with Table Aliases 7-272
Using a Condition in the WHERE Clause 7-272
Using a Join in the WHERE Clause 7-278
 Informix Guide to SQL: Reference

Using Select Numbers. 7-281
Nulls in the GROUP BY Clause 7-282
Ordering by a Derived Column 7-285
Ascending and Descending Orders 7-285
Nulls in the ORDER BY Clause 7-285
Nested Ordering 7-285
Using Select Numbers. 7-286
ORDER BY Clause with DECLARE 7-286
INTO TEMP Clause and INTO. 7-287
WITH NO LOG Option 7-288
Restrictions on a Combined SELECT. 7-288
Duplicate Rows in a Combined SELECT 7-289

SET CONSTRAINTS 7-290
SET DEBUG FILE TO 7-292
SET DESCRIPTOR 7-294

COUNT Option 7-296
VALUE Option 7-297

SET EXPLAIN . 7-302
SET ISOLATION 7-308
SET LOCK MODE 7-312
SET LOG . 7-314
SET OPTIMIZATION 7-316
START DATABASE 7-318
UNLOAD . 7-320

UNLOAD TO File 7-321
DELIMITER Clause 7-323

UNLOCK TABLE 7-324
UPDATE . 7-326

Selecting All Columns with the Set Clause. 7-330
Subset of Expressions Allowed in the SET Clause 7-330
Subset of SELECT Statements Allowed in the SET Clause . . . 7-330
Single Columns Paired to Single Expressions 7-330
Multiple Columns Equal to Multiple Expressions 7-331

UPDATE STATISTICS 7-336
WHENEVER . 7-338
Syntax 7-5

7-6 IBM
Segments . 7-345
Condition . 7-346

Relational-Operator Condition 7-349
BETWEEN Condition 7-350
IN Condition 7-351
IS NULL Condition 7-352
LIKE and MATCHES Condition 7-353
Subset of a SELECT Allowed in a Subquery. 7-356
IN Subquery 7-356
EXISTS Subquery 7-357
ALL/ANY/SOME Subquery 7-358

Constraint Name 7-361
Database Name 7-363
Data Type . 7-366
DATETIME Field Qualifier 7-369
Expression . 7-371

Using Subscripts on Character Columns 7-375
Using Rowids 7-375
Using the At Sign 7-376
Quoted String as Expression 7-378
USER Function. 7-378
SITENAME and DBSERVERNAME Functions 7-379
Literal Number as Expression 7-380
TODAY Function 7-380
CURRENT Function 7-380
Literal DATETIME as an Expression 7-382
Literal INTERVAL as an Expression 7-382
UNITS Keyword 7-383
DAY, MONTH, WEEKDAY, and YEAR Functions. 7-386
DATE Function 7-388
EXTEND Function 7-388
MDY Function 7-389
LENGTH Function 7-390
HEX Function 7-391
ROUND Function. 7-392
TRUNC Function 7-393
Subset of Expressions Allowed in an Aggregate Expression . . 7-395
Including or Excluding Duplicates in the Row Set 7-395
COUNT(*) Keyword 7-395
AVG Keyword 7-396
MAX Keyword. 7-396
 Informix Guide to SQL: Reference

MIN Keyword 7-396
SUM Keyword 7-397
COUNT Keyword 7-397
Summary of Aggregate Function Behavior 7-397
Error Checking with Aggregate Functions 7-398

Identifier. 7-400
Using Keywords as Column Names 7-404
Using ALL, DISTINCT, or UNIQUE as a Column Name 7-404
Using INTERVAL or DATETIME as a Column Name 7-405
Using rowid as a Column Name 7-406
Using AS with Column Labels 7-407
Using AS with Table Aliases 7-408
Using CURRENT, DATETIME, INTERVAL, and

NULL in INSERT. 7-410
Using NULL and SELECT in a Condition 7-410
Using ON, OFF, or PROCEDURE with TRACE 7-411
Using GLOBAL as a Variable Name 7-411

Index Name . 7-414
INTERVAL Field Qualifier 7-415
Literal DATETIME 7-417
Literal INTERVAL 7-420
Literal Number 7-423
Procedure Name 7-425
Quoted String . 7-427
Relational Operator 7-430
Synonym Name 7-433
Table Name . 7-435
View Name . 7-439
Syntax 7-7

7-8 IBM
 Informix Guide to SQL: Reference

In This Chapter
This chapter covers the purpose, syntax and usage of SQL statements and in
addition, discusses elements of the segments that are common to more than
one SQL statement.

SQL Statements
SQL statements are divided into the following categories:

� Data definition statements

� Data manipulation statements

� Cursor manipulation statements

� Dynamic management statements

� Data access statements

� Data integrity statements

� Query optimization information statements

� Stored procedure statements

� Auxiliary statements

The specific statements contained in each category are listed below.
Syntax 7-9

SQL Statements
Data Definition Statements

Data Manipulation Statements

Cursor Manipulation Statements

ALTER INDEX CREATE VIEW

ALTER TABLE DATABASE

CLOSE DATABASE DROP DATABASE

CREATE DATABASE DROP INDEX

CREATE INDEX DROP PROCEDURE

CREATE PROCEDURE DROP SYNONYM

CREATE PROCEDURE FROM DROP TABLE

CREATE SCHEMA DROP VIEW

CREATE SYNONYM RENAME COLUMN

CREATE TABLE RENAME TABLE

INSERT SELECT

DELETE UNLOAD

LOAD UPDATE

CLOSE FLUSH

DECLARE OPEN

FETCH PUT
7-10 IBM Informix Guide to SQL: Reference

SQL Statements
Dynamic Management Statements

Data Access Statements

Data Integrity Statements

Query Optimization Information Statements

ALLOCATE DESCRIPTOR FREE

DEALLOCATE DESCRIPTOR GET DESCRIPTOR

DESCRIBE PREPARE

EXECUTE SET DESCRIPTOR

EXECUTE IMMEDIATE

GRANT SET ISOLATION

LOCK TABLE SET LOCK MODE

REVOKE UNLOCK TABLE

BEGIN WORK REPAIR TABLE

CHECK TABLE ROLLBACK WORK

COMMIT WORK ROLLFORWARD DATABASE

CREATE AUDIT SET CONSTRAINTS

DROP AUDIT SET LOG

RECOVER TABLE START DATABASE

SET EXPLAIN UPDATE STATISTICS

SET OPTIMIZATION
Syntax 7-11

SQL Statements
Stored Procedure Statements

Auxiliary Statements

EXECUTE PROCEDURE SET DEBUG FILE TO

INFO WHENEVER

OUTPUT
7-12 IBM Informix Guide to SQL: Reference

ALLOCATE DESCRIPTOR
ALLOCATE DESCRIPTOR

Purpose
Use the ALLOCATE DESCRIPTOR statement to allocate memory for a system
descriptor area that is identified by a descriptor or descriptor variable. Use it to
create a place in memory to hold information obtained by a DESCRIBE
statement or to hold information about the WHERE clause of a statement.
Syntax 7-13

Syntax
Syntax

Usage
The ALLOCATE DESCRIPTOR statement creates a system descriptor area
identified by descriptor or descriptor variable.

A system descriptor area contains one or more item descriptors. Each item
descriptor holds a data value that can be sent to or received from the database
server. The item descriptors also contain information about the database such
as type, length, scale, precision, nullability, and so on.

The occurrences or occurrences variable specifies the number of item descriptors
desired in the system descriptor or descriptor variable.

descriptor is a quoted string that identifies the system descriptor area.
The descriptor must conform to the same rules as any identifier,
as described in the Identifier segment on page 7-399.

descriptor
variable

is an embedded variable name that identifies the system
descriptor area being allocated. The descriptor variable must
conform to the same rules as any identifier, as described in the
Identifier segment on page 7-399.

occurrences is an unsigned INTEGER that specifies a value greater than 0. It
is the number of items that can be held by the system descrip-
tor area.

occurrences
variable

is an embedded variable name that specifies a value greater
than 0. Its data type must be INTEGER or SMALLINT. It is the
number of items that can be held by the system descriptor
area.

descriptor" "ALLOCATE
DESCRIPTOR

WITH MAX occurrences

occurrences
variable

descriptor
variable

ESQL
7-14 IBM Informix Guide to SQL: Reference

Usage
Initially, all fields of the item descriptor area are undefined. The COUNT is set
to the number of occurrences specified. The TYPE, LENGTH, and other infor-
mation in the item descriptor are set when a DESCRIBE statement is executed
using the system descriptor. The DESCRIBE statement also allocates memory
for the DATA field in each item descriptor, based on the TYPE and LENGTH
information. See Chapter 6, “Using Descriptors,” for more information.

If a descriptor or descriptor variable with the same name is already allocated, the
system returns an error.

The WITH MAX Clause

You can use the optional WITH MAX occurrences clause to indicate the number
of value descriptors you need. This number must be greater than zero. If the
WITH MAX clause is not specified, a default value of 100 is used for
occurrences.

The following examples show the ALLOCATE DESCRIPTOR statement for
three programming languages. All show the WITH MAX occurrences clause.

In each pair, the first example uses an embedded variable name and the
second example uses a quoted string to identify the system descriptor area to
be allocated. The WITH MAX occurrences clause alternately uses an embedded
variable name and the unsigned INTEGER 3.

Figure 7-1
Sample ALLOCATE DESCRIPTOR statements in IBM Informix ESQL/C

$allocate descriptor $descname with max $occ;

$allocate descriptor "desc1" with max 3;

Figure 7-2
Sample ALLOCATE DESCRIPTOR statements in IBM Informix ESQL/COBOL

EXEC SQL ALLOCATE DESCRIPTOR :DESCNAME WITH MAX :OCC END-EXEC

EXEC SQL ALLOCATE DESCRIPTOR "DESC1" WITH MAX 3 END-EXEC
Syntax 7-15

References
References
In this manual, see the following statements: DEALLOCATE DESCRIPTOR,
DECLARE, DESCRIBE, EXECUTE, FETCH, GET DESCRIPTOR, OPEN, PREPARE,
PUT, and SET DESCRIPTOR, and Chapter 6, “Using Descriptors.”

In the IBM Informix Guide to SQL: Tutorial, see the discussion of dynamic SQL.
7-16 IBM Informix Guide to SQL: Reference

ALTER INDEX
ALTER INDEX

Purpose
Use the ALTER INDEX statement to order the data in a table in the order of an
existing index or to release an index from the clustering attribute.

Syntax

Usage
The ALTER INDEX statement only works on indexes that are created using the
CREATE INDEX statement; it does not affect constraints created using the
CREATE TABLE statement.

You cannot use a ROLLBACK WORK statement to undo an ALTER INDEX
statement. If you roll back a transaction that contains an ALTER INDEX
statement, the index remains altered; you do not receive an error message.

If you are using IBM Informix SE and have an audit trail on the table, you
cannot use the ALTER INDEX statement. If you want to change an index on an
audited table, you must first drop the audit on the table, alter the index, and
create a new audit for the table. ♦

ALTER INDEX TO

NOT

CLUSTER+ Index Name
p. 7-413

SE
Syntax 7-17

Usage
The TO CLUSTER Option

The TO CLUSTER option causes the reordering of rows in the physical table to
the indexed order.

The following example shows how the ALTER INDEX TO CLUSTER statement
is used to physically order the rows in the orders table. The CREATE INDEX
statement creates an index on the customer_num column of the table; then,
the ALTER INDEX statement causes the physical ordering of the rows.

CREATE INDEX ix_cust ON orders (customer_num)
ALTER INDEX ix_cust TO CLUSTER

Reordering causes the entire file to be rewritten. This process can take a long
time and it requires sufficient disk space to maintain two copies of the table.

While a table is being clustered, the table is locked in EXCLUSIVE MODE. If
another process is using the table to which index name belongs, the database
server cannot execute the ALTER INDEX statement with the TO CLUSTER
option; it returns an error unless lock mode is set to WAIT. (If lock mode is set
to WAIT, the database server retries the ALTER INDEX statement.)

Over time, if you modify the table, you can expect the benefit of an earlier
cluster to disappear. You can recluster the table by issuing another ALTER
INDEX TO CLUSTER statement on the clustered index. You do not need to
drop a clustered index before issuing another ALTER INDEX TO CLUSTER
statement on a currently clustered index.
7-18 IBM Informix Guide to SQL: Reference

References
The TO NOT CLUSTER Option

The NOT option drops the cluster attribute on index name without affecting
the physical table. Since there can be only one clustered index per table, you
must use the NOT option to release the cluster attribute from one index before
you assign it to another. For example, the following series of statements illus-
trates how clustering is removed from one index and the table is physically
reclustered by a second index.

CREATE UNIQUE INDEX ix_ord
ON orders (order_num)

CREATE CLUSTER INDEX ix_cust
ON orders (customer_num)

.

.

.

ALTER INDEX ix_cust TO NOT CLUSTER

ALTER INDEX ix_ord TO CLUSTER

The first two statements create indexes for the orders table and cluster the
physical table in ascending order on the customer_num column. The last two
statements recluster the physical table in ascending order on the order_num
column.

References
In this chapter, see the following statements: CREATE INDEX and CREATE
TABLE.

In the IBM Informix Guide to SQL: Tutorial, see the discussion of clustered
indexes.
Syntax 7-19

ALTER TABLE
ALTER TABLE

Purpose
Use the ALTER TABLE statement to add a column to or delete a column from
a table, modify the data constraints placed on a column, add a constraint to a
column or a composite list of columns, and drop a constraint associated with
a column or a composite list of columns.

Syntax

Usage
You must own table name, have DBA status, or be granted the Alter privilege
on the specified table to use the ALTER TABLE statement. You cannot alter a
temporary table.

To add a referential constraint, you must have DBA status or References
privilege on either the referenced columns or the referenced table. ♦

Synonym
Name

p. 7-432

DROP Clause
 p. 7-29

MODIFY Clause
 p. 7-30

LOCK MODE
Clause p. 7-36

MODIFY NEXT SIZE
Clause p. 7-36

DROP CONSTRAINT
Clause p. 7-35

ADD CONSTRAINT
Clause p. 7-33

ADD Clause
p. 7-22

+

OL

Table Name
p. 7-434

ALTER TABLE

DB

ESQL
7-20 IBM Informix Guide to SQL: Reference

Usage
To drop a constraint, you must have DBA status, own the table, or be granted
Alter privilege on that table.

To drop a constraint in a database, you must have DBA privilege or be the
owner of the constraint. If you are the owner of the constraint but not the
owner of the table, you must have Alter privilege on the specified table. You
do not need the References privilege to drop a constraint. ♦

Altering a table on which a view depends may invalidate the view.

You can use one or more of the ADD, DROP, MODIFY, ADD CONSTRAINT, or
DROP CONSTRAINT clauses, and you can place them in any order. The
actions are performed in the order specified. If any of the actions fail, the
entire operation is cancelled.

You cannot use a ROLLBACK WORK statement to undo an ALTER TABLE
statement. If you roll back a transaction that contains an ALTER TABLE
statement, the table remains altered; you do not receive an error message. ♦

DB

ESQL

SE
Syntax 7-21

ADD Clause
ADD Clause

Use the ADD clause to add a column to a table. You cannot add a SERIAL
column to a table if the table has data in it.

,

Add Column
Clause

column
nameBEFORE

new
column
name

Data Type
p. 7-365

DB

ESQL

DEFAULT
Clause
p. 7-23

NOT
NULL

Constraint
def. (Subset)

p. 7-25

,

Add Column
Clause

Add Column
Clause

()

ADD

column name is the name of an existing column before which the new col-
umn is to be placed.

new column
name

is the name of the column that you are adding.
7-22 IBM Informix Guide to SQL: Reference

ADD Clause
DEFAULT Clause

The default value is inserted into the column when an explicit value is not
specified. If a default is not specified and the column allows nulls, the default
is NULL. If you designate NULL as the default value for a column, you cannot
use the keywords NOT NULL as part of the column definition.

You cannot place a default on SERIAL columns.

If the altered table already has rows in it, the new column contains the default
value for all existing rows.

literal represents a literal default.

DEFAULT
Clause

DEFAULT literal

NULL

CURRENT
p. 7-379

DATETIME
Field Qualifier

p. 7-368

USER
p. 7-377

TODAY
p. 7-379

SITENAME
p. 7-378

DBSERVERNAME
p. 7-378

OL

DB

ESQL
Syntax 7-23

ADD Clause
You can designate literal terms as default values. A literal term is a string of
alpha or numeric constant characters defined by you. To use a literal term as
a default value, follow these rules:

� Use integers with INTEGER, SMALLINT, DECIMAL, MONEY, FLOAT,
and SMALLFLOAT columns.

� Use decimals with DECIMAL, MONEY, FLOAT, and SMALLFLOAT
columns.

� Use characters with CHAR, VARCHAR, and DATE columns.
Characters must be enclosed in quotation marks. Date literals must
be of the format specified by the DBDATE environment variable. If
DBDATE is not set, the format mm/dd/yyyy is assumed.

� Use literal INTERVAL values with INTERVAL columns. For infor-
mation on using a literal INTERVAL, see “Literal INTERVAL” on
page 7-419.

� Use literal DATETIME values with DATETIME columns. For more
information on using a literal DATETIME, see “Literal DATETIME”
on page 7-416.

The following table indicates the data type requirements for columns that
specify the CURRENT, DBSERVERNAME, SITENAME, TODAY, or USER
functions as the default value.

The next example adds a column to the items table. In items, the new column
item_weight has a literal default value.

ALTER TABLE items ADD
item_weight DECIMAL (6, 2) DEFAULT 2.00 BEFORE total_price

Function Name Data Type Requirements

CURRENT DATETIME column with matching qualifier

DBSERVERNAME CHAR or VARCHAR column at least 18 characters long

SITENAME CHAR or VARCHAR column at least 18 characters long

TODAY DATE column

USER CHAR column at least 8 characters long
7-24 IBM Informix Guide to SQL: Reference

ADD Clause
In this example, each existing row in the items table has a default value of
2.00 for the item_weight column. ♦

Using NOT NULL with ADD

If you do not indicate a default value for a column, the default is null unless
you include the NOT NULL keywords after the data type of the column. In
this case, if the NOT NULL keywords are used, there is no default value for
the column and the column does not allow nulls. However, you cannot use
the NOT NULL option when you add a column (unless both NOT NULL and a
default value other than NULL is specified), nor can you specify that the new
column has a unique or primary key constraint if the table contains data. If
you want to add a column with a unique constraint, the table can contain a
single row of data when you issue the ALTER TABLE statement. If you want to
add a column with a NOT NULL or primary key constraint, the table must be
empty when you issue the ALTER TABLE statement. The following statement
is valid only if the items table is empty:

ALTER TABLE items
ADD (item_weight DECIMAL(6,2) NOT NULL

BEFORE total_price)

Subset of Constraint-Definition Option

You cannot specify a unique constraint on a new column if the table contains
data. Nor can you have a unique constraint on a BYTE or TEXT column. If you
want to add a column with a unique constraint, the table can contain a single
row of data when you issue the ALTER TABLE statement.

UNIQUE

DB

ESQL

Constraint
def. (Subset)

PRIMARY
KEY

REFERENCES
Clause
p. 7-27

CHECK
Clause
p. 7-28

+

CONSTRAINT
Name

p. 7-360
CONSTRAINT

I4GL

ISQL
Syntax 7-25

ADD Clause
If you place a unique constraint on a column or set of columns, and there is
already a unique index on that column or set of columns, the constraint
shares the index. However, if the existing index allows duplicates, the
database server returns an error. You must then drop the existing index
before adding the unique constraint. ♦

You cannot specify a unique or primary key constraint on a new column if the
table contains data. However, in the case of a unique constraint, the table can
contain a single row of data. If you want to add a column with a primary key
constraint, the table must be empty when you issue the ALTER TABLE
statement.

The following rules apply when you place unique or primary key constraints
on existing columns:

� If you place a unique or primary key constraint on a column or set of
columns, and there is already a unique index on that column or set
of columns, the constraint shares the index. However, if the existing
index allows duplicates, the database server returns an error. You
must then drop the existing index before adding the constraint.

� If you place a unique or primary key constraint on a column or set of
columns, and there is already a referential constraint on that column
or set of columns, the duplicate index is upgraded to unique (if
possible) and the index is shared.

You cannot have a unique constraint on a BYTE or TEXT column. Nor can you
place referential or check constraints on these types of columns. You can
place a check constraint on a BYTE or TEXT column. However, you only can
check for IS NULL, IS NOT NULL, or LENGTH. ♦

DB

ESQL
7-26 IBM Informix Guide to SQL: Reference

ADD Clause
REFERENCES Clause

Use the REFERENCES clause to reference a column or set of columns in
another table. If you are using the ADD or MODIFY clause, you only can
reference a single column. If you are using the ADD CONSTRAINT clause, you
can reference a single column or a set of columns.

A referential constraint establishes the relationship between columns in two
tables or within the same table. The relationship between the columns is
commonly called a parent-child relationship, where for every entry in the
child (referencing) columns, there must exist a matching entry in the parent
(referenced) columns.

The referenced column must be a column that either is part of a unique or
primary key constraint. If the referenced column does not meet this criteria,
the database server returns an error.

The foreign key (referencing column) can contain null and duplicate values,
but every non-null value (that is, all foreign key columns contain non-null
values) in the referencing columns must match a value in the referenced
column.

A referential constraint has a one-to-one relationship between referencing
and referenced columns. In other words, if the primary key is a set of
columns, the foreign key also must be a set of columns that corresponds to
the primary key. The following example creates a new column in the
cust_calls table, ref_order. The ref_order column is a foreign key that refer-
ences the order_num column in the orders table.

ALTER TABLE cust_calls ADD (
ref_order INTEGER REFERENCES orders (order_num) BEFORE user_id)

REFERENCES
Clause

REFERENCES

()

Table
Name

p. 7-434
,

column

DB

ESQL
Syntax 7-27

ADD Clause
If you are referencing a primary key in another table, you do not have to
explicitly state the primary key columns in that table. Referenced tables that
do not specify the column to be referenced default to the primary key
column. In the previous example, since order_num is the primary key in the
orders table, you do not have to reference that column explicitly.

If you place a referential constraint on a column or set of columns, and there
is already a duplicate or unique index on that column or set of columns, the
index is shared.

The data types of the referencing and referenced column must be identical,
unless the column is of type SERIAL. In this case, the primary key is of type
SERIAL and the foreign key is of type INTEGER.

When a referential constraint is created, an exclusive lock is placed on the
referenced table. The lock is released when the ALTER TABLE statement is
done or at the end of a transaction (if you are altering a table in a database
with transactions and you are using transactions). ♦

CHECK Clause

A check constraint designates a condition that must be met before data can be
inserted into a column. If a row evaluates to false for any of the check
constraints defined on a table during an insert or update, the database server
returns an error.

You cannot create check constraints for columns across tables. If you are
using the ADD or MODIFY clause, the check constraint cannot depend upon
values in other columns of the same table. The following example adds a new
column, unit_price, to the items table and includes a check constraint that
ensures that the value to be entered is greater than 0.

ALTER TABLE items ADD (
unit_price MONEY (6,2) CHECK (unit_price > 0))

Condition
 p. 7-345

CHECK ()

CHECK
Clause

DB

ESQL
7-28 IBM Informix Guide to SQL: Reference

DROP Clause
To create a constraint that checks values in more than one column, use the
ADD CONSTRAINT clause. The next example adds the same column as the
previous example. However, the check constraint now spans two columns in
the table.

ALTER TABLE items ADD constraint
CHECK (unit_price < total_price)

♦

DROP Clause

When you drop a column that is part of a multiple-column index, you drop
the multiple-column index automatically. Similarly, when you drop a column
that is part of a multiple-column constraint, you drop the multiple-column
constraint automatically. ♦

When you drop a column, all constraints placed on that column are dropped,
as follows:

� All single-column constraints are dropped.

� All referential constraints that reference the column are dropped.

� All check constraints that reference the column are dropped.

� If the column is part of a multiple-column unique or primary key
constraint, the constraints placed on the multiple columns also are
dropped. This, in turn, triggers the dropping of all referential
constraints that reference the multiple columns.

Since any constraints associated with a column are dropped when the
column is dropped, the structure of other tables may also be altered when you
use this clause. For example, if the dropped column is a unique or primary
key that is referenced in other tables, those referential constraints also are
dropped. This means that the structure of those other tables also have been
altered. ♦

column name is the name of the existing column that you wish to drop.

,

column name

column nameDROP

()

I4GL

ISQL

DB

ESQL
Syntax 7-29

MODIFY Clause
MODIFY Clause

Use the MODIFY clause to change the data type of a column and the length of
a character column, and to allow or disallow nulls in a column.

When you modify a column that has single-column constraints associated with
it, all those constraints (in this case, the NOT NULL and UNIQUE attributes)
are dropped. If you want certain attributes of the column to remain, you must
specify them again. For example, if you are changing the data type of an
existing column, quantity, to SMALLINT, and you want to continue disal-
lowing nulls in this column, you can issue the following ALTER TABLE
statement:

ALTER TABLE items MODIFY (quantity SMALLINT NOT NULL)

When you modify a column that is part of a multiple-column unique
constraint, all single-column constraints are dropped but the multiple-
column constraint is not dropped. For example, if you modify a column that
does not allow nulls and is part of a multiple-column unique constraint, the
NOT NULL constraint is dropped but the multiple-column constraint is not
dropped. If you want the NOT NULL constraint to remain on the column, you
must respecify NOT NULL in the MODIFY clause. ♦

,

Modify Column
Clause

()

MODIFY

,

Modify Column
Clause

column
name

Data Type
p. 7-365

DB

ESQL

DEFAULT
Clause
p. 7-23

NOT
NULL

Constraint
def. (Subset)

p. 7-25

Modify Column
Clause

column name is the name of the existing column that you wish to modify.

I4GL

ISQL
7-30 IBM Informix Guide to SQL: Reference

MODIFY Clause
Use the MODIFY clause to change the data type of a column and the length of
a character column, to add or change the default value for a column, and to
allow or disallow nulls in a column.

When you modify a column, all attributes previously associated with that
column (that is, default value, single-column check constraint, or referential
constraint) are dropped. If you want certain attributes of the column to
remain, you must respecify those attributes. For example, if you are changing
the data type of an existing column, quantity, to SMALLINT, and you want to
keep the default value (in this case, 1) and non-null attributes for that column,
you can issue the following ALTER TABLE statement:

ALTER TABLE items MODIFY (quantity SMALLINT DEFAULT "1" NOT NULL)

Note that both attributes are specified again in the MODIFY clause.

If you modify a column that has column constraints associated with it, the
following constraints are dropped:

� All single-column constraints are dropped.

� All referential constraints that reference the column are dropped.

� If the modified column is part of a multiple-column unique or
primary key constraint, all referential constraints that reference the
multiple columns also are dropped.

For example, if you modify a column that has a unique constraint, the unique
constraint is dropped. If this column was referenced by columns in other
tables, those referential constraints also are dropped. In addition, if the
column is part of a multiple-column unique or primary key constraint, the
multiple-column constraints are not dropped, but any referential constraints
placed on the column by other tables are dropped. For example, a column is
part of a multiple-column primary key constraint. This primary key is refer-
enced by foreign keys in two other tables. When this column is modified, the
multiple-column primary key constraint is not dropped, but the referential
constraints placed on it by the two other tables are dropped.

Using the MODIFY clause can alter the structure of other tables. If the
modified column is referenced by other tables, those referential constraints
are dropped. You must add those constraints to the referencing tables again
using the ALTER TABLE statement. ♦

DB

ESQL
Syntax 7-31

MODIFY Clause
If you change the data type of an existing column, all data is converted to the
new data type, including numbers to characters and characters to numbers
(if the characters represent numbers). The following statement changes the
data type of the quantity column:

ALTER TABLE items MODIFY (quantity CHAR(6))

When there is a unique constraint, however, conversion takes place only if it
does not violate the constraint. If a data conversion would result in duplicate
values (by changing FLOAT to SMALLFLOAT, for example, or by truncating
CHAR values), then the ALTER TABLE statement fails. ♦

When there is a unique or primary key constraint, however, conversion takes
place only if it does not violate the constraint. If a data conversion would
result in duplicate values (by changing FLOAT to SMALLFLOAT, for example,
or by truncating CHAR values), then the ALTER TABLE statement fails. ♦

You can modify an existing column that formerly permitted nulls to disallow
nulls, provided that the column contains no null values. To do this, specify
MODIFY with the same column name and data type and the NOT NULL
keywords.

You can modify an existing column that did not permit nulls to permit nulls.
To do this, specify MODIFY with the column name and the existing data type
and omit NOT NULL. However, if there is a unique index on the column, you
should remove it using the DROP INDEX statement.

I4GL

ISQL

DB

ESQL
7-32 IBM Informix Guide to SQL: Reference

ADD CONSTRAINT Clause
ADD CONSTRAINT Clause

Use the ALTER TABLE statement with the ADD CONSTRAINT keywords to
specify a constraint on a new or existing column or on a set of columns. For
example, to add a unique constraint to the fname and lname columns of the
customer table, use the following statement:

ALTER TABLE customer
ADD CONSTRAINT UNIQUE (lname, fname)

To name the constraint, change the example as follows:

ALTER TABLE customer
ADD CONSTRAINT UNIQUE (lname, fname) CONSTRAINT u_cust

,

()

ADD CONSTRAINT
CONSTRAINT

Definition

CONSTRAINT
Definition

UNIQUE

DB

ESQL

CONSTRAINT
Definition

PRIMARY
KEY

REFERENCES
Clause
p. 7-27

CHECK
Clause
p. 7-28

+

CONSTRAINT
Name

p. 7-360
CONSTRAINT

,

column()

FOREIGN
KEY

,

column)(

column is the name of the column or columns on which the constraint
is placed.
Syntax 7-33

ADD CONSTRAINT Clause
If you do not provide a constraint name, the database server provides one.
You can find the name of the constraint in the sysconstraints system catalog
table. See the section “SYSCONSTRAINTS” on page 2-16 for more infor-
mation about the sysconstraints system catalog table.

The following rules apply when you add a unique constraint:

� The columns can contain only unique values.

� If you place a unique constraint on a column or set of columns, and
there is already a unique index on that column or set of columns, the
constraint shares the index. However, if the existing index allows
duplicates, the database server returns an error. You must then drop
the existing index before adding the unique constraint.

� An existing unique constraint cannot have the same name as the
constraint you are adding.

� A composite list can include no more than 16 column names. The
total length of all the columns cannot exceed 255 bytes. ♦

� A composite list can include no more than 8 column names and the
total length of all the columns cannot exceed 120 bytes. ♦

The following rules apply when you add a unique or primary key constraint:

� If you place a unique or primary key constraint on a column or set of
columns, and there is already a unique index on that column or set
of columns, the constraint shares the index. However, if the existing
index allows duplicates, the database server returns an error. You
must then drop the existing index before adding the constraint.

� If you place a unique or primary key constraint on a column or set of
columns, and there is already a referential constraint on that column
or set of columns, the duplicate index is upgraded to unique (if
possible) and the index is shared.

� If you place a referential constraint on a column or set of columns,
and there is already a referential constraint on that column or set of
columns, the duplicate index is upgraded to unique (if possible) and
the index is shared.

� An existing unique constraint cannot have the same name as the
constraint you are adding.

� A composite list can include no more than 16 column names. The
total length of all the columns cannot exceed 255 bytes. ♦

I4GL

ISQL

SE

DB

ESQL
7-34 IBM Informix Guide to SQL: Reference

DROP CONSTRAINT Clause
If you own the table or have Alter privilege on the table, you can create a
unique constraint on the table and specify yourself as the owner of the
constraint. If you have DBA privilege, you can create constraints for other
users. ♦

If you own the table or have Alter privilege on the table, you can create a
unique, primary key, or check constraint on the table and specify yourself as
the owner of the constraint. To add a referential constraint, you must have
References privilege on either the referenced columns or the referenced table.
If you have DBA privilege, you can create constraints for other users. ♦

DROP CONSTRAINT Clause

To drop an existing constraint, specify the DROP CONSTRAINT keywords and
the name of the constraint. The following statement is an example of
dropping a constraint:

ALTER TABLE manufact DROP CONSTRAINT con_name

If a constraint name is not specified when the constraint is created, the
database server generates the name. You can query the sysconstraints system
catalog table for the names (including the owner) of constraints. For example,
to find the name of the constraints placed on the items table, you can issue
the following statement:

SELECT constrname FROM sysconstraints
WHERE tabid = (SELECT tabid FROM systables

WHERE tabname = "items")

If you drop a unique or primary key constraint that has a corresponding
foreign key, those referential constraints are dropped. For example, if you
drop the primary key constraint on the order_num column in the orders
table and order_num exists in the items table as a foreign key, that referential
relationship also is dropped. ♦

I4GL

ISQL

DB

ESQL

,

()

DROP CONSTRAINT

CONSTRAINT
Name

p. 7-360

CONSTRAINT
Name

p. 7-360

DB

ESQL
Syntax 7-35

MODIFY NEXT SIZE Clause
MODIFY NEXT SIZE Clause

Use the MODIFY NEXT SIZE clause to change the size of new extents. If you
want to specify an extent size of 32 kilobytes, use a statement such as the
following example:

ALTER TABLE customer MODIFY NEXT EXTENT SIZE 32

The size of existing extents is not changed.

LOCK MODE Clause

Use the LOCK MODE keywords to change the locking mode of a table. The
PAGE keyword is the default lock mode; it is set if the table is created without
using the LOCK MODE clause. The following example sets the lock mode to
row locking:

ALTER TABLE items LOCK MODE (ROW)

References
In this manual, see the following statements: CREATE TABLE, DROP TABLE,
and LOCK TABLE.

In the IBM Informix Guide to SQL: Tutorial, see the discussion of data integrity
constraints and the discussion of creating a database and tables.

kbytes is the size, in kilobytes, that you want to assign for the next
extent for this table.

MODIFY NEXT SIZE kbytes

()LOCK MODE PAGE

ROW
7-36 IBM Informix Guide to SQL: Reference

BEGIN WORK
BEGIN WORK

Purpose
Use the BEGIN WORK statement to start a transaction (a sequence of database
operations that are terminated by the COMMIT WORK or ROLLBACK WORK
statement).

Syntax

Usage
The following code fragment shows how you might put statements within a
transaction.

Figure 7-3
Code fragment showing statements within a transaction

BEGIN WORK
LOCK TABLE stock
UPDATE stock SET unit_price = unit_price * 1.10

WHERE manu_code = "KAR"
DELETE FROM stock WHERE description = "baseball bat"
INSERT INTO manufact (manu_code, manu_name, lead_time)

VALUES ("LYM", "LYMAN", 14)
COMMIT WORK

Each row affected by an UPDATE, DELETE, or INSERT statement during a
transaction is locked and remains locked throughout the transaction. A trans-
action that contains a large number of such statements, or that contains
statements affecting a large number of rows, can exceed the limits placed by
your operating system or IBM Informix OnLine configuration on the
maximum number of simultaneous locks. If no other user is accessing the
table, you can avoid locking limits and reduce locking overhead by locking
the table with the LOCK TABLE statement after you begin the transaction. As
with all locks, this table lock is released when the transaction terminates.

BEGIN WORK+
Syntax 7-37

With ANSI-Compliant Databases
If you issue a BEGIN WORK statement while you are in a transaction, the
database server returns an error.

You only can issue the BEGIN WORK statement if a transaction is not in
progress.

If you use the BEGIN WORK statement within a routine called by a
WHENEVER statement, specify WHENEVER SQLERROR CONTINUE and
WHENEVER SQLWARNING CONTINUE before the ROLLBACK WORK
statement. This prevents the program from looping if the ROLLBACK WORK
statement encounters an error or a warning. ♦

With ANSI-Compliant Databases
The BEGIN WORK statement is not needed because transactions are implicit.
A warning is generated if you use a BEGIN WORK statement immediately
following one of these statements:

� DATABASE

� COMMIT WORK

� CREATE DATABASE

� ROLLBACK WORK

� START DATABASE

An error is generated if you use a BEGIN WORK statement after any other
statement. ♦

References
In this manual, see the following statements: COMMIT WORK and ROLLBACK
WORK.

In the IBM Informix Guide to SQL: Tutorial, see the discussion of transactions
and locking.

ESQL

ANSI
7-38 IBM Informix Guide to SQL: Reference

CHECK TABLE
CHECK TABLE

Purpose
Use the CHECK TABLE statement to compare the data in a table with its
indexes to determine whether they match. Use this statement when you think
the data or the indexes might be corrupted because of a power failure,
computer crash, or other abnormal program stoppage.

Syntax

Usage
Specify the name of the database table for which you want to check the data
and associated indexes. For example:

CHECK TABLE cust_calls

The CHECK TABLE statement calls the bcheck utility. See the IBM Informix SE
Administrator’s Guide for a full description of the bcheck utility.

You cannot use the CHECK TABLE statement on a table unless you own it or
have DBA status.

You cannot use the CHECK TABLE statement on the system catalog table
systables, as it is always open. Instead, you can run the bcheck utility from
the operating system prompt. You cannot use the CHECK TABLE statement on
other system catalog tables unless you are user informix.

CHECK TABLE
Table
Name

p. 7-434

SE
DB

ISQL
+

Syntax 7-39

References
References
In this manual, see the REPAIR TABLE statement.

In the IBM Informix SE Administrator’s Guide, see the discussion of the bcheck
utility.
7-40 IBM Informix Guide to SQL: Reference

CLOSE
CLOSE

Purpose
Use the CLOSE statement when you no longer need to refer to the rows
produced by a select cursor or when you want to flush and close an insert
cursor.

Syntax

Usage
Closing a cursor makes the cursor unusable for any statements except OPEN
or FREE and releases resources that the database server had allocated to the
cursor. A cursor that is associated with an INSERT statement is treated differ-
ently by a CLOSE statement than one associated with a SELECT statement.

You can close a cursor that was never opened or that has already been closed.
No action is taken in these cases.

An error code is returned if you close a cursor that was not open. No other
action occurs. ♦

cursor name is the name of a cursor that has been declared with a DECLARE
statement.

CLOSE
cursor
name

I4GL
ESQL

ANSI
Syntax 7-41

Closing a SELECT Cursor
Closing a SELECT Cursor
When cursor name is associated with a SELECT statement, closing the cursor
terminates the SELECT statement. The database server releases all resources
it may have allocated to the active set of rows, for example, a temporary table
that it used to hold an ordered set. The database server also releases any locks
that it may have been holding on rows selected through the cursor. If the
CLOSE statement is contained in a transaction, the locks are not released by
the database server until a COMMIT WORK or ROLLBACK WORK is executed.

After you close a select cursor, you cannot execute a FETCH statement that
names it until you have reopened the cursor.

Closing an INSERT Cursor
When cursor name is associated with an INSERT statement, the CLOSE
statement writes any remaining buffered rows into the database. The number
of rows that were successfully inserted into the database is returned in the
third element of the SQLERRD array in the SQLCA structure, the product-
specific name of which is shown in the following chart. (For information on
using SQLERRD to count the total number of rows inserted, see the PUT
statement on page 7-230.)

The SQLCODE field of the SQLCA structure indicates the result of the CLOSE
statement for an insert cursor. If all buffered rows are successfully inserted,
SQLCODE is set to zero. If an error is encountered, SQLCODE is set to a
negative error message number. See the following chart for the field name for
each product.

4GL ESQL/C ESQL/COBOL

SQLCA.SQLERRD[3] sqlca.sqlerrd[2] SQLERRD(3) OF SQLCA

4GL ESQL/C ESQL/COBOL

STATUS
SQLCA.SQLCODE

sqlca.sqlcode
SQLCODE

SQLCODE OF SQLCA
7-42 IBM Informix Guide to SQL: Reference

Using End of Transaction to Close a Cursor
When SQLCODE is zero, the row buffer space is released and the cursor is
closed; that is, you cannot execute a PUT or FLUSH statement that names the
cursor until you have reopened it.

If the insert is not successful, the number of successfully inserted rows is
stored in SQLERRD. Any buffered rows following the last successfully
inserted row are discarded. Since in this case the CLOSE statement failed, the
cursor is not closed. A second CLOSE statement can be successful because
there are no longer any buffered rows. A subsequent OPEN statement also
should be successful because the OPEN statement performs an implicit close
that will succeed. An example of a situation in which a CLOSE statement fails
and produces this setting is if there is insufficient disk space available for
some of the rows to be inserted.

Using End of Transaction to Close a Cursor
The COMMIT WORK and ROLLBACK WORK statements close all cursors
except those declared with hold. However, it is better to close all cursors
explicitly. For select cursors, this simply makes the intent of the program
clear. It also helps to avoid a logic error if the WITH HOLD clause is later
added to the declaration of a cursor.

For an insert cursor, it is important to use the CLOSE statement explicitly so
that you can test the error code. Following the COMMIT WORK statement,
SQLCODE reflects the result of the COMMIT statement, not the result of
closing cursors. If you use a COMMIT WORK statement without first using a
CLOSE statement, and if an error occurs while the last buffered rows are being
written to the database, the transaction is still committed.

For the use of insert cursors and the WITH HOLD clause, see the DECLARE
statement on page 7-107.

References
In this manual, see the following statements: DECLARE, FETCH, FLUSH, FREE,
OPEN, and PUT.

In the IBM Informix Guide to SQL: Tutorial, see the discussion of cursors.
Syntax 7-43

CLOSE DATABASE
CLOSE DATABASE

Purpose
Use the CLOSE DATABASE statement to close the current database.

Syntax

Usage
Following the CLOSE DATABASE statement, the only legal SQL statements are
CREATE DATABASE, DATABASE, and DROP DATABASE.

You also can use the START DATABASE and ROLLFORWARD DATABASE state-
ments after CLOSE DATABASE. ♦

Issue the CLOSE DATABASE statement before you drop the current database.

If your database has transactions, you must issue a COMMIT WORK statement
before you use the CLOSE DATABASE statement, if you have started a
transaction.

The following example shows how to use the CLOSE DATABASE statement to
drop the current database:

DATABASE stores5
.
.
.
CLOSE DATABASE
DROP DATABASE stores5

The CLOSE DATABASE statement cannot appear in a multistatement PREPARE
operation. ♦

CLOSE DATABASE+

SE

I4GL

ESQL
7-44 IBM Informix Guide to SQL: Reference

References
If you use the CLOSE DATABASE statement within a routine called by a
WHENEVER statement, specify WHENEVER SQLERROR CONTINUE and
WHENEVER SQLWARNING CONTINUE before the ROLLBACK WORK
statement. This prevents the program from looping if the ROLLBACK WORK
statement encounters an error or a warning. ♦

References
In this manual, see the following statements: CREATE DATABASE, DATABASE,
and DROP DATABASE.

ESQL
Syntax 7-45

COMMIT WORK
COMMIT WORK

Purpose
Use the COMMIT WORK statement to commit all modifications made to the
database since the beginning of a transaction.

Syntax

Usage
Use the COMMIT WORK statement when you are sure you want to keep
changes made to the database since the beginning of a transaction.

The COMMIT WORK statement releases all row and table locks.

The COMMIT WORK statement closes all open cursors except those declared
with hold. ♦

Do not use the COMMIT WORK statement within a FOREACH loop, because it
closes all open cursors except those declared with hold. ♦

References
In this manual, see the following statements: BEGIN WORK, ROLLBACK
WORK, and DECLARE.

In the IBM Informix Guide to SQL: Tutorial, see the discussion of transactions.

COMMIT WORK

I4GL

ESQL

I4GL
7-46 IBM Informix Guide to SQL: Reference

CREATE AUDIT
CREATE AUDIT

Purpose
Use the CREATE AUDIT statement to create an audit trail file and to start
writing the audit trail for an IBM Informix SE database.

Syntax

Usage
You can create an audit trail to keep a record of all modifications to a table.
An audit trail is a complete history of all additions, deletions, and updates to
the table. The audit trail is used to reconstruct the table from a backup copy
made at the time the audit trail is created.

You only can use the CREATE AUDIT statement with IBM Informix SE.
IBM Informix OnLine provides for full database logging using log files.

You must own the table or view or have DBA status to use the CREATE AUDIT
statement. You must set Execute privilege for all directories below root in
pathname for each class of user (owner, owner’s group, and public) that
accesses your database.

If an audit trail file with the same pathname already exists, the CREATE
AUDIT statement does nothing. If an audit trail file for the same table exists
with a different pathname, an error message is returned.

pathname specifies the full operating system pathname and file for the
audit trail file.

Synonym
Name

p. 7-432

IN "pathname"CREATE AUDIT FOR
SE Table

Name
p. 7-434

+

Syntax 7-47

References
Make a backup copy of your database files as soon as you run the CREATE
AUDIT statement, but before you make any further changes to the database.
(See the RECOVER TABLE statement for an example.) If possible, put the audit
trail file on a different physical device from the one that holds your data, so
that a failure of one does not damage the data on the other.

Audit trails slow your access to the database very slightly; each alteration of
the database is recorded in the audit trail file, as well as in the database files.

The following example shows how to use the CREATE AUDIT statement in a
UNIX environment:

CREATE AUDIT FOR orders IN "/u/safe/orders.aud"

References
In this manual, see the following statements: DROP AUDIT and RECOVER
TABLE.

For more information on audit trails, see the manual for your application
development tool.
7-48 IBM Informix Guide to SQL: Reference

CREATE DATABASE
CREATE DATABASE

Purpose
Use the CREATE DATABASE statement to create a new database.

Syntax

CREATE

IN dbspace

MODE ANSI

BUFFERED

LOG

LOG MODE ANSI

OL Log Clause

SE Log Clause

OL Log Clause

SE Log Clause

WITH

SEOL

OL

DATABASE
+ Database

Name
p. 7-362

WITH LOG IN "pathname"

dbspace is the name of the dbspace in which you want to store the data
for this database. The dbspace must already exist.

pathname is the full pathname, including the filename, for the log file.
Syntax 7-49

Usage
Usage
The database that you create becomes the current database.

The database name you use must be unique within the IBM Informix OnLine
system on which you are working. IBM Informix OnLine creates the system
catalog tables containing the data dictionary that describes the structure of
the database in the dbspace. If you do not specify the dbspace, IBM Informix
OnLine creates the system catalog tables in the root dbspace.

The following statement creates the stores5 database in the root dbspace:

CREATE DATABASE stores5

The following statement creates the stores5 database in the research dbspace:

CREATE DATABASE stores5 IN research

The following example creates the stores5 database in your current directory:

CREATE DATABASE stores5

The data for the database is placed in a subdirectory of your current directory
with the name database-name.dbs. The system catalog, tables, data, and index
files are placed in this directory, except for tables that you explicitly instruct
be placed elsewhere (see the CREATE TABLE statement on page 7-75). The
rules for directory names on your operating system govern the length of the
name that you choose for the database. ♦

In IBM Informix 4GL and the embedded products, the CREATE DATABASE
statement cannot appear in a multistatement PREPARE operation. ♦

SE

I4GL

ESQL
7-50 IBM Informix Guide to SQL: Reference

ANSI-Compliant Databases
ANSI-Compliant Databases
You have the option of creating an ANSI-compliant database.

ANSI-compliant databases are set apart from non-ANSI databases by the
following features:

� All statements are contained in transactions automatically. All
databases on an IBM Informix OnLine database server use unbuf-
fered logging.

� Owner-naming is enforced. You must use the owner-name when
referring to each table, view, synonym, index or constraint, unless
you are the owner.

� For databases on an IBM Informix OnLine database server, the
default isolation level available is repeatable read.

� Default privileges on objects differ from those in databases that are
not ANSI-compliant. Users do not receive PUBLIC privilege to tables
and synonyms by default.

There are other slight differences between databases that are and are not
ANSI-compliant. These differences are noted as appropriate with the related
SQL statement. ♦

Logging on IBM Informix OnLine
Use the following syntax to start logging transactions to the database on an
IBM Informix OnLine system.

In the event of a failure, IBM Informix OnLine uses the log to re-create all
committed transactions in your database.

If you do not specify the WITH LOG statement, you cannot use transactions
or the statements associated with databases that have logging (BEGIN WORK,
COMMIT WORK, ROLLBACK WORK, SET LOG, and SET ISOLATION).

ANSI

BUFFERED

LOGWITH

LOG MODE ANSI
Syntax 7-51

Logging on IBM Informix SE
Designating Buffered Logging

The following example creates a database that uses a buffered log:

CREATE DATABASE stores5 WITH BUFFERED LOG

If you use a buffered log, you marginally enhance the performance of logging
at the risk of not being able to re-create the last few transactions after a failure.
(See the discussion of buffered logging in the IBM Informix Guide to SQL:
Tutorial.)

An ANSI-compliant database does not use buffered logging. ♦

Designating an ANSI-Compliant Database

The following example creates an ANSI-compliant database:

CREATE DATABASE employees WITH LOG MODE ANSI

Logging on IBM Informix SE
Use the following syntax to start a log file for an IBM Informix SE database:

The following example creates an IBM Informix SE database named accounts
with a log file. You must use the full pathname to designate the log file.

CREATE DATABASE accounts WITH LOG IN "/acct/f1990/acct_log"

If you specify the WITH LOG IN keywords, you can use transactions and the
statements associated with transactions (BEGIN WORK, COMMIT WORK, and
ROLLBACK WORK). Conversely, if you do not specify the WITH LOG IN
keywords, you cannot use transactions.

You can use the START DATABASE statement to assign a log file to an existing
IBM Informix SE database or to assign a new log file with a different name.

pathname assigns the pathname of the log. It must be 64 or fewer
characters long.

ANSI

SE

MODE ANSI

WITH LOG IN "pathname"
7-52 IBM Informix Guide to SQL: Reference

References
You can determine the location of the log file for the current database by
running the following SELECT statement:

SELECT dirpath FROM informix.systables
WHERE tabtype = "L"

♦

Designating an ANSI-Compliant IBM Informix SE Database

The following example creates an ANSI-compliant database:

CREATE DATABASE employees WITH LOG IN "/u/acctg/lfile" MODE ANSI
♦

References
In this manual, see the following statements: CLOSE DATABASE, DATABASE,
DROP DATABASE, and START DATABASE.

In the IBM Informix Guide to SQL: Tutorial, see the discussion of creating a
database.

SE
Syntax 7-53

CREATE INDEX
CREATE INDEX

Purpose
Use the CREATE INDEX statement to create an index for one or more columns
in a table and, optionally, to cluster the physical table in the order of the
index. When more than one column is listed, the concatenation of the set of
columns is treated as a single composite column for indexing.

Syntax

column name is the name of a column you want to index. To create an index
that applies to several columns, enter a list of column names,
separated by commas. All the columns you specify must
belong to the same table.

INDEXCREATE

CLUSTER

+

DISTINCT

UNIQUE

Synonym
Name

p. 7-432

Index
Name

p. 7-413

ON
Clause

ON
Clause

ON Table
Name

p. 7-434

,

column name

DESC

ASC

()
7-54 IBM Informix Guide to SQL: Reference

Usage
Usage
When you issue the CREATE INDEX statement the table is locked in exclusive
mode. If another process is using the table, the database server cannot
execute the CREATE INDEX statement and returns an error.

Only one index on a particular sequence of columns is allowed with the same
ascending or descending order.

You cannot use a ROLLBACK WORK statement to undo a CREATE INDEX
statement. If you roll back a transaction that contains a CREATE INDEX
statement, the index remains and you do not receive an error message. ♦

UNIQUE Option

The following example creates a unique index:

CREATE UNIQUE INDEX c_num_ix ON customer (customer_num)

This index prevents duplicates in the customer_num column. A column with
a unique index can have, at most, one null value. The DISTINCT keyword is a
synonym for the keyword UNIQUE, so the following statement would accom-
plish the same task:

CREATE DISTINCT INDEX c_num_ix ON customer (customer_num)

The index in either example is maintained in ascending order, which is the
default order.

You also can prevent duplicates in a column or set of columns by creating a
unique constraint with the CREATE TABLE or ALTER TABLE statement. See the
CREATE TABLE or ALTER TABLE syntax for more information.

CLUSTER Option

Use the CLUSTER option to reorder the physical table in the order designated
by the index. The CREATE CLUSTER INDEX statement fails if a CLUSTER index
already exists.

CREATE CLUSTER INDEX c_clust_ix ON customer (zipcode)

This statement creates an index on the customer table that orders the table
physically by zip code.

SE
Syntax 7-55

Usage
You cannot create a CLUSTER index on a table that has an audit trail. ♦

Composite Indexes

The following example creates a composite index using the stock_num and
manu_code columns of the stock table:

CREATE UNIQUE INDEX st_man_ix ON stock (stock_num, manu_code)

The index prevents any duplicates of a given combination of stock_num and
manu_code. The index is in ascending order by default.

You can include up to 16 columns in a composite index. All columns indexed
in a single CREATE INDEX statement cannot exceed 255 bytes.

You can use up to 8 columns in a composite index. All columns indexed in a
single CREATE INDEX statement cannot exceed 120 bytes. ♦

The ASC and DESC Keywords

Use the ASC option to specify an index that is maintained in ascending order.
The ASC option is the default ordering scheme. Use the DESC option to
specify an index that is maintained in descending order. When a column or
list of columns is defined as unique in a CREATE TABLE or ALTER TABLE
statement, the database server implements that UNIQUE CONSTRAINT by
creating a unique ascending index. Thus, you cannot use the CREATE INDEX
statement to add an ascending index to a column or column list already
defined as unique.

SE

SE
7-56 IBM Informix Guide to SQL: Reference

References
You can create a descending index on such columns and you can include such
columns in composite ascending indexes in different combinations. For
example, the following sequence of statements is allowed:

CREATE TABLE customer (
customer_num SERIAL(101)UNIQUE,
fname CHAR(15),
lname CHAR(15),
company CHAR(20),
address1 CHAR(20),
address2 CHAR(20),
city CHAR(15),
state CHAR(2),
zipcode CHAR(5),
phone CHAR(18)

)

CREATE INDEX cathtmp ON customer (customer_num DESC)
CREATE INDEX c_temp2 ON customer (customer_num, zipcode)

References
In this manual, see the following statements: ALTER INDEX, DROP INDEX,
and CREATE TABLE.

In the IBM Informix Guide to SQL: Tutorial, see the discussions of indexes.
Syntax 7-57

CREATE PROCEDURE
CREATE PROCEDURE

Purpose
Use the CREATE PROCEDURE statement to name and define a procedure.

Syntax

Usage
The entire length of a CREATE PROCEDURE statement must be less than 64
kilobytes. This length is the literal length of the CREATE PROCEDURE
statement, including blank space and tabs.

You only can use a CREATE PROCEDURE statement within a PREPARE
statement. If you want to create a procedure for which the text is known at
compile time, you must use a CREATE PROCEDURE FROM statement. ♦

DB
Procedure

Name
p. 7-424

Statement
Block

p. 7-63

CREATE PROCEDURE

END
PROCEDURE

()

DBA
,

Parameter
p. 7-60

RETURNING
Clause
p. 7-61

,

Quoted String
p. 7-426

DOCUMENT
WITH

LISTING IN " "pathname

;

ESQL
+

pathname is the full pathname of the file which is to contain the warnings
of the procedure. The file must be on the host machine of the
database server that serves the database.

ESQL
7-58 IBM Informix Guide to SQL: Reference

Usage
If the statement block portion of the CREATE PROCEDURE statement is empty,
no operation takes place when the procedure is called. You might use such a
procedure in the development stage when you want to establish the existence
of a procedure, but you have not yet coded it.

You must have at least Resource privilege on a database to create a procedure.

You cannot use a ROLLBACK WORK statement to undo a CREATE
PROCEDURE statement. If you roll back a transaction that contains a CREATE
PROCEDURE statement, the procedure remains and you do not receive an
error message. ♦

DBA Option

If you create a procedure using the DBA option, the procedure is known as a
DBA-privileged procedure. If you do not use the DBA option, the procedure
is known as an owner-privileged procedure. The privileges associated with
the execution of a procedure are determined by whether the procedure is
created with the DBA keyword. See the section “Privileges on Stored Proce-
dures” on page 8-16 for more information.

SE
Syntax 7-59

Parameter Syntax and Use
Parameter Syntax and Use

If you provide a default value for a parameter, that value is used if the
procedure is called with less than the necessary arguments.

Subset of SQL Data Types Allowed in the Parameter List

The SQL Data Type subset includes all of the SQL data types except SERIAL,
TEXT, and BYTE. For the complete syntax of all of the SQL data types, see page
7-365.

To use a TEXT or BYTE type, use the REFERENCES keyword, as shown in the
diagram on page 7-60.

column is the name of the column of the type the variable is to be.

default value is the default value for the parameter.

table is the name of the table that contains column.

variable name is the name of a parameter used in the procedure.

Parameter

.LIKE

variable
name

SQL Data Type
(Subset)
p. 7-60

table column

default
value

REFERENCES BYTE

TEXT DEFAULT
NULL
7-60 IBM Informix Guide to SQL: Reference

RETURNING Clause
RETURNING Clause

A procedure can return zero or more values or sets of values. A procedure
that returns more than one set of values (such as multiple rows from a table)
is a cursory procedure. For example, the first RETURNING clause shown in the
following example can return zero or one value if it is not a cursory procedure;
if it is cursory, it returns more than one row from a table and each returned
row contains one value. The second RETURNING clause can return zero or
two values; if it is cursory, it returns more than one row with two values
returned for each row.

RETURNING INT;

RETURNING INT, INT;

The receiving procedure or program must be written appropriately to accept
the information.

Describing the Procedure in the DOCUMENT Clause
The quoted string or strings in the DOCUMENT clause should provide a
synopsis and description of the procedure. The DOCUMENT text is intended
for the user of the procedure. Anyone with access to the database can query
the sysprocbody system catalog table to obtain a description of one or all of
the procedures stored in the database.

For example, to find the description of the already created procedure called
do_something, you execute the following query:

SELECT data FROM sysprocbody b, sysprocedures p
WHERE b.procid = p.procid {join between the two catalogs}

AND
p.procname = "do_something" {look for procedure do_something}
AND b.datakey = 'D' { want user document }

ORDER BY b.seqno; { ... in order }

,

SQL Data Type
(Subset)
p. 7-60

;

BYTE

RETURNING

TEXT

REFERENCES

RETURNING
Clause
Syntax 7-61

WITH LISTING IN Option
The rows returned are the complete text as supplied in the DOCUMENT
clause of the CREATE PROCEDURE statement.

CREATE PROCEDURE ret_sal (dep_no INT, name CHAR(8) default user)
RETURNING INT;

.

.

.
END PROCEDURE
DOCUMENT

"Usage: salary (dept [required], name [default: your name])",
"returns your (or someone elses’s) salary",
"Warning: This procedure sends mail on illegal use"

WITH LISTING IN "/usr/tmp/sal.warnings";

WITH LISTING IN Option
The WITH LISTING IN option specifies a filename where compile time
warnings are sent. After a procedure is compiled, this file holds one or more
warning messages.

If you do not use the WITH LISTING IN option, the compiler does not generate
a list of warnings.
7-62 IBM Informix Guide to SQL: Reference

The Statement Block
The Statement Block

Statement
BlockBEGIN END

CONTINUE
Statement

p. 8-40

IF
Statement

p. 8-60

EXIT
Statement

p. 8-50

FOR
Statement

p. 8-52

FOREACH
Statement

p. 8-56

LET
Statement

p. 8-64

RAISE EXCEPTION
Statement

p. 8-73

RETURN
Statement

p. 8-75

TRACE
Statement

p. 8-80

WHILE
Statement

p. 8-84

SYSTEM
Statement

p. 8-78

EXECUTE PROCEDURE
Statement
p. 7-150

CALL
Statement

p. 8-37
ON

EXCEPTION
Statement

p. 8-67

DEFINE
Statement

p. 8-42

SQL Statement
Syntax 7-63

The Statement Block
The statement block can be empty, which results in a procedure that does
nothing.

You cannot close the current database or select a new database within a
procedure.

You cannot drop the current procedure within a procedure. You can,
however, drop another procedure.

Subset of SQL Statements Allowed in the Statement Block

You can use any SQL statement in the Statement Block except for those listed
in Figure 7-4.

Figure 7-4
SQL statements that cannot be used in a stored procedure

You can use a SELECT statement only in two cases:

� You can use the INTO TEMP clause to put the results of the SELECT
statement into a temporary table.

� You can use the SELECT...INTO form of the SELECT statement to put
the resulting values into procedure variables.

CHECK
CLOSE DATABASE
CREATE DATABASE
CREATE PROCEDURE
CREATE PROCEDURE FROM
DATABASE
INFO
LOAD
OUTPUT
REPAIR
ROLL FORWARD DATABASE
START DATABASE
UNLOAD
7-64 IBM Informix Guide to SQL: Reference

The Statement Block
Restrictions on a Procedure Called in a Data Manipulation Statement

If a stored procedure is called as part of an INSERT, UPDATE, DELETE, or
SELECT statement, the called procedure cannot execute any of the statements
listed in Figure 7-5. This ensures that changes cannot be made that affect the
SQL statement that contains the procedure call.

Figure 7-5
SQL statements not allowed in a procedure that is called in a data manipulation statement

For example, if you use the following INSERT statement, then the execution
of the called procedure dup_name is restricted:

CREATE PROCEDURE sp_insert
.
.
.
INSERT INTO q_customer

VALUES (SELECT * FROM customer
WHERE dup_name ("lname") = 2)

.

.

.
END PROCEDURE;

In the preceding example, dup_name cannot execute the statements listed in
Figure 7-5. However, if dup_name is called within a statement that is not an
INSERT, UPDATE, SELECT, or DELETE statement (namely EXECUTE
PROCEDURE), dup_name can execute the statements listed in Figure 7-5.

Note that you can use the BEGIN WORK and COMMIT WORK statements in
procedures. You can start a transaction, finish a transaction, or start and finish
a transaction in a procedure.

ALTER INDEX
ALTER TABLE
BEGIN WORK
COMMIT WORK
DELETE
DROP INDEX
DROP SYNONYM

DROP TABLE
DROP VIEW
INSERT
RENAME COLUMN
RENAME TABLE
ROLLBACK WORK
UPDATE
Syntax 7-65

References
References
In this manual, see the following statements: DROP PROCEDURE, GRANT,
EXECUTE PROCEDURE, UPDATE STATISTICS, and REVOKE.

In the IBM Informix Guide to SQL: Tutorial, see the discussion of creating and
using stored procedures.
7-66 IBM Informix Guide to SQL: Reference

CREATE PROCEDURE FROM
CREATE PROCEDURE FROM

Purpose
Use the CREATE PROCEDURE FROM statement to create a procedure. The
actual text of the procedure resides in a separate file.

Syntax

Usage
The filename provided in this statement is relative; if a simple filename is
provided, the database server looks for the file in the current directory.

References
In this manual, see the CREATE PROCEDURE statement.

In the IBM Informix Guide to SQL: Tutorial, see the discussion of creating and
using stored procedures.

filename is the name of the file, or the name of the path and file, that con-
tains the full text of the CREATE PROCEDURE statement.

variable name is a program variable that holds the name of the file that con-
tains the full text of the CREATE PROCEDURE statement.

ESQL

ESQL filename" "

variable
name

CREATE PROCEDURE FROM
+

Syntax 7-67

CREATE SCHEMA
CREATE SCHEMA

Purpose
The CREATE SCHEMA statement allows you to issue a block of CREATE and
GRANT statements as a unit. It allows you to specify an owner/grantor of
your choice for the subsequent block of CREATE and GRANT statements.

Syntax

Usage
You cannot issue the CREATE SCHEMA statement until the affected database
has been created.

Users with Resource privilege can create a schema for themselves. In this
case, user name is the name of the person with Resource privilege running the
CREATE SCHEMA statement. Anyone with DBA privilege also can create a
schema for someone else. In this case, user name can identify a user other than
the person running the CREATE SCHEMA statement.

CREATE SCHEMA user
nameDB AUTHORIZATION

+

CREATE TABLE
p. 7-75

CREATE INDEX
p. 7-54

CREATE VIEW
p. 7-97

CREATE SYNONYM
p. 7-70

GRANT
p. 7-175

+

ISQL

user name is the name of the user to whom the CREATE SCHEMA state-
ment block, and the objects created by the block, belongs.
7-68 IBM Informix Guide to SQL: Reference

Creating Objects Within CREATE SCHEMA
You can put CREATE and GRANT statements in any logical order within the
statement, as shown in the following example. Statements are considered
part of the CREATE SCHEMA statement until a semicolon or an end-of-file
symbol is reached.

CREATE SCHEMA AUTHORIZATION sarah
CREATE TABLE mytable (mytime DATE, mytext TEXT)
GRANT SELECT, UPDATE, DELETE ON mytable TO rick
CREATE VIEW myview AS

SELECT * FROM mytable WHERE mytime > "12/31/1989"
CREATE INDEX idxtime ON mytable (mytime);

Creating Objects Within CREATE SCHEMA
All objects created by a CREATE SCHEMA statement are owned by user name
even if you do not explicitly name each object. If you are the DBA, you can
create objects for another user. If you are not the DBA and you attempt to
create something for an owner other than user name, an error is returned.

Granting Privileges Within CREATE SCHEMA
You only can grant privileges using the CREATE SCHEMA statement; you
cannot revoke or drop privileges.

Creating Objects or Granting Privileges Outside CREATE
SCHEMA
If you create an object or use the GRANT statement outside a CREATE
SCHEMA statement, you receive warnings if you use the -ansi flag or set
DBANSIWARN.

References
In this manual, see the following statements: CREATE TABLE, CREATE INDEX,
CREATE VIEW, CREATE SYNONYM, and GRANT.

In the IBM Informix Guide to SQL: Tutorial, see the discussion of creating the
data model.
Syntax 7-69

CREATE SYNONYM
CREATE SYNONYM

Purpose
Use the CREATE SYNONYM statement to provide an alternative name for a
table or view.

Syntax

Usage
A public synonym is valid for all users, not just the creator. Users have the
same privileges on a synonym that were granted to them on the table to
which the synonym applies.

Once created, a synonym persists until the owner of the synonym executes
the DROP SYNONYM statement. This property distinguishes a synonym from
an alias that you can use in the FROM clause of a SELECT statement. The alias
persists only for the lifetime of the SELECT statement. If a synonym refers to
a table or view in the same database, the synonym is automatically dropped
if the referenced table or view is dropped.

You cannot create a synonym for a synonym.

CREATE FOR

View Name
p. 7-438

Table Name
p. 7-434

+ Synonym
Name

p. 7-432
 SYNONYM

 PRIVATE

PUBLIC
7-70 IBM Informix Guide to SQL: Reference

Usage
The name of a synonym is qualified by the owner of the synonym
(owner.synonym). The identifier owner.synonym must be unique among all the
synonyms, tables, and views in the database. You must specify owner when
you refer to a synonym owned by another user. The following example
shows the convention:

CREATE SYNONYM emp FOR accting.employee
♦

You cannot use a ROLLBACK WORK statement to undo a CREATE SYNONYM
statement. If you roll back a transaction that contains a CREATE SYNONYM
statement, the synonym remains and you do not receive an error message. ♦

You can create a synonym for any table or view on any database on your
database server. Use the owner. convention if the table is part of an ANSI-
compliant database. The following example shows a synonym for a table
outside the current database. It assumes that you are working on the same
database server that contains the payables database.

CREATE SYNONYM mysum FOR payables:jean.summary
♦

You can create a synonym for any table or view that exists on any networked
database server as well as on the database server which contains your current
database. The database server that holds the table must be on-line when you
create the synonym. IBM Informix STAR verifies that the object of the
synonym exists when you create the synonym.

Here is an example of creating a synonym for an object that is not in the
current database:

CREATE SYNONYM mysum FOR payables@phoenix:jean.summary

The identifier mysum now refers to the table jean.summary, which is in the
payables database on the phoenix database server. Note that if the summary
table is dropped from the payables database, the mysum synonym is left
intact. Subsequent attempts to use mysum return a “Table not found”
error. ♦

ANSI

SE

OL

STAR
Syntax 7-71

PUBLIC and PRIVATE Synonyms
PUBLIC and PRIVATE Synonyms
If you use the PUBLIC keyword (or no keyword at all), your synonym can be
used by anyone that has access to the database. If a synonym is public, a user
does not need to know the name of the owner of the synonym. Any synonym
in a database that is not ANSI-compliant and was created before the Version
5.0 of the database server is a public synonym.

Synonyms are always private. If you use the PUBLIC or PRIVATE keywords,
you receive a syntax error. ♦

If you use the PRIVATE keyword, the synonym only can be used by the owner
of the synonym or if the owner’s name is specified explicitly with the
synonym. There can be more than one private synonym with the same name
in the same database. However, each synonym with that name must be
owned by a different user.

You only can own one synonym with a given name; you cannot create both
private and public synonyms with the same name. For example, the
following code generates an error.

CREATE SYNONYM our_custs FOR customer;
CREATE PRIVATE SYNONYM our_custs FOR cust_calls;-- ERROR!!!

Synonyms with the Same Name

If you own a private synonym and a public synonym exists with the same
name, and you use a synonym by its unqualified name, the private synonym
is used.

If you use DROP SYNONYM with a synonym, and there are multiple
synonyms with the same name, the private synonym is dropped. If you issue
the DROP SYNONYM statement again, the public synonym is dropped.

ANSI
7-72 IBM Informix Guide to SQL: Reference

Chaining Synonyms with IBM Informix OnLine and IBM Informix STAR
Chaining Synonyms with IBM Informix OnLine and
IBM Informix STAR
If you create a synonym for a table that is not in the current database, and the
base table for the synonym is dropped, the synonym stays in place. You can
then create a new synonym for the dropped table, with the name of the
dropped table as the synonym name, pointing to another external or remote
table. In this way, you can move a table to a new location and chain synonyms
together so that the original synonyms remain valid. (You can chain up to 16
synonyms in this manner.) ♦

The following steps chain two synonyms together for the customer table,
which will ultimately reside on the zoo database server. (Note that the
CREATE TABLE statements are not complete.)

1. In the stores5 database on the database server called training:
CREATE TABLE customer (lname CHAR(15)...)

2. On the database server called accntg:
CREATE SYNONYM cust FOR stores5@training.customer

3. On the database server called zoo:
CREATE TABLE customer (lname CHAR(15)...)

4. On the database server called training:
DROP TABLE customer
CREATE SYNONYM customer FOR stores5@zoo.customer

The synonym cust on the accntg database server now points to the customer
table on the zoo database server.

The following steps show an example of chaining two synonyms together
and changing the table to which a synonym points:

1. On the database server called training:
CREATE TABLE customer (lname CHAR(15)...)

2. On the database server called accntg:
CREATE SYNONYM cust FOR stores5@training.customer

3. On the database server called training:
DROP TABLE customer
CREATE TABLE customer (lastname CHAR(20)...)

The synonym cust on the accntng database server now points to a new
version of the customer table on the training database server.

OL

STAR
Syntax 7-73

References
References
In this manual, see the DROP SYNONYM statement.

In the IBM Informix Guide to SQL: Tutorial, see the discussion of synonyms.
7-74 IBM Informix Guide to SQL: Reference

CREATE TABLE
CREATE TABLE

Purpose
Use the CREATE TABLE statement to create a new table in the current
database, place data integrity constraints on its columns or on a combination
of its columns, designate the size of its initial and subsequent extents, and
specify how it is to be locked.

Syntax

CREATE TABLE

temp
TEMP
TABLE

WITH NO LOG

name
table

Table
Name

p. 7-434

Constraint
Definition
p. 7-84

+

Storage
Option
p. 7-92

()
,

Column
Definition
p. 7-80

,

()
,

,

Temp Table
Column

Definition
(Subset)
p. 7-91 Temp Table

Constraint
Definition
(Subset)
p. 7-25

,

,

temp table
name

is the name that you want to assign to the temporary table. You
cannot use the owner. convention.
Syntax 7-75

Usage
Usage
Table names must be unique in the same database. However, although
temporary table names must be different from existing table, view, or
synonym names in the current database, they need not be different from
other temporary table names used by other users.

In an ANSI-compliant database, the combination owner.tablename must be
unique within the database. ♦

By default, all users who have been granted Connect privilege to a database
have all access privileges (except Alter, Index, and References) to the new
table. To further restrict access, use the REVOKE statement to take all access
away from public (everyone on the system). Then, use the GRANT statement
to designate the access privileges you want to give to specific users.

In an ANSI-compliant database, no default table-level privileges exist. You
must grant these privileges explicitly. ♦

You cannot use a ROLLBACK WORK statement to undo a CREATE TABLE
statement. If you roll back a transaction that contains a CREATE TABLE
statement, the table remains and you do not receive an error message. ♦

Using the CREATE TABLE statement outside the CREATE SCHEMA statement
generates warnings if you use the -ansi flag or set DBANSIWARN. ♦

Using the CREATE TABLE statement generates warnings if you use the
-ansi flag or set DBANSIWARN. ♦

Defining Constraints
When you create a table, several elements must be defined. For example, the
table and columns within that table must have unique names. Also, every
table column must have at least a data type associated with it. You can also,
optionally, place several constraints on a given column. For example, you can
indicate that the column has a specific default value or that data entered into
the column must be checked to meet a specific data requirement.

ANSI

ANSI

SE

ISQL

DB

I4GL

ESQL
7-76 IBM Informix Guide to SQL: Reference

Defining Constraints
Putting a constraint on a column is similar to putting an index on a column
(using the CREATE INDEX statement). However, if you use constraints instead
of indexes, you also can implement data integrity constraints and turn
effective checking off and on. For information on data integrity constraints,
see the IBM Informix Guide to SQL: Tutorial. For information on effective
checking, see the SET CONSTRAINTS statement on page 7-289.

Tip: In a database without logging, the only constraint-checking mode available is
detached. Detached checking means that constraint checking is performed on a row-
by-row basis.

You can define constraints at either the column or table level. If you choose to
define constraints at the column level, you cannot have multiple-column
constraints. In other words, the constraint created at the column level only
can apply to a single column. If you choose to define constraints at the table
level, you can apply constraints to single or multiple columns. At either level,
single-column constraints are treated the same way.

Whenever you place a data restriction on a column, a constraint is created
automatically. You have the option of specifying a name for the constraint. If
you choose not to specify a name for the constraint, the database server
creates a default constraint name for you automatically.

Limits on Constraint Definitions

You can include up to 16 columns in a list of columns for a unique, primary
key, or referential constraint. The total length of all columns cannot exceed
255 bytes.

You can use up to 8 columns in an IBM Informix SE list of columns. The total
length of all columns cannot exceed 120 bytes. ♦

Adding or Dropping Constraints

Once you have used the CREATE TABLE statement to place constraints on a
column or set of columns, you must use the ALTER TABLE statement to add
or drop the constraint from the column or composite column list.

SE
Syntax 7-77

Defining Constraints
Enforcing Primary Key, Unique, and Referential Constraints

Unique constraints are implemented as an ascending index that allows only
unique entries. After one of these constraints is placed on a column, the
database server creates a unique index for the unique constraint.

Since constraints are enforced through indexes, you cannot create an index
(using the CREATE INDEX statement) for a column that is of the same type as
the constraint placed on that column. For example, if there is a unique
constraint on a column, you can create neither a unique index for that column
nor a duplicate ascending index. ♦

Primary key, unique, and referential constraints are implemented either as an
ascending index that allows only unique entries or an ascending index that
allows duplicates. When one of these constraints is placed on a column, the
database server performs the following functions:

� Creates a unique index for a unique or primary key constraint

� Creates a non-unique index for the columns specified in the refer-
ential constraint

However, if a constraint already was created on the same column or set of
columns, an index is not built. Instead, the index is shared by the constraints.
If the existing index is non-unique, it is upgraded if a unique or primary key
constraint is placed on that column.

Since these constraints are enforced through indexes, you cannot create an
index (using the CREATE INDEX statement) for a column that is of the same
type as the constraint placed on that column. For example, if there is a unique
constraint on a column, you can create neither an ascending unique index for
that column nor a duplicate ascending index. ♦

Constraint Names

A row is added to the sysindexes system catalog table for each new unique
constraint. The index name in the sysindexes system catalog table is created
with the following format:

[space]<tabid>_<constraint id>

where tabid and constraint id are from the systables and sysconstraints
system catalog tables, respectively.

I4GL

ISQL

DB

ESQL

I4GL

ISQL
7-78 IBM Informix Guide to SQL: Reference

Defining Constraints
The constraint name must be unique within the database. If you do not
specify a constraint name, the database server generates one for the
sysconstraints system catalog table using the following template:

<constraint type><tabid>_<constraint id>

where constraint type is the letter u (for unique constraint). If the name
conflicts with an existing identifier, the database server returns an error and
you must then supply a constraint name. ♦

A row is added to the sysindexes system catalog table for each new primary
key, unique, or referential constraint that does not share an index with an
existing constraint. The index name in the sysindexes system catalog table is
created with the following format:

[space]<tabid>_<constraint id>

where tabid and constraint id are from the systables and sysconstraints
system catalog tables, respectively.

The constraint name must be unique within the database. If you do not
specify a constraint name, the database server generates one for the
sysconstraints system catalog table using the following template:

<constraint type><tabid>_<constraint id>

where constraint type is the letter u for unique or primary key constraints, r
for referential constraints, or c for check constraints. If the name conflicts with
an existing identifier, the database server returns an error and you must then
supply a constraint name. ♦

DB

ESQL
Syntax 7-79

Column-Definition Option
Column-Definition Option

Use the column-definition portion of the CREATE TABLE statement to list the
name, data type, default values, and constraints of a single column, as well as
to indicate whether the column does not allow duplicate values.

column

NOT NULL Constraint
def (Subset)

p. 7-25

DEFAULT
Clause
p. 7-81

Data Type
p. 7-365

DB

ESQL

column is a valid identifier for columns. The column name must be
unique within a table, but you can use the same names in dif-
ferent tables in the same database.
7-80 IBM Informix Guide to SQL: Reference

Column-Definition Option
The DEFAULT Clause

The default value is inserted into the column when an explicit value is not
specified. If a default is not specified and the column allows nulls, the default
is NULL. If you designate NULL as the default value for a column, you cannot
use the keywords NOT NULL as part of the column definition.

You cannot designate default values for serial columns. If the column is of
type TEXT or BYTE, you only can designate nulls as the default value.

You can designate literal terms as default values. A literal term is a string of
character or numeric constant characters defined by you. To use a literal term
as a default value, follow these rules:

� Use integers with INTEGER, SMALLINT, DECIMAL, MONEY, FLOAT,
and SMALLFLOAT columns.

� Use decimals with DECIMAL, MONEY, FLOAT, and SMALLFLOAT
columns.

literal represents a literal default.

DEFAULT
Clause

literalDEFAULT

DATETIME
Field Qualifier

p. 7-368

USER
p. 7-377

SITENAME
p. 7-378

DBSERVERNAME
p. 7-378

TODAY
p. 7-379

NULL

CURRENT
p. 7-379

OL

DB

ESQL
Syntax 7-81

Column-Definition Option
� Use characters with CHAR, VARCHAR, and DATE columns.
Characters must be enclosed in quotation marks. Date literals must
be of the format specified by the DBDATE environment variable. If
DBDATE is not set, the format mm/dd/yyyy is assumed.

� Use literal INTERVAL values with INTERVAL columns. For infor-
mation on using a literal INTERVAL, refer to “Literal INTERVAL” on
page 7-419.

� Use literal DATETIME values with DATETIME columns. For more
information on using a literal DATETIME, refer to “Literal
DATETIME” on page 7-416.

You cannot designate NULL as a default value for a column that is part of a
primary key.

The following table indicates the data type requirements for columns that
specify the CURRENT, USER, TODAY, SITENAME, or DBSERVERNAME
functions as the default value.

The next example creates a table accounts. In accounts, the acc_type and
acc_descr columns have literal default values while acc_id defaults to the
user’s login name.

CREATE TABLE accounts (
acc_num INTEGER DEFAULT 0001,
acc_type CHAR(1) DEFAULT "A",
acc_descr CHAR(20) DEFAULT "New Account",
acc_id CHAR(8) DEFAULT USER)

♦

Function Name Data Type Requirement

CURRENT DATETIME column with matching qualifier

DBSERVERNAME CHAR or VARCHAR column at least 18 characters long

SITENAME CHAR or VARCHAR column at least 18 characters long

TODAY DATE column

USER CHAR column at least 8 characters long
7-82 IBM Informix Guide to SQL: Reference

Column-Definition Option
Specifying NOT NULL in a Column Definition

If you do not indicate a default value for a column, the default is null unless
you include the NOT NULL keywords after the data type of the column. In
this case, there is no default value for the column. The following example
creates the newitems table. In newitems, the column manu_code does not
have a default value nor does it allow nulls.

CREATE TABLE newitems (
newitem_num INTEGER,
manucode CHAR(3) NOT NULL,
promotype INTEGER,
descrip CHAR(20))

If you designate a column as NOT NULL (and no default value is specified),
you must enter a value into this column when you insert a row or update that
column in a row. If you do not enter a value, the database server returns an
error. See the Data Type segment on page 7-365 for more information.

Subset of Constraint-Definition Option

Unlike the table-level constraint-definition option, constraints at the column
level are limited to a single column. In other words, you cannot create a
unique multiple-column constraint. For more information on unique
constraints see the “The Constraint-Definition Option” on page 7-84. ♦

Unlike the table-level constraint-definition option, constraints at the column
level are limited to a single column. In other words, you cannot create check,
unique, primary, or foreign key multiple-column constraints. For more infor-
mation on the unique, primary key, and check constraints, see the “The
Constraint-Definition Option” on page 7-84.

UNIQUE

PRIMARY
KEY

CONSTRAINT
Name

p. 7-360

+

REFERENCES
Clause
p. 7-27

CHECK
Clause
p. 7-28

CONSTRAINT

DB
ESQL

I4GL

ISQL

DB

ESQL
Syntax 7-83

The Constraint-Definition Option
The following example creates a simple table with a unique and primary key
and names the two constraints created:

CREATE TABLE accounts (
acc_num INTEGER PRIMARY KEY CONSTRAINT num,
acc_code UNIQUE CONSTRAINT code,
acc_descr CHAR(30))

♦

Using Blob Data Types in Constraints

You cannot have a unique constraint on a BYTE or TEXT column. ♦

You cannot place a unique, primary key, or referential constraint on BYTE or
TEXT columns. However, you can check for null or non-null values by placing
a check constraint on a BYTE or TEXT column. ♦

The Constraint-Definition Option

The constraint-definition option allows you to create constraints for a single
column or a set of columns. You can include up to 16 columns in a list of
columns. The total length of all the columns cannot exceed 255 bytes.

You can use up to 8 columns in an IBM Informix SE list of columns The total
length of all the columns cannot exceed 120 bytes. ♦

I4GL

ISQL

DB

ESQL

UNIQUE

PRIMARY
KEY

column

,

)(

FOREIGN KEY REFERENCES
Clause
p. 7-27

CONSTRAINT
Name

p. 7-360

+

CHECK
Clause
p. 7-28

CONSTRAINTDB
ESQL

column

,

)(

column is the name of the column.

SE
7-84 IBM Informix Guide to SQL: Reference

The Constraint-Definition Option
Defining a Column as Unique

You can use the UNIQUE keyword to require that a single column or set of
columns accepts only unique data. You cannot insert duplicate values in a
column that has a unique constraint.

Each column named in a unique constraint must be a column in the table and
cannot appear in the constraint list more than once. The following example
creates a simple table that has a unique constraint on one of its columns:

CREATE TABLE accounts (a_name CHAR(12), a_code SERIAL,
UNIQUE (a_name) CONSTRAINT acc_name)

If you want to define the constraint at the column level instead, you simply
include the keywords UNIQUE and CONSTRAINT in the column definition, as
the following example shows:

CREATE TABLE accounts
(a_name CHAR(12) UNIQUE CONSTRAINT all_name, a_code SERIAL)

You cannot place a unique constraint on a BYTE or TEXT column.

Defining a Column as a Primary Key

A primary key is a column or set of columns that contains a non-null unique
value for each row in a table. A table can have only one primary key, and a
column that is defined as a primary key cannot also be defined as unique. In
the previous two examples, a unique constraint was placed on the column
a_name. The next example creates this column as the primary key for the
accounts table:

CREATE TABLE accounts
(a_name CHAR(12), a_code SERIAL, PRIMARY KEY (a_name))

You cannot place a primary key constraint on a BYTE or TEXT column. ♦

Defining a Column as a Foreign Key

A foreign key joins and establishes dependencies between tables. A foreign
key references a unique or primary key in a table. For every entry in the
foreign key columns, there must exist a matching entry in the unique or
primary key columns if all foreign key columns contain non-null values. You
cannot make BYTE or TEXT columns foreign keys. ♦

DB

ESQL

DB

ESQL
Syntax 7-85

The Constraint-Definition Option
The REFERENCES Clause

You can use the REFERENCES clause to reference a column, or set of columns.
If you are using the REFERENCES clause at the column level, you only can
reference a single column. ♦

Referenced and Referencing Column Requirements

In a referential relationship, the referenced column is a column or set of
columns within a table that uniquely identifies each row in the table. In other
words, the referenced column or set of columns must be part of a unique or
primary key constraint. If the referenced columns do not meet this criteria,
the database server returns an error.

Unlike a referenced column, the referencing column or set of columns can
contain null and duplicate values. However, every non-null value in the
referencing columns must match a value in the referenced columns. When a
column meets this criteria, it is called a foreign key.

The relationship between referenced and referencing columns is called a
parent-child relationship, where the parent is the referenced columns (or
primary key) and the child is the referencing columns (or foreign key). This
parent-child relationship is established through a referential constraint.

A referential constraint can be established between two tables or within the
same table. For example, you can have an employee table where the emp_no
column uniquely identifies every employee through an employee number.
The mgr_no column in that table contains the employee number of the
manager that manages that employee. In this case, mgr_no is the foreign key
(or child) that references emp_no, the primary key (or parent).

column

,

)(

Table
Name

p. 7-434

REFERENCES

REFERENCES
Clause

DB

ESQL

DB

ESQL
7-86 IBM Informix Guide to SQL: Reference

The Constraint-Definition Option
A referential constraint must have a one-to-one relationship between refer-
encing and referenced columns. In other words, if the primary key is a set of
columns, then the foreign key also must be a set a columns that corresponds
to the primary key. The following example creates two tables. The first table
has a multiple-column primary key and the second table has a referential
constraint that references this key.

CREATE TABLE accounts (
acc_num INTEGER,
acc_type INTEGER,
acc_descr CHAR(20),
PRIMARY KEY (acc_num, acc_type))

CREATE TABLE sub_accounts (
sub_acc INTEGER PRIMARY KEY,
ref_num INTEGER NOT NULL,
ref_type INTEGER NOT NULL,
sub_descr CHAR(20),
FOREIGN KEY (ref_num, ref_type) REFERENCES accounts

(acc_num, acc_type))

In this example, the foreign key of the sub_accounts table, ref_num and
ref_type, references the primary key, acc_num and acc_type, in the accounts
table. If, during an insert, you tried to insert a row into the sub_accounts
table whose value for ref_num and ref_type did not exactly correspond to
the values for acc_num and acc_type in an existing row in the accounts table,
the database server returns an error. Likewise, if you attempt to update
sub_accounts with values for ref_num and ref_type that do not correspond
to an equivalent set of values in acc_num and acc_type (from the accounts
table), the database server returns an error.

If you are referencing a primary key in another table, you do not have to state
the primary key columns in that table explicitly. Referenced tables that do not
specify the columns to be referenced default to the primary key columns. The
references section of the previous example can be rewritten as follows:

...
FOREIGN KEY (ref_num, ref_type) REFERENCES accounts

...

Since acc_num and acc_type is the primary key of the accounts table and no
other columns are specified, the foreign key, ref_num and ref_type, refer-
ences those columns. ♦
Syntax 7-87

The Constraint-Definition Option
Data Type Restrictions

The data types of the referencing and referenced columns must be identical
unless the column is of type SERIAL. In this case, the referenced column is
type SERIAL, while the referencing column is type INTEGER. In the previous
example, there is a one-to-one correspondence between the data types of the
primary and foreign keys. If any one of these columns was defined as type
SERIAL, the statement would still be successfully executed.

You cannot place a referential constraint on a BYTE or TEXT column. ♦

Locking Implications

When a referential constraint is created, an exclusive lock is placed on the
referenced table. The lock is released when the CREATE TABLE statement is
done. If you are creating a table in a database with transactions and you are
using transactions, the lock is released at the end of the transaction. ♦

Using REFERENCES in a Column Definition

When you use the references option at the column-definition level, you only
can reference a single column. The following example creates two tables,
accounts and sub_accounts. A referential constraint is created between the
foreign key, ref_num, in the sub_accounts table and the primary key,
acc_num, in the accounts table.

CREATE TABLE accounts (
acc_num INTEGER PRIMARY KEY,
acc_type INTEGER,
acc_descr CHAR(20))

CREATE TABLE sub_accounts (
sub_acc INTEGER PRIMARY KEY,
ref_num INTEGER REFERENCES accounts (acc_num),
sub_descr CHAR(20))

Note that ref_num is not explicitly called a foreign key in the column
definition syntax. At the column level, the foreign key designation is applied
automatically.

DB

ESQL

DB

ESQL

DB

ESQL
7-88 IBM Informix Guide to SQL: Reference

The Constraint-Definition Option
If you are referencing the primary key in another table, you do not need to
specify the referenced table column. In the preceding example, you simply
can reference the accounts table without specifying a column. Since acc_num
is the primary key of the accounts table, it becomes, by default, the referenced
column. ♦

The CHECK Clause

Check constraints allow you to designate conditions that must be met before
data can be assigned to a column during an INSERT or UPDATE statement. If
a row evaluates to false for any of the check constraints defined on a table
during an insert or update, the database server returns an error.

Check constraints are defined using search conditions. The search condition
cannot contain subqueries; aggregates; host variables; rowids; the CURRENT,
USER, SITENAME, DBSERVERNAME, or TODAY functions; or stored procedure
calls. ♦

Defining Check Constraints at the Column Level

If you define a check constraint at the column level, the only column that the
check constraint can check against is the column itself. In other words, the
check constraint cannot depend upon values in other columns of the table.
For example, as the next statement shows, the table acct_chk has two
columns with check constraints:

CREATE TABLE acct_chk (
chk_id SERIAL PRIMARY KEY,
debit INTEGER REFERENCES accounts (acc_num),
debit_amt MONEY CHECK (debit_amt BETWEEN 0 AND 99999),
credit INTEGER REFERENCES accounts (acc_num),
credit_amt MONEY CHECK (credit_amt BETWEEN 0 AND 99999))

Both debit_amt and credit_amt are columns of type MONEY whose values
must be between 0 and 99999. If, however, you wanted to test that both
columns had the same value you would not be able to create the check
constraint at the column level. To create a constraint that checks values in
more than one column, you must define the constraint at the table level. ♦

CHECK
Clause

()Condition
p. 7-345

CHECK

DB

ESQL

DB

ESQL
Syntax 7-89

TEMP TABLE Option
Defining Check Constraints at the Table Level

When a check constraint is defined at the table level, each column in the
search condition must be a column in that table. You cannot create a check
constraint for columns across tables. The next example builds the same table
and columns as the previous example. However, the check constraint now
spans two columns in the table.

CREATE TABLE acct_chk (
chk_id SERIAL PRIMARY KEY,
debit INTEGER REFERENCES accounts (acc_num),
debit_amt MONEY,
credit INTEGER REFERENCES accounts (acc_num),
credit_amt MONEY,
CHECK (debit_amt = credit_amt))

In this example, the debit_amt and credit_amt columns must equal each
other or the insert or update fails. ♦

TEMP TABLE Option
Temporary tables last only for the duration of the program. If your database
uses transactions and the temporary table was not created with the WITH NO
LOG keywords, the temporary table is removed when you close your
database.

A temporary table exists until you exit your application. If your database
uses transactions and the temporary table was not created with the WITH NO
LOG keywords, the temporary table is removed when you close your
database.

The INFO statement and the Info Menu Option cannot be used with
temporary tables. ♦

Temporary tables are created on your local database server. (That is, in your
current directory, if any, or in the database server process of your local
machine.) If you create a temporary table and then close the database, the
temporary table is deleted. However, if your current database is on your local
database server and you close this database and open a remote database,
your local database server temporary table is unavailable until you close the
remote database and then reopen a local database. ♦

DB

ESQL

DB

ISQL

STAR

INET
7-90 IBM Informix Guide to SQL: Reference

TEMP TABLE Option
If you have Connect privilege on a database, you can create temporary tables.
Once a temporary table is created, you can build indexes on the table.
However, you are the only user who can see the temporary table.

You cannot build a FORM4GL or PERFORM screen on a temporary table.

Subset of Column-Definition Option

You cannot place referential constraints on columns in a temporary table. In
other words, temporary columns cannot be referenced or referencing
columns. The following constraint-definition keywords cannot be used when
you are creating a temporary table:

� REFERENCES

� CONSTRAINT

For more information on column constraint-definition options, refer to the
“Subset of Constraint-Definition Option” on page 7-25. ♦

Subset of Constraint-Definition Option

You cannot place referential constraints on columns in a temporary table. In
other words, temporary columns cannot be referenced or referencing
columns. The following table constraint-definition keywords cannot be used
when you are creating a temporary table:

� FOREIGN KEY

� REFERENCES

� CONSTRAINT

For more information on table-level constraint-definition options, refer to
“The Constraint-Definition Option” on page 7-84. ♦

WITH NO LOG Option for Temporary Tables

If you use the WITH NO LOG keywords in a CREATE TABLE statement and the
database does not use logging, the WITH NO LOG option is ignored.

Once you turn off the logging on a temporary table, you cannot turn it back
on; a temporary table is, therefore, always logged or never logged.

I4GL

ISQL

DB

ESQL

DB

ESQL
Syntax 7-91

Storage Option
The following example shows how to prevent logging of temporary tables in
a database that uses logging:

CREATE TEMP TABLE tab2 (fname CHAR(15), lname CHAR(15))
WITH NO LOG

Storage Option

The storage option allows you to specify where the database table is stored
and the locking granularity for the table.

The IN dbspace Clause

The dbspace that you specify must already exist and it must be on your local
IBM Informix OnLine system. If you do not specify a dbspace, the default is
the dbspace in which the current database resides.

The IN dbspace clause allows you to isolate a table if you need to do so. For
example, if the stores5 database is in the stockdata dbspace but you want the
customer data to be in a separate dbspace called custdata, use the following
statements.

Storage
Option

IN "pathname"

IN dbspace

SE

OL

LOCK MODE
p. 7-95

Extent Option
p. 7-94

dbspace is the name of the dbspace in which the database table is to be
stored.

pathname specifies the full operating system path and filename in which
you want to store the database table, with no extension to the
filename.
7-92 IBM Informix Guide to SQL: Reference

Storage Option
Figure 7-6
Isolating a table in a separate dbspace

CREATE DATABASE stores5 IN stockdata

CREATE TABLE customer
(
customer_num SERIAL(101),
fname CHAR(15),
lname CHAR(15),
company CHAR(20),
address1 CHAR(20),
address2 CHAR(20),
city CHAR(15),
state CHAR(2),
zipcode CHAR(5),
phone CHAR(18)
)

 IN custdata EXTENT SIZE 16

 CREATE TABLE orders
(
order_num SERIAL(1001),
order_date DATE,
customer_num INTEGER,
ship_instruct CHAR(40),
backlog CHAR(1),
po_num CHAR(10),
ship_date DATE,
ship_weight DECIMAL(8,2),
ship_charge MONEY(6),
paid_date DATE
)

EXTENT SIZE 24 NEXT SIZE 12
.
.
.

By default, the orders table is with the rest of the database, in stockdata.

If your table has one or more blob columns, you can store the blob data with
the table data or in a separate blobspace. See “Data Type” on page 7-365 for
more information. The following example shows how blobspaces and
dbspaces are specified.
Syntax 7-93

Storage Option
This statement creates the resume table. The data for the table is stored in the
employ dbspace. The data in the resume column is stored with the table, but
the data associated with the photo column is stored in a blobspace named
photo_space.

CREATE TABLE resume
(
fname CHAR(15),
lname CHAR(15),
phone CHAR(18),
recd_date DATETIME YEAR TO HOUR,
contact_date DATETIME YEAR TO HOUR,
comments VARCHAR(250, 100),
resume TEXT IN TABLE,
photo BYTE IN photo_space
)

IN employ

Extent Option

See the IBM Informix Guide to SQL: Tutorial for a discussion of how to calculate
extent sizes.

The minimum size of an extent is four pages. If you specify an extent size (or
next extent size) smaller than the minimum size, the database server returns
an error.

first kbytes is the length in kilobytes of the first extent for the table. The
default size is eight kilobytes.

next kbytes is the length in kilobytes for the subsequent extents. The
default size is eight kilobytes.

NEXT SIZEfirst
kbytes

next
kbytes

EXTENT SIZE
7-94 IBM Informix Guide to SQL: Reference

Storage Option
The following example specifies a first extent of 20 kilobytes and allows the
rest of the extents to use the default size:

CREATE TABLE emp_info
(
f_name CHAR(20),
l_name CHAR(20),
position CHAR(20),
start_date DATETIME YEAR TO DAY,
comments VARCHAR(255)
)

EXTENT SIZE 20

Revising Extent Sizes for Unloaded Tables

You can revise the CREATE TABLE statements in generated schema files to
revise the extent and next extent sizes of unloaded tables. See the
IBM Informix OnLine Administrator’s Guide for more information.

LOCK MODE Clause

The default locking granularity is a page.

Row-level locking provides the highest level of concurrency. If you are using
many rows at one time, the lock-management overhead can become signif-
icant. You also can exceed the maximum number of locks available,
depending on the configuration of your OnLine system.

Page locking allows you to obtain and release one lock on a whole page of
rows. Page locking is especially useful when you know that the rows are
grouped into pages in the same order that you are using to process all the
rows. For example, if you are processing the contents of a table in the same
order as its cluster index, page locking is especially appropriate.

You can change the lock mode of an existing table with the ALTER TABLE
statement.

LOCK MODE

PAGE

ROW
Syntax 7-95

References
The IN pathname Option

The pathname in an IN clause can specify any valid directory and is not
restricted to the directory that contains the current database. This enables a
database to include tables located on another host machine on the network.

In UNIX, the pathname cannot be longer than 64 characters and must be within
quotes ("). A pathname is of the following form:

[/directory-name/...]filename

If the pathname in an IN clause specifies a filename that is different from the
table name, always use the table name (rather than the filename) to refer to the
table in subsequent SQL statements.

The creator of the table must have search permissions on all directories in the
path and write permissions on the directory that is to contain the files. ♦

References
In this manual, see the following statements: ALTER TABLE, CREATE INDEX,
CREATE DATABASE, and DROP TABLE. Also see the Data Type segment on
page 7-365.

In the IBM Informix Guide to SQL: Tutorial, see the discussions of data integrity,
creating a table, and extent sizing.

SE
7-96 IBM Informix Guide to SQL: Reference

CREATE VIEW
CREATE VIEW

Purpose
Use the CREATE VIEW statement to create a new view based upon existing
tables and views in the database.

Syntax

Usage
Except for the statements in the following list, you can use a view in any SQL
statement where you can use a table:

CREATE VIEW AS

()

,
View

 Name
p. 7-438

SELECT
(Subset)
p. 7-98

WITH CHECK
OPTION

column
name

column name is an identifier that names a column of view name. The number
of columns that you name must match the number of columns
that you select.

ALTER INDEX DROP TABLE

ALTER TABLE LOCK TABLE

CREATE INDEX RECOVER TABLE

CREATE TABLE RENAME TABLE

DROP INDEX UNLOCK TABLE
Syntax 7-97

Subset of a SELECT Allowed in CREATE VIEW
The view behaves like a table with the name view name and consists of the set
of rows and columns returned by the SELECT statement each time the SELECT
statement is executed by using the view. The view reflects changes to the
underlying tables with one exception. If the view is defined with a SELECT *
clause, it only has the columns in the underlying tables at the time the view
is created. New columns added subsequently to the underlying tables using
the ALTER TABLE statement do not appear in the view.

Data types of the columns of the view are inherited from the tables from
which they come. Data types of virtual columns are determined from the
nature of the expression.

You must have Select privilege on all columns from which the view is derived
to create a view.

The SELECT statement is stored in the sysviews system catalog table. When
you subsequently refer to a view in another statement, the database server
performs the defining SELECT statement while it executes the new statement.

You cannot use a ROLLBACK WORK statement to undo a CREATE VIEW
statement. If you roll back a transaction that contains a CREATE VIEW
statement, the view remains and you do not receive an error message. ♦

If you create a view outside the CREATE SCHEMA statement, you receive
warnings if you use the -ansi flag or set DBANSIWARN. ♦

Using the CREATE VIEW statement generates warnings if you use the -ansi
flag or set DBANSIWARN. ♦

Subset of a SELECT Allowed in CREATE VIEW
The SELECT statement is a statement of the form described on page 7-258,
except that it cannot have an ORDER BY clause, INTO TEMP clause, or UNION
operator. Do not use display labels in the select list; display labels are inter-
preted as column names.

SE

DB

ISQL

I4GL

ESQL
7-98 IBM Informix Guide to SQL: Reference

Naming View Columns
Naming View Columns
If you do not specify a list of columns for view name, the view inherits the
column names of the underlying tables. In the following example, the view
herostock has the same column names as in the SELECT statement:

CREATE VIEW herostock AS
SELECT stock_num, description, unit_price, unit, unit_descr

FROM stock WHERE manu_code = "HRO"

If the SELECT statement returns an expression, the corresponding column in
the view is called a virtual column. You must provide a name for virtual
columns. You also must provide a column name in cases where the selected
columns have duplicate column names when the table prefixes are stripped.
For example, when both orders.order_num and items.order_num appear in
the SELECT statement, you must provide two separate column names to label
them in the CREATE VIEW statement, as shown in the following example:

CREATE VIEW someorders (custnum,ocustnum,newprice) AS
SELECT orders.order_num,items.order_num,

items.total_price*1.5
FROM orders, items
WHERE orders.order_num = items.order_num
AND items.total_price > 100.00

If you must provide names for some of the columns in a view, then you must
provide names for all the columns; that is, the column list must contain an
entry for every column appearing in the view.

Using a View in the SELECT Statement
You can define a view in terms of other views, except that you must abide by
the restrictions on queries listed in the IBM Informix Guide to SQL: Tutorial.
Syntax 7-99

WITH CHECK OPTION Keywords
WITH CHECK OPTION Keywords
The WITH CHECK OPTION keywords instruct the database server to ensure
that all modifications to the underlying tables made through the view satisfy
the definition of the view.

The following example creates a view named palo_alto that uses all of the
information in the customer table for customers in the city of Palo Alto. The
database server checks any modifications made to customer through
palo_alto because the WITH CHECK OPTION is specified.

CREATE VIEW palo_alto AS
SELECT * FROM customer

WHERE city = "Palo Alto"
WITH CHECK OPTION

Updating through Views
If a view is built on a single table, the view is said to be updatable if the SELECT
statement that defined it did not contain any of the following items:

� Columns in the select list that are aggregate values

� Columns in the select list that use the UNIQUE or DISTINCT keyword

� A GROUP BY clause

� A derived value for a column, created using an arithmetical
expression

That is, in an updatable view, the values in the underlying table can be
updated by inserting values into the view.

References
In this manual, see the following statements: CREATE TABLE, DROP VIEW,
GRANT, and SELECT.

In the IBM Informix Guide to SQL: Tutorial, see the discussions of views and
security in Chapter 11.
7-100 IBM Informix Guide to SQL: Reference

DATABASE
DATABASE

Purpose
Use the DATABASE statement to select an accessible database as the current
database.

Syntax

Usage
You can use the DATABASE statement to select any database on your
IBM Informix OnLine database server. You can select a database on another
OnLine database server by specifying the name of the database server with
the database name.

The DATABASE statement closes any other current database, unless the
current database is on another database server. In that case, you receive an
error because you must explicitly close a database on another database
server.

You cannot include the DATABASE statement in a multistatement PREPARE
operation.

You can determine the type of database a user selects by checking the
warning flag after a DATABASE statement in the SQLCA structure. See
Chapter 5 of this manual for more information about the warning portion of
the SQLCA structure.

DATABASE

EXCLUSIVE

Database
Name

p. 7-362

+

I4GL

ESQL
Syntax 7-101

Usage
If the database has transactions, the second element of the sqlcawarn
structure contains a W after the DATABASE statement executes. See the
following chart for the name of the variable used for each product.

If the database is ANSI-compliant, the third element of the sqlcawarn
structure contains a W after the DATABASE statement executes. See the
following chart for the name of the variable used for each product.

If the database is an IBM Informix OnLine database, the fourth element of the
sqlcawarn structure contains a W after the DATABASE statement executes. See
the following chart for the name of the variable used for each product.

Only the databases stored in your current directory, or in a directory specified
in your DBPATH environment variable, are recognized. ♦

If you want to specify a database that does not reside in your current
directory or in a directory specified by the DBPATH environment variable,
you must follow the DATABASE keyword with a program or host variable
that evaluates to the full pathname of the database (excluding the .dbs
extension). ♦

4GL ESQL/C ESQL/COBOL

SQLCA.SQLAWARN[2] sqlca.sqlwarn.sqlwarn1 SQLWARN1 OF SQLWARN
OF SQLCA

♦

4GL ESQL/C ESQL/COBOL

SQLCA.SQLAWARN[3] sqlca.sqlwarn.sqlwarn2 SQLWARN2 OF SQLWARN
OF SQLCA

♦

4GL ESQL/C ESQL/COBOL

SQLCA.SQLAWARN[4] sqlca.sqlwarn.sqlwarn3 SQLWARN3 OF SQLWARN
OF SQLCA

♦

I4GL

ESQL

ANSI

I4GL

ESQL

SE

SE

I4GL

ESQL
7-102 IBM Informix Guide to SQL: Reference

EXCLUSIVE Keyword
The DATABASE statement can serve two purposes—one procedural and the
other nonprocedural. The DATABASE statement makes the named database
the current database (procedural), and tells the compiler where to find infor-
mation about variables defined like (using the LIKE keyword) columns in a
table (nonprocedural).

To serve the nonprocedural purpose, the DATABASE statement must occur
outside any routine and precede the GLOBALS statements when you use
indirect data typing with the LIKE clause. The database name must be
expressed explicitly and not given as a program variable. You cannot use the
EXCLUSIVE keyword in this context. If you use the DATABASE statement in
this nonprocedural way, 4GL begins the main program block with database
name as the current database.

If you close one database and open another in a program, you cannot define
variables like columns in the second database.

If you do not have global variables defined like database columns, but still
want to interact with a database, you can use the DATABASE statement in a
purely procedural way. In this case, the DATABASE statement must occur
within a function or the MAIN program block, and must follow any DEFINE
statements within the function. Also in this case, database name can be a
program variable, and you can use the EXCLUSIVE keyword. ♦

EXCLUSIVE Keyword
The EXCLUSIVE keyword opens the database in exclusive mode and prevents
access by anyone but the current user. To allow others access to the database,
you must execute the CLOSE DATABASE statement and then reopen the
database without the EXCLUSIVE keyword.

You cannot use the EXCLUSIVE keyword if you use the DATABASE statement
outside a function or the MAIN program block. ♦

The following statement opens the stores5 database on the training database
server in exclusive mode:

DATABASE stores5@training EXCLUSIVE

If another user has the requested database open already, exclusive access is
denied, an error is returned, and no database is opened.

I4GL

I4GL
Syntax 7-103

References
References
In this manual, see the following statement: CLOSE DATABASE.

In the IBM Informix Guide to SQL: Tutorial, see the discussions of database
design and implementing the data model.
7-104 IBM Informix Guide to SQL: Reference

DEALLOCATE DESCRIPTOR
DEALLOCATE DESCRIPTOR

Purpose
Use the DEALLOCATE DESCRIPTOR statement to free a system descriptor area
that was previously allocated for a specified descriptor or descriptor variable.

Syntax

Usage
The DEALLOCATE DESCRIPTOR statement frees all the memory associated
with the system descriptor area identified by descriptor or descriptor variable.
All the value descriptors (including memory for data value in the value
descriptors) also are freed.

A descriptor or descriptor variable can be reused after it is deallocated. Deallo-
cation takes place automatically at the end of the program.

Deallocating a nonexistent descriptor or descriptor variable results in an error.

You cannot use the DEALLOCATE DESCRIPTOR statement to deallocate an
sqlda structure. You can use it only to free the memory allocated for a system
descriptor area. ♦

descriptor is a string that identifies the system descriptor area that was
allocated with the ALLOCATE DESCRIPTOR statement.

descriptor
variable

is an embedded variable name that identifies the system
descriptor area that was allocated with the ALLOCATE
DESCRIPTOR statement.

descriptorESQL DEALLOCATE DESCRIPTOR

descriptor
variable

" "

E/C
Syntax 7-105

References
Following are examples of the DEALLOCATE DESCRIPTOR statement for three
programming languages. In each pair, the first example shows an embedded
variable name and the second example shows a quoted string that identifies
the allocated system descriptor area.

Figure 7-7
Sample DEALLOCATE DESCRIPTOR statements in IBM Informix ESQL/C

$deallocate descriptor $descname;

$deallocate descriptor "desc1";

Figure 7-8
Sample DEALLOCATE DESCRIPTOR statements in IBM Informix ESQL/COBOL

EXEC SQL DEALLOCATE DESCRIPTOR :DESCNAME END-EXEC

EXEC SQL DEALLOCATE DESCRIPTOR "DESC1" END-EXEC

References
In this manual, see the following statements: ALLOCATE DESCRIPTOR,
DECLARE, DESCRIBE, EXECUTE, FETCH, GET DESCRIPTOR, OPEN, PREPARE,
PUT, and SET DESCRIPTOR.

In the IBM Informix Guide to SQL: Tutorial, see the discussion of dynamic SQL.
7-106 IBM Informix Guide to SQL: Reference

DECLARE
DECLARE

Purpose
Use the DECLARE statement to define a cursor that represents the active set
of rows specified by a SELECT or INSERT statement.

Syntax

,

INSERT
Statement
(Subset)
p. 7-120

SELECT
Statement
p. 7-258

statement
id

FOR

+

+

+

+

WITH
HOLD

FOR

columnOF

SELECT
Statement
(Subset)
p. 7-114

I4GL
ESQL

cursor
id

statement id
variable

DECLARE

ESQL

WITH
HOLD

SCROLL
CURSOR

CURSOR

+

ESQL
+

cursor
variable

EXECUTE
PROCEDURE

Statement
p. 7-150

FOR
UPDATE

column is a column that you can update through the cursor.

cursor id is the identifier of the cursor in other statements. The cursor id
must conform to the same rules as any identifier, as described
in the Identifier segment on page 7-399.
Syntax 7-107

Usage
Usage
The DECLARE statement associates the cursor with a SELECT, INSERT, or
EXECUTE PROCEDURE statement, or with the statement identifier (statement
id or id variable) of a prepared statement.

The DECLARE statement assigns an identifier to the cursor, specifies its uses,
and directs the preprocessor to allocate storage to hold the cursor.

Used with a SELECT statement, the cursor is a data structure that represents
a specific location within the active set of rows that the SELECT statement
retrieved. You associate a cursor with an INSERT statement if you want to add
multiple rows to the database in an INSERT operation. Used with an INSERT
statement, the cursor represents the rows that the INSERT statement is to add
to the database.

The DECLARE statement must precede any other statement that refers to the
cursor during the execution of the program

The sum of the number of open cursors and the number of prepared state-
ments that you can have at one time, in one process, is limited by the amount
of free memory available in the system. Use FREE statement id or FREE
statement id variable to release the resources held by a prepared statement; use
FREE cursor id or FREE cursor variable to release resources held by a cursor.

A program can consist of one or more source code files. By default, the scope
of a cursor is global to a program. This means that a cursor declared in one
file can be referenced from another file.

cursor variable is an embedded variable name that identifies the cursor in
other statements.The cursor variable must conform to the same
rules as any identifier, as described in the Identifier segment on
page 7-399.

statement id is the identifier for a data structure that represents a prepared
statement (see the PREPARE statement on page 7-218).

statement id
variable

is an embedded variable name that identifies a data structure
that represents a prepared statement (see the PREPARE state-
ment on page 7-218).
7-108 IBM Informix Guide to SQL: Reference

Usage
In a multiple file program, if you want to limit the scope of cursors to the files
in which they are declared, you must preprocess all of the files with the -local
command line option. See your ESQL product manual for more information,
restrictions, and performance issues when preprocessing with the -local
option.

A variable used in place of the cursor name or statement identifier must be of
the CHARACTER data type. In C, it must be defined as $char. ♦

A variable used in place of the cursor name or statement identifier must be of
the CHARACTER data type. In COBOL, such variables must be declared as a
standard CHARACTER type. ♦

You can declare multiple cursors using a single statement identifier. For
example, the following IBM Informix ESQL/C example does not return an
error.

Figure 7-9
Declaring multiple cursors in IBM Informix ESQL/C

$PREPARE pid FROM "SELECT * FROM customer";
$DECLARE x CURSOR FOR pid;
$DECLARE y SCROLL CURSOR FOR pid;
$DECLARE z CURSOR WITH HOLD FOR pid;

If you include the -ansi compilation flag (or DBANSIWARN is set), warnings
are generated for statements that use dynamic cursor names or dynamic
statement id names. Some error checking performed in the compile phase
prior to Version 5.0 is now done at run time. The typical checks are as follows:

� Illegal use of cursors (that is, normal cursors used as scroll cursors)

� Use of undeclared cursors

� Bad cursor or statement names (empty)

Checks for multiple declarations of a cursor of the same name are performed
at compile time only if the cursor or statement is an identifier. For example,
code such as the first example that follows results in a compile error, whereas
the code in the second example does not.

Figure 7-10
Multiple cursor declaration that results in a compile error

$DECLARE x CURSOR FOR SELECT * FROM customer;
. . .
$DECLARE x CURSOR FOR SELECT * FROM customer; -- error

E/C

E/CO

ESQL
Syntax 7-109

Overview of Cursor Types
Figure 7-11
Multiple cursor declaration that does not result in a compile error

$DECLARE x CURSOR FOR SELECT * FROM customer;
. . .
strcpy(s, "x");
$DECLARE $s CURSOR FOR SELECT * FROM customer;
♦

Overview of Cursor Types
Functionally, a cursor can be associated with a SELECT statement (a select
cursor) or an INSERT statement (an insert cursor). You can use a select cursor
to update or delete rows; then it is called an update cursor.

A cursor also can be associated with a statement identifier, enabling you to
use a cursor with INSERT or SELECT statements that are prepared dynami-
cally, and to use different statements with the same cursor at different times.
In this case, the type of cursor depends on the statement that is prepared at
the time the cursor is opened (see the OPEN statement on page 7-207).

Select Cursor

A select cursor enables you to scan multiple rows of data, moving data row
by row into a set of receiving variables, as follows:

1. Use a DECLARE statement to define a cursor for the SELECT
statement.

2. Open the cursor with the OPEN statement. The database server
processes the query to the point of locating or constructing the first
row of the active set.

3. Retrieve successive rows of data with the FETCH statement.

4. Close the cursor with the CLOSE statement when the active set is no
longer needed.
7-110 IBM Informix Guide to SQL: Reference

Cursor Characteristics
Update Cursor

An update cursor is declared using the FOR UPDATE keywords. Using the
update cursor, you can modify (update or delete) the current row.

In an ANSI-compliant database, you can update or delete data using a select
cursor, as long as it follows the restrictions described on page 7-115. You do
not need to use the FOR UPDATE keywords when you declare the cursor. ♦

Insert Cursor

An insert cursor increases processing efficiency (compared to embedding the
INSERT statement directly). The insert cursor allows bulk insert data to be
buffered in memory and written to disk when the buffer is full. This process
reduces communication between program and database server and increases
the speed of the insertions.

Cursor Characteristics
Structurally, you can declare a cursor as a sequential cursor (the default
condition), a scroll cursor (using the SCROLL keyword), or a hold cursor (using
the WITH HOLD keywords). These structural characteristics are explained in
the sections that follow.

Sequential Cursor

If you use only the CURSOR keyword in a DECLARE statement, you create a
sequential cursor, which can fetch only the next row in sequence from the
active set. The sequential cursor only can read through the active set once
each time it is opened. If you are using a sequential cursor, on each FETCH,
the database server returns the contents of the current row and locates the
next row in the active set.

The following IBM Informix ESQL/C example creates a sequential cursor.

Figure 7-12
Creating a sequential cursor in an IBM Informix ESQL/C program

$DECLARE s_cur CURSOR FOR
SELECT fname, lname INTO $st_fname, $st_lname

FROM orders WHERE customer_num = 114;

ANSI
Syntax 7-111

Cursor Characteristics
Scroll Cursor

The SCROLL keyword creates a scroll cursor, which you can use to fetch rows
of the active set in any sequence. The database server implements a scroll
cursor by creating a temporary table to hold the active set. With the active set
retained as a table, you can fetch the first, last, or any intermediate rows, and
fetch rows repeatedly without having to close and reopen the cursor. These
abilities are discussed under the FETCH statement (see page 7-153).

The database server retains the active set for a scroll cursor until the cursor is
closed. On a multiuser system, the rows in the tables from which the active-
set rows were derived might change after a copy is made in the temporary
table. If you use a scroll cursor within a transaction, you can prevent copied
rows from changing either by setting the isolation level to Repeatable Read
(available only with IBM Informix OnLine) or by locking the entire table in
share mode during the transaction. (See the SET ISOLATION statement on
page 7-307 and the LOCK TABLE statement on page 7-204.)

You cannot associate a scroll cursor with an INSERT statement and you cannot
declare a scroll cursor with the FOR UPDATE keywords.

The following example creates a scroll cursor.

Figure 7-13
Creating a scroll cursor

DECLARE sc_cur SCROLL CURSOR FOR
SELECT * FROM orders

Hold Cursor

If you use the WITH HOLD keywords, you create a hold cursor. A hold cursor
remains open past the end of a transaction. You can declare both sequential
and scroll cursors with the WITH HOLD keywords. The following example
creates a hold cursor.

Figure 7-14
Creating a hold cursor

DECLARE hld_cur CURSOR WITH HOLD FOR
SELECT customer_num, lname, city FROM customer
7-112 IBM Informix Guide to SQL: Reference

Cursor Characteristics
A hold cursor allows uninterrupted access to a set of rows across multiple
transactions. Ordinarily, all cursors are closed at the end of a transaction; a
hold cursor is not closed. You can use a hold cursor as shown in the following
fragment of 4GL code. The code fragment uses a hold cursor as a master cursor
to scan one set of records and a sequential cursor as a detail cursor to point to
records that are located in a different table. The records that are scanned by
the master cursor are the basis for updating the records pointed to by the
detail cursor. In this example, the COMMIT WORK statement at the end of
each iteration of the first WHILE loop leaves the hold cursor c_master open
but closes the sequential cursor c_detail and releases all locks. This technique
minimizes the resources that the database server must devote to locks and
unfinished transactions and it gives other users immediate access to updated
rows.

Figure 7-15
Using a hold cursor in an IBM Informix 4GL program

DEFINE p_custnum INTEGER, p_orddate DATE, save_status INTEGER

PREPARE st_1 FROM
"SELECT order_date ",

"FROM orders WHERE customer_num = ? FOR UPDATE"
DECLARE c_detail CURSOR FOR st_1

DECLARE c_master CURSOR WITH HOLD FOR
SELECT customer_num

FROM customer WHERE city = "Pittsburgh"

OPEN c_master
IF status = 0 { the open worked } THEN

FETCH c_master INTO p_custnum { discover first customer }
END IF
WHILE status = 0 { while no errors and not end of pittsburgh customers }

BEGIN WORK { start transaction for customer p_custnum }
OPEN c_detail USING p_custnum
IF status = 0 { detail open succeeded } THEN

FETCH c_detail INTO p_orddate { get first order }
END IF
WHILE status = 0 { while no errors and not end of orders }

UPDATE orders SET order_date = "08/15/90"
WHERE CURRENT OF c_detail

IF status = 0 { update was ok } THEN
FETCH c_detail INTO p_orddate { next order }

END IF
END WHILE
IF status = NOTFOUND { correctly updated all found orders } THEN

COMMIT WORK { make updates permanent, set status }
ELSE { some failure in an update }

LET save_status = status { save error for loop control }
ROLLBACK WORK
LET status = save_status { force loop to end }

END IF
Syntax 7-113

Declaring an Update Cursor
IF status = 0 { all updates, and the commit, worked ok } THEN
FETCH c_master INTO p_custnum { next customer? }

END IF
END WHILE
CLOSE c_master

To close a hold cursor, use either the CLOSE statement to close the cursor
explicitly or the CLOSE DATABASE statement to close it implicitly. (CLOSE
DATABASE closes all cursors.)

Declaring an Update Cursor
The FOR UPDATE keywords notify the database server that updating is
possible, causing it to use more stringent locking than with a select cursor.
You are not allowed to modify data through a cursor without this clause. You
can specify particular columns that can be updated.

After you create an update cursor, you can update or delete the currently
selected row by using an UPDATE or DELETE statement with the WHERE
CURRENT OF clause. The words CURRENT OF refer to the row that was most
recently fetched; they take the place of the usual test expressions in the
WHERE clause.

An update cursor allows you to perform updates that are not possible with
the UPDATE statement, because both the decision to update and the values of
the new data items can be based on the original contents of the row. The
UPDATE statement cannot interrogate the table being updated.

All simple select cursors are potentially update cursors even if they are
declared without the FOR UPDATE keywords. (See the restrictions on SELECT
statements in the section that follows.) ♦

ANSI
7-114 IBM Informix Guide to SQL: Reference

Declaring an Update Cursor
Subset of the SELECT Statement Associated with an Update Cursor

Not all SELECT statements can be associated with an update cursor. The
SELECT statement included in the DECLARE statement (either directly or as a
prepared statement) must conform to the following restrictions:

� You can select data from only one table.

� The statement cannot include any aggregate functions (AVG, COUNT,
MAX, MIN, or SUM).

� The statement cannot include any of the following clauses or
keywords:

For a complete description of SELECT syntax and usage, see the SELECT
statement on page 7-258.

Locking with an Update Cursor

You declare an update cursor to let the database server know that the
program might update (or delete) any row that it fetches as part of the
SELECT statement. The update cursor employs promotable locks for rows that
are fetched. Other programs can read the locked row, but no other program
can place a promotable or write lock. Before the row is modified, the row lock
is promoted to an exclusive lock.

The IBM Informix SE database server does not use promotable locks. Before
the program modifies a row, the database server obtains an exclusive lock on
the row. ♦

Although it is possible to declare an update cursor WITH HOLD, the only
reason for doing so is to break a long series of updates into smaller transac-
tions. If an operation involves fetching and updating a very large number of
rows, the lock table maintained by the database server can overflow. The
usual way to prevent this overflow is to lock the entire table being updated.
If that is not possible, an alternative is to update through a hold cursor and to
execute COMMIT WORK at frequent intervals. However, you must plan such
an application very carefully, since COMMIT WORK releases all locks, even
ones placed through a hold cursor.

DISTINCT INTO TEMP UNION

GROUP BY ORDER BY UNIQUE

SE
Syntax 7-115

Declaring an Update Cursor
Using FOR UPDATE with a List of Columns

When you declare an update cursor, you can limit the update to specific
columns by including the OF keyword and a list of columns. You can modify
only those named columns in subsequent UPDATE statements. The columns
need not be in the select list of the SELECT clause.

This column restriction applies only to UPDATE statements. The OF column
clause has no effect on subsequent DELETE statements that use a WHERE
CURRENT OF clause. (A DELETE statement modifies all columns.)

The principal advantage to specifying columns is documentation and
preventing programming errors. (The database server refuses to update any
other columns.) An additional advantage is speed, when the SELECT
statement meets two criteria:

� The SELECT statement can be processed using an index

� The columns listed are not part of the index used to process the
SELECT statement

If the columns you intend to update are part of the index used to process the
SELECT statement, the database server must keep a list of each row that is
updated to ensure that no row is updated twice. When you use the OF
keyword to specify the columns that can be updated, the database server
determines whether to keep the list of updated rows. If the database server
determines that the list is unnecessary, then eliminating the work of keeping
the list results in a performance benefit. If you do not use the OF keyword, the
database server keeps the list of updated rows even though it might be
unnecessary.

The following example contains an 4GL DECLARE statement that restricts the
columns for update.

Figure 7-16
Using the OF keyword in an IBM Informix 4GL program

DECLARE up_curs CURSOR FOR
SELECT * FROM customer WHERE customer_num > 110

FOR UPDATE OF fname, lname

The next example contains IBM Informix ESQL/C code that uses an update
cursor with a DELETE statement to delete the current row. Whenever the row
is deleted, the cursor remains between rows. After you delete data, you must
use a FETCH statement to advance the cursor to the next row before you can
refer to the cursor in a subsequent DELETE or UPDATE statement.
7-116 IBM Informix Guide to SQL: Reference

Associating a Cursor with a Prepared Statement
Figure 7-17
Using an update cursor in an IBM Informix ESQL/C program to delete rows

$declare q_curs cursor for
select * from customer where lname matches $last_name

for update;

$open q_curs;
for (;;)
{

$fetch q_curs into $cust_rec;
if (sqlca.sqlcode != 0)

break;

/* Display customer values and prompt for answer */

if (answer[0] == 'y')
$delete from customer where current of q_curs;

if (sqlca.sqlcode != 0)
break;

}
$close q_curs;

Associating a Cursor with a Prepared Statement
The PREPARE statement allows you to assemble the text of an SQL statement
at run time and pass the statement text to the database server for execution.
If you anticipate that a dynamically prepared SELECT statement could
produce more than one row of data, the prepared statement must be
associated with a cursor. (See the PREPARE statement on page 7-218 for more
information about preparing SQL statements.)

The result of a PREPARE statement is a statement identifier (statement id or id
variable) that is a data structure representing the prepared statement text. You
declare a cursor for the statement text by associating a cursor with the
statement identifier.

You can associate a sequential cursor with any prepared SELECT statement.
You cannot associate a scroll cursor with a prepared INSERT statement or with
a SELECT statement that was prepared to include a FOR UPDATE clause.

After a cursor is opened, used, and closed, a different statement can be
prepared under the same statement identifier. In this way, it is possible to use
a single cursor with different statements at different times.
Syntax 7-117

Using Cursors with Transactions
The following example contains 4GL code that prepares a SELECT statement
and declares a cursor for the prepared statement text. The statement
identifier st_1 is first prepared from a SELECT statement; then, the cursor
c_detail is declared for st_1.

Figure 7-18
Declaring a cursor for a prepared statement in an IBM Informix 4GL program

PREPARE st_1 FROM
"SELECT order_date ",
"FROM orders WHERE customer_num = ?"

DECLARE c_detail CURSOR FOR st_1

If you want to modify data using a prepared SELECT statement, add a FOR
UPDATE clause to the statement text you wish to prepare, as shown in the
following 4GL example.

Figure 7-19
Declaring a cursor for a SELECT with a FOR UPDATE clause in an IBM Informix 4GL program

PREPARE sel_1 FROM "SELECT * FROM customer FOR UPDATE"
DECLARE sel_curs CURSOR for sel_1

Using Cursors with Transactions
To roll back a modification, you must perform the modification within a
transaction. A transaction only begins when the BEGIN WORK statement is
executed.

In ANSI-compliant databases, transactions are always in effect. ♦

The database server enforces the following guidelines for select and update
cursors. These guidelines ensure that modifications can be committed or
rolled back properly:

� Open an insert or update cursor within a transaction.

� Include PUT and FLUSH statements within one transaction.

� Modify data (update, insert, or delete) within one transaction.

The database server permits you to open and close a hold cursor for update
outside a transaction; however, you should fetch all rows that pertain to a
given modification and then perform the modification all within a single
transaction. You cannot open and close cursors that are not hold or update
cursors outside a transaction.

ANSI
7-118 IBM Informix Guide to SQL: Reference

Using Cursors with Transactions
The following code example produces an error when the database server tries
to execute the update line:

$declare q_curs cursor for
select * from customer where lname matches $last_name

for update;
$open q_curs;
$fetch q_curs into $cust_rec;
$begin work;
$update customer where current of q_curs;
$commit work;

The following code example does not produce an error when the database
server tries to execute the update line:

$declare q_curs cursor for
select * from customer where lname matches $last_name

for update;
$open q_curs;
$begin work;
$fetch q_curs into $cust_rec;
$update customer where current of q_curs;
$commit work;

When you update a row within a transaction, the row remains locked until
the cursor is closed or the transaction is committed or rolled back. If you
update a row when no transaction is in effect, the row lock is released when
the modified row is written to disk.

If you update or delete a row outside a transaction, you cannot roll back the
operation.

A cursor declared for insert is an insert cursor. In a database that uses trans-
actions, you cannot open an insert cursor outside a transaction unless it also
was declared with hold.
Syntax 7-119

Subset of INSERT Associated with a Sequential Cursor
Subset of INSERT Associated with a Sequential Cursor
You create an insert cursor by associating a sequential cursor with a restricted
form of the INSERT statement. The INSERT statement must include a VALUES
clause; it cannot contain an embedded SELECT statement.

The following example contains 4GL code that declares an insert cursor.

Figure 7-20
Declaring an insert cursor in an IBM Informix 4GL program

DECLARE ins_cur CURSOR FOR
INSERT INTO customer VALUES (p_customer.*)

The next example contains IBM Informix ESQL/C code that declares an insert
cursor.

Figure 7-21
Declaring an insert cursor in an IBM Informix ESQL/C program

$DECLARE ins_cur CURSOR FOR INSERT INTO stock VALUES
($stock_no,$manu_code,$descr,$u_price,$unit,$u_desc);

The insert cursor only inserts rows of data; it cannot be used for fetching data.
When an insert cursor is opened, a buffer is created in memory to hold a
block of rows. The buffer receives rows of data as the program executes PUT
statements. The rows are written to disk only when the buffer is full. You can
use the CLOSE, FLUSH, or COMMIT WORK statement to flush the buffer when
it is less than full. This topic is discussed further under the PUT and CLOSE
statements. You must close an insert cursor to insert any buffered rows into
the database before the program ends. Data can be lost if the cursor is not
closed properly.

Using an Insert Cursor with Hold

If you associate a hold cursor with an INSERT statement, you can break a long
series of PUT statements into smaller sets of PUT statements by using transac-
tions. Instead of waiting for the PUT statements to fill the buffer and trigger
an automatic write to the database, you can execute a COMMIT WORK
statement to flush the row buffer. If you use a hold cursor, the COMMIT WORK
statement commits the inserted rows but leaves the cursor open for further
inserts. This method can be desirable when you are inserting a large number
of rows, because pending, uncommitted work consumes database server
resources.
7-120 IBM Informix Guide to SQL: Reference

References
References
In this manual, see the following statements: CLOSE, DELETE, FETCH, FREE,
INSERT, OPEN, PREPARE, PUT, SELECT, and UPDATE.

In the IBM Informix Guide to SQL: Tutorial, see the discussions of cursors and
data modification.
Syntax 7-121

DELETE
DELETE

Purpose
Use the DELETE statement to delete one or more rows from a table.

Syntax

Usage
If you use the DELETE statement without a WHERE clause, all the rows in the
table are deleted.

If you use the DELETE statement outside a transaction in a database that uses
transactions, each DELETE statement that you execute is treated as a single
transaction.

Each row affected by a DELETE statement within a transaction is locked for
the duration of the transaction; therefore, a single DELETE statement that
affects a large number of rows locks the rows until the entire operation is
complete. If the number of rows affected is very large, you might exceed the
limits your operating system places on the maximum number of simulta-
neous locks. If this occurs, you can either reduce the scope of the DELETE
statement or lock the entire table before you execute the statement.

DELETE FROM

CURRENT OF cursor
name

WHERE

Table
Name

p. 7-434

View
Name

p. 7-438
I4GL
ESQL

Condition
p. 7-345

Synonym
Name

p. 7-432

cursor name is the name of the cursor that you have previously declared
and positioned.
7-122 IBM Informix Guide to SQL: Reference

WHERE Clause
If you specify a view name, the view must be updatable. See “Updating
through Views” on page 7-100 for an explanation of an updatable view.

If you omit the WHERE clause while working within the SQL Menu,
IBM Informix SQL prompts you to verify that you want to delete all rows from
a table. You do not receive a prompt if you run the DELETE statement within
a command file. ♦

Statements are always within an implicit transaction in an ANSI-compliant
database; therefore, you cannot have a DELETE statement outside a
transaction. ♦

WHERE Clause
Use the WHERE clause to specify one or more rows that you want deleted.
The WHERE conditions are the same as those in the SELECT statement. For
example, the following statement deletes all the rows of the items table
where the order number is less than 1034:

DELETE FROM items
WHERE order_num < 1034

If you include a WHERE clause that selects all rows in the table, IBM Informix
SQL gives no prompt and deletes all rows. ♦

CURRENT OF Clause

To use the CURRENT OF clause, you must previously have used the DECLARE
statement with the FOR UPDATE clause to announce the cursor name.

If you use the CURRENT OF clause, the DELETE statement removes the row of
the active set at the current position of the cursor. After the deletion, there is
no current row; you cannot use the cursor to delete or update a row until you
reposition the cursor with a FETCH statement. ♦

All select cursors are potentially update cursors in ANSI-compliant
databases. You can use the CURRENT OF clause with any select cursor. ♦

DB

ISQL

ANSI

DB

ISQL

I4GL

ESQL

ANSI

I4GL

ESQL
Syntax 7-123

References
References
In this manual, see the following statements: INSERT, UPDATE, DECLARE, and
FETCH.

In the IBM Informix Guide to SQL: Tutorial, see the discussions of cursors and
data modification.
7-124 IBM Informix Guide to SQL: Reference

DESCRIBE
DESCRIBE

Purpose
Use the DESCRIBE statement to obtain information about a prepared
statement before you execute it. The DESCRIBE statement returns the
prepared statement type and, for a SELECT or INSERT statement, the number,
data types, and size of the values, and the name of the column or expression,
returned by the query. The information can be stored in a system descriptor
area or, in ESQL/C, in an sqlda structure.

Syntax

DESCRIBEESQL

INTO sqlda pointer

E/C

+
statement id descriptor"

descriptor
variablestatement

"USING
SQL DESCRIPTOR

id variable

descriptor is a quoted string that identifies an allocated system descriptor
area.

descriptor
variable

is an embedded variable name that identifies an allocated sys-
tem descriptor area.

sqlda pointer points to an sqlda structure.

statement id is the identifier for a data structure that represents a prepared
statement. (See the PREPARE statement on page 7-218.)

statement id
variable

is an embedded variable name that identifies a data structure
that represents a prepared statement. (See the PREPARE state-
ment on page 7-218.)
Syntax 7-125

Usage
Usage
The DESCRIBE statement allows you to determine at run time the type of
statement that has been prepared and the number and types of data that a
prepared query will return when executed. With this information, you can
write code to allocate memory to hold retrieved values and display or process
them after they are fetched.

Describing the Statement Type
The DESCRIBE statement takes as input a statement identifier from a PREPARE
statement. When the DESCRIBE statement executes, the database server sets
the value of the SQLCODE field of the SQLCA (see Chapter 5, “Error Handling
with SQLCA”) to indicate the statement type; that is, the keyword with
which the statement begins. If the prepared statement text contains more
than one SQL statement, the DESCRIBE statement returns the type of the first
statement in the text.

SQLCODE is set to zero to indicate a SELECT statement without an INTO TEMP
clause. This is the most common situation. For any other SQL statement,
SQLCODE is set to a positive integer.

You can test the number against the constant names that are defined. In
IBM Informix ESQL/C, the constant names are defined in the sqlstype.h
header file. A printed list of the possible values and their constant names
appears in the manual for each embedded-language product.

The DESCRIBE statement uses the SQLCODE field differently than any other
statement, possibly returning a nonzero value when it executes successfully.
You can revise standard error checking routines to accommodate this, if
desired.
7-126 IBM Informix Guide to SQL: Reference

Checking for Existence of a WHERE Clause
Checking for Existence of a WHERE Clause
If the DESCRIBE statement detects that a prepared statement contains an
UPDATE or DELETE statement without a WHERE clause, the DESCRIBE
statement sets the following SQLCA variable to W.

Without a WHERE clause, the update or delete action is applied to the entire
table. By checking this variable, you can avoid unintended global changes to
your table.

Describing Values Returned by SELECT or Required for
INSERT
If the prepared statement text includes a SELECT statement without an INTO
TEMP clause or an INSERT statement, the DESCRIBE statement also returns a
a description of each column or expression included in the SELECT or INSERT
list. These descriptions are stored in a pointer to an sqlda structure or in a
system descriptor area.

The description includes the following information:

� The data type of the column, as defined in the table

� The length of the column, in bytes

� The name of the column or expression

See Chapter 6, “Using Descriptors,” for more information on the sqlda
structure and descriptors.

You can modify the system descriptor area information and use it in state-
ments that support a USING SQL DESCRIPTOR clause, such as EXECUTE,
FETCH, OPEN, and PUT. You must modify the system descriptor area to show
the address in memory that is to receive the described value. You can change
the data type to some other, compatible type. This change causes data
conversion to take place when the data is fetched.

ESQL/C sqlca.sqlwarn.sqlwarn4

ESQL/COBOL SQLWARN4 OF SQLWARN OF SQLCA
Syntax 7-127

USING SQL DESCRIPTOR Clause
In addition to Chapter 6 of this manual, see the manual for your embedded-
language product for further information about interpreting and using the
data contained in the sqlda data structure and the system descriptor area.

USING SQL DESCRIPTOR Clause
The USING SQL DESCRIPTOR clause allows you to store the description of a
SELECT or INSERT list in a system descriptor area created by an ALLOCATE
DESCRIPTOR statement. You can obtain information about the resulting
columns of a prepared statement through a system descriptor area. Use the
USING SQL DESCRIPTOR keywords and a descriptor to point to a system
descriptor area instead of an sqlda structure.

The DESCRIBE statement sets the COUNT field in the system descriptor area
to the number of values in the SELECT or INSERT list. If COUNT is greater than
the number of item descriptors (occurrences) in the system descriptor area, the
system returns an error. Otherwise, the TYPE, LENGTH, NAME, SCALE,
PRECISION, and NULLABLE information is set and memory for DATA fields is
allocated automatically.

After a DESCRIBE statement is executed, the SCALE and PRECISION fields
contain the scale and precision of the column, respectively. If SCALE and
PRECISION are set in the SET DESCRIPTOR statement and TYPE is set to
DECIMAL or MONEY, the LENGTH field is modified to adjust for the scale and
precision of the decimal value. If TYPE is not set to DECIMAL or MONEY, the
values for SCALE and PRECISION are not set and LENGTH is unaffected.

INTO sqlda pointer Clause
The INTO sqlda pointer clause allows you to store the description of a SELECT
or INSERT list in an sqlda pointer. The DESCRIBE statement sets the
sqlda.sqld variable to the number of values in the SELECT or INSERT list. The
sqlda structure also contains an array of data descriptors (sqlvar structures),
one for each value in the SELECT or INSERT list. After a DESCRIBE statement
is executed, the sqlda.sqlvar structure has the TYPE, LENGTH, and NAME
fields set.

The DESCRIBE statement allocates memory for an sqlda pointer once it is
declared in a program. However, the application program must designate the
storage area of the sqlvar.sqldata fields. ♦

E/C
7-128 IBM Informix Guide to SQL: Reference

References
These products do not support pointers to an sqlda structure; they return an
error if you try to execute a DESCRIBE statement that uses one. Only system
descriptor areas that are allocated with the ALLOCATE DESCRIPTOR
statement can be used in a DESCRIBE statement in IBM Informix
ESQL/COBOL. You can view the contents of the columns by executing a GET
DESCRIPTOR statement following a DESCRIBE statement on the specified
system descriptor. ♦

The following pairs of examples show the use of a system descriptor in a
DESCRIBE statement in three IBM Informix ESQL products. In the first
example in each pair, the descriptor is a quoted string; in the second example
in each pair it is an embedded variable name.

Figure 7-22
Sample DESCRIBE operation with system descriptor statements in ESQL/C

main()
{
. . .
$ ALLOCATE DESCRIPTOR "desc1" WITH MAX 3;
$ PREPARE curs1 FROM "SELECT * FROM tab";
$ DESCRIBE curs1 USING SQL DESCRIPTOR "desc1";
}

$ DESCRIBE curs1 USING SQL DESCRIPTOR $desc1var;

Figure 7-23
Sample DESCRIBE operation with system descriptor statements in ESQL/COBOL

EXEC SQL ALLOCATE DESCRIPTOR "DESC1" WITH MAX 3 END-EXEC.
EXEC SQL PREPARE CURS1 FROM "SELECT * FROM TAB" END-EXEC.
EXEC SQL DESCRIBE CURS1 USING SQL DESCRIPTOR "DESC1" END-EXEC.

EXEC SQL DESCRIBE CURS1 USING SQL DESCRIPTOR :DESC1VAR END-EXEC.

References
In this manual, see the following statements for further information about
using dynamic management statements: ALLOCATE DESCRIPTOR,
DEALLOCATE DESCRIPTOR, DECLARE, EXECUTE, FETCH, GET DESCRIPTOR,
OPEN, PREPARE, PUT, and SET DESCRIPTOR.

In the IBM Informix Guide to SQL: Tutorial, see the discussion of the DESCRIBE
statement.

E/CO
Syntax 7-129

References
For further information about how to use an sqlda pointer or a system
descriptor area if you intend to use a FETCH...USING DESCRIPTOR or an
INSERT...USING DESCRIPTOR statement, refer to the manual for your appli-
cation development tool. Also see Chapter 6 for information on the sqlda
structure.
7-130 IBM Informix Guide to SQL: Reference

DROP AUDIT
DROP AUDIT

Purpose
Use the DROP AUDIT statement to delete an audit trail file.

Syntax

Usage
When you finish making a backup of your database files, use the DROP
AUDIT statement to remove the old audit trail file. Use the CREATE AUDIT
statement to start a new audit trail for a table.

You must own the table or have DBA status to use the DROP AUDIT statement.

The following example assumes that you have just backed up the stores5
database. It removes the existing audit trail on the orders table.

DROP AUDIT FOR orders

References
In this manual, see the following statements: CREATE AUDIT and RECOVER
TABLE.

In the IBM Informix SE Administrator’s Guide, see the discussion on audit trails.

SE
+

Table Name
p. 7-434DROP AUDIT FOR

Synonym
Name

p. 7-432
Syntax 7-131

DROP DATABASE
DROP DATABASE

Purpose
Use the DROP DATABASE statement to delete an entire database, including all
system catalogs, indexes, and data.

Syntax

Usage
You must have DBA status or be user informix to run the DROP DATABASE
statement successfully. Otherwise, the database server issues an error
message and does not drop the database.

You cannot drop the current database or a database that is being used by
another user. All users of the database must first execute the CLOSE
DATABASE statement.

The DROP DATABASE statement cannot appear in a multistatement PREPARE
statement.

The following statement drops the stores5 database:

DROP DATABASE stores5

When you drop a database with transactions, the transaction log file
associated with the database is removed. ♦

Use this statement with caution. If you have DBA privilege, DB-Access and
IBM Informix SQL do not prompt you to verify that you want to delete the
entire database. ♦

DROP DATABASE+ Database
Name

p. 7-362

SE

DB

ISQL
7-132 IBM Informix Guide to SQL: Reference

References
You can use a simple database name in a program or host variable, or you can
use the full database server and database name. See the explanation of
Database Name on page 7-362 for more information. ♦

The DROP DATABASE statement does not remove the database directory if it
includes any files other than those created for database tables and their
indexes.

You can specify the full pathname of the database in quotes, as shown in the
following example:

DROP DATABASE "/u/training/stores5"

You cannot use a ROLLBACK WORK statement to undo a DROP DATABASE
statement. If you roll back a transaction that contains a DROP DATABASE
statement, the database is not re-created and you do not receive an error
message. ♦

You can specify a database that is not in your local directory or DBPATH by
putting the full operating system file in a variable for the database name.

LET db_var = "/u/training/stores5"
DROP DATABASE db_var

♦

References
In this manual, see the following statements: CREATE DATABASE and CLOSE
DATABASE.

I4GL

ESQL

SE

SE

I4GL

ESQL
Syntax 7-133

DROP INDEX
DROP INDEX
 Use the DROP INDEX statement to remove an index.

Syntax

Usage
You must be the owner of the index or have DBA status to use the DROP
INDEX statement.

The following example drops the index o_num_ix owned by joed. The
stores5 database must be the current database.

DROP INDEX stores5:joed.o_num_ix

You cannot use the DROP INDEX statement on a column or columns to drop
a unique constraint created with a CREATE TABLE statement; you must use
the ALTER TABLE statement to remove indexes created as constraints with a
CREATE TABLE or ALTER TABLE statement.

The index is not actually dropped if it is shared by constraints. Instead, it is
renamed in the sysindexes system catalog table using the following format:

[space]<tabid>_<constraint id>

where tabid and constraint_id are from the systables and sysconstraints
system catalog tables, respectively. The idxname (index name) column in
sysconstraints is then updated to reflect this change.

If this index is a unique index with only referential constraints sharing it, the
index is downgraded to a duplicate index after it is renamed. ♦

You cannot use a ROLLBACK WORK statement to undo a DROP INDEX
statement. If you roll back a transaction that contains a DROP INDEX
statement, the index is not re-created and you do not receive an error
message. ♦

DROP INDEX+
Index
 Name

p. 7-413

DB

ESQL

SE
7-134 IBM Informix Guide to SQL: Reference

References
References
In this manual, see the following statements: ALTER TABLE, CREATE INDEX,
and CREATE TABLE.

In the IBM Informix Guide to SQL: Tutorial, see the discussion of indexes.
Syntax 7-135

DROP PROCEDURE
DROP PROCEDURE

Purpose
Use the DROP PROCEDURE statement to remove a procedure from the
database.

Syntax

Usage
You must be the owner of the procedure or have DBA status to use the DROP
PROCEDURE statement.

Dropping the procedure removes the text and executable versions of the
procedure.

You cannot use a ROLLBACK WORK statement to undo a DROP PROCEDURE
statement. If you roll back a transaction that contains a DROP PROCEDURE
statement, the procedure is not re-created and you do not receive an error
message. ♦

References
In this manual, see the CREATE PROCEDURE statement.

In the IBM Informix Guide to SQL: Tutorial, see the discussion of using
procedures.

Procedure
Name

p. 7-424

DB

ESQL
+

DROP PROCEDURE

SE
7-136 IBM Informix Guide to SQL: Reference

DROP SYNONYM
DROP SYNONYM

Purpose
Use the DROP SYNONYM statement to remove a previously defined
synonym.

Syntax

Usage
You must be the owner of the synonym or have DBA status to use the DROP
SYNONYM statement.

The following statement drops the synonym nj_cust, owned by cathyg:

DROP SYNONYM cathyg.nj_cust

If a table is dropped, any synonyms in the same database as the table that
refer to the table also are dropped.

If a synonym refers to an external table and the table is dropped, the synonym
remains in place until you explicitly drop it using DROP SYNONYM. You can
create another table or synonym in place of the dropped table, giving the new
object the name of the dropped table. The old synonym then refers to the new
object. See the CREATE SYNONYM statement for a complete discussion of
synonym chaining.

You cannot use a ROLLBACK WORK statement to undo a DROP SYNONYM
statement. If you roll back a transaction that contains a DROP SYNONYM
statement, the synonym is not re-created and you do not receive an error
message. ♦

DROP SYNONYM+ Synonym
Name

p. 7-432

SE
Syntax 7-137

Reference
Reference
In this manual, see the following statement: CREATE SYNONYM.

In the IBM Informix Guide to SQL: Tutorial, see the discussion of synonyms.
7-138 IBM Informix Guide to SQL: Reference

DROP TABLE
DROP TABLE

Purpose
Use the DROP TABLE statement to remove a table, along with its associated
indexes and data.

Syntax

Usage
You must be the owner of the table or have DBA status to use the DROP TABLE
statement.

Use the DROP TABLE statement with caution. When you remove a table, you
also delete the data stored in it, the indexes or constraints on the columns
(including all of the referential constraints placed on its columns), any local
synonyms assigned to it, and any authorizations you have granted on the
table. You also drop all views based on the table. You do not remove any
synonyms for the table that have been created in an external database.

You cannot drop any of the system catalog tables. You cannot drop a table
that is not in the current database.

If you issue a DROP TABLE statement in DB-Access or IBM Informix SQL, you
are not prompted to verify that you want to delete an entire table. ♦

DROP TABLE Table
Name

p. 7-434

+

Synonym
Name

p. 7-432

ISQL

DB
Syntax 7-139

Reference
You cannot use a ROLLBACK WORK statement to undo a DROP TABLE
statement. If you roll back a transaction that contains a DROP TABLE
statement, the table is not re-created and you do not receive an error
message. ♦

The following example deletes two tables. Both tables are within the current
database and owned by the current user.

DROP TABLE customer
DROP TABLE stores5@accntg:joed.state

Reference
In this manual, see the following statements: CREATE TABLE, DROP
DATABASE.

In the IBM Informix Guide to SQL: Tutorial, see the discussions of data integrity
and creating a table.

SE
7-140 IBM Informix Guide to SQL: Reference

DROP VIEW
DROP VIEW

Purpose
Use the DROP VIEW statement to remove a view from the database.

Syntax

Usage
You must own the view or have DBA status to use the DROP VIEW statement.

When you drop view name, you also drop all views that have been defined in
terms of view name. You can determine which, if any, views depend on
another view by querying the sysdepend system catalog table.

The following statement drops the view named cust1:

DROP VIEW cust1

You cannot use a ROLLBACK WORK statement to undo a DROP VIEW
statement. If you roll back a transaction that contains a DROP VIEW statement,
the view is not re-created and you do not receive an error message. ♦

References
In this manual, see the following statements: CREATE VIEW and DROP TABLE.

In the IBM Informix Guide to SQL: Tutorial, see the discussion of views.

DROP VIEW View
Name

p. 7-438

+

Synonym
Name

p. 7-432

SE
Syntax 7-141

EXECUTE
EXECUTE

Purpose
Use the EXECUTE statement to run a previously prepared statement.

Syntax

I4GL

ESQL
+

EXECUTE statement id

DESCRIPTOR sqlda pointer

descriptor variable

statement
id variable

ESQL

,

USING

ESQL

E/C

SQL DESCRIPTOR

variable name

" descriptor "

descriptor is a quoted string that identifies the system descriptor area that
was previously allocated.

descriptor
variable

is an embedded variable name that identifies the system
descriptor area that was previously allocated.

sqlda pointer is an IBM Informix ESQL/C pointer to an sqlda structure that
describes the undefined values in the prepared statement.

statement id is an SQL statement identifier defined in a previous PREPARE
statement in the same module.
7-142 IBM Informix Guide to SQL: Reference

Usage
Usage
The EXECUTE statement passes a prepared SQL statement to the database
server for execution. If the statement contained ? placeholders, specific
values are supplied for them before execution. Once prepared, an SQL
statement can be executed as often as needed.

You can execute any prepared statement except a (prepared) SELECT
statement. A prepared SELECT statement returns rows of data; you should
use the DECLARE, OPEN, and FETCH cursor statements to retrieve the data
rows. (You can, however, use EXECUTE on a prepared SELECT INTO TEMP
statement.)

Following an EXECUTE statement, the SQLCA (see Chapter 5, “Error
Handling with SQLCA,” for information about the SQLCA) might reflect an
error in the EXECUTE statement (for example, error -260, Cannot execute a

SELECT statement that is PREPAREd - must use cursor), but usually
it reflects the success or failure of the executed statement itself.

An example of an EXECUTE statement within an IBM Informix 4GL program
follows.

Figure 7-24
Using an EXECUTE statement in an IBM Informix 4GL program

PREPARE sel_1 FROM
"DELETE FROM customer ",

"WHERE customer_num = 119"
EXECUTE sel_1

A program can consist of one or more source code files. By default, the scope
of a statement identifier is global to the program. This means that a statement
identifier executed in one file can be referenced from another file.

statement id
variable

is an embedded variable name that identifies the SQL state-
ment defined in a previous PREPARE statement in the same
module.

variable name is an IBM Informix 4GL program variable or an IBM Informix
ESQL host variable to be substituted as a value for a question
mark (?) placeholder required by the prepared statement.
Syntax 7-143

Usage
In a multiple-file program, if you want to limit the scope of a statement
identifier to the file in which it is executed, you should preprocess all the files
with the -local command line option. See your ESQL product manual for
more information, restrictions, and performance issues when preprocessing
with the -local option.

USING Clause

The USING clause specifies values that are to replace ? placeholders in the
prepared statement. Providing values in the EXECUTE statement that replace
the ? placeholders in the prepared statement is sometimes called parameter-
izing the prepared statement.

You can specify any of the following items to replace the ? placeholders in a
statement before you execute it:

� A host or program variable name (if the number and data type of the
question marks are known at compile time)

� A system descriptor that identifies a system descriptor area ♦
� A descriptor that is a pointer to an sqlda structure ♦

Supplying Parameters Through Host or Program Variables

You must supply one variable name for each placeholder. The data type of each
variable must be compatible with the corresponding value required by the
prepared statement.

The variable name can include an indicator variable, provided its use is appro-
priate at the corresponding point in the prepared statement. ♦

The following two examples execute the same prepared UPDATE statement
as expressed in IBM Informix 4GL and IBM Informix ESQL/C.

Figure 7-25
Sample EXECUTE statement in IBM Informix 4GL

LET stm_1 = "UPDATE orders SET order_date = ? ",
"WHERE po_num = ?"

PREPARE statement_1 FROM stm_1
EXECUTE statement_1 USING x_o_date, x_po_num

ESQL

E/C

ESQL
7-144 IBM Informix Guide to SQL: Reference

Usage
Figure 7-26
Sample EXECUTE statement in IBM Informix ESQL/C

stm1 = "UPDATE orders SET order_date = ? WHERE po_num = ?";
$PREPARE statement_1 from stm1;
$EXECUTE statement_1 USING $order_date:ord_ind, $po_num;

Supplying Parameters through a System Descriptor

You can create a system descriptor area that describes the data type and
memory location of one or more values and then specify the descriptor in the
USING SQL DESCRIPTOR clause of the EXECUTE statement.

Each time that the EXECUTE statement is run, the values described by the
system descriptor area are used to replace ? placeholders in the PREPARE
statement. This method is similar to using the USING keyword with a list of
variables, except that your program has full control over the memory
location of the data values.

The COUNT field corresponds to the number of dynamic parameters in the
prepared statement. The value of COUNT must be less than or equal to the
value of the occurrences specified when the system descriptor area was
allocated with the ALLOCATE DESCRIPTOR statement.

For more information on system descriptors, see Chapter 6 in this manual
and the manual for the IBM Informix ESQL product you are using.

The following examples show how to execute prepared statements using
system descriptors in three IBM Informix ESQL products.

Figure 7-27
Sample EXECUTE USING SQL DESCRIPTOR statement in ESQL/C

$ EXECUTE prep_stmt USING SQL DESCRIPTOR "desc1";

Figure 7-28
Sample EXECUTE USING SQL DESCRIPTOR statement in ESQL/COBOL

EXEC SQL EXECUTE PREP_STMT USING SQL DESCRIPTOR "DESC1" END-EXEC
♦

ESQL
Syntax 7-145

Supplying Parameters Through an sqlda Structure
Supplying Parameters Through an sqlda Structure
You can specify the sqlda pointer in the USING DESCRIPTOR clause of the
EXECUTE statement. Each time that the EXECUTE statement is run, the values
described by the sqlda structure are used to replace ? placeholders in the
PREPARE statement. This method is similar to employing the USING keyword
with a list of variables, except that your program has full control over the
memory location of the data values.

For more information on the sqlda structure, see the manual for the version
of IBM Informix ESQL/C you are using and Chapter 6 in this manual.

The following example shows how to execute a prepared statement using an
sqlda structure in IBM Informix ESQL/C.

Figure 7-29
Sample EXECUTE USING DESCRIPTOR statement in ESQL/C

$EXECUTE prep_stmt USING DESCRIPTOR pointer2;
♦

References
In this manual, see the following statements: ALLOCATE DESCRIPTOR,
DEALLOCATE DESCRIPTOR, DECLARE, EXECUTE IMMEDIATE, GET
DESCRIPTOR, PREPARE, PUT, and SET DESCRIPTOR.

In the IBM Informix Guide to SQL: Tutorial, see the discussion of the EXECUTE
statement.

E/C
7-146 IBM Informix Guide to SQL: Reference

EXECUTE IMMEDIATE
EXECUTE IMMEDIATE

Purpose
Use the EXECUTE IMMEDIATE statement to perform the functions of the
following SQL statements in one step: PREPARE, EXECUTE, and FREE.

Syntax

Usage
The quoted string is a character string made up of one or more SQL state-
ments. The string, or the contents of the statement variable name, is parsed and
executed if correct; then, all data structures and memory resources are
released immediately. In the usual method of dynamic execution, these
functions are distributed among the following statements: PREPARE,
EXECUTE, and FREE.

The EXECUTE IMMEDIATE statement makes it easy to dynamically execute a
single, simple SQL statement that is constructed during program execution.
For example, you could obtain the name of a database from program input,
then construct the DATABASE statement as a program variable, and then use
EXECUTE IMMEDIATE to execute the statement, opening the database.

statement
variable name

is a program or host variable that contains a character string
that consists of one or more SQL statements

EXECUTE IMMEDIATE
I4GL
ESQL

Quoted
String

p. 7-426

statement variable name
Syntax 7-147

Usage
Restricted Statement Types

You cannot use the EXECUTE IMMEDIATE statement to execute the following
SQL statements:

Use a PREPARE statement to execute a dynamically constructed SELECT
statement.

The following restrictions apply to the statement contained in the quoted
string or in statement variable name:

� The statement cannot contain a host-language comment.

� Names of host-language variables are not recognized as such in
prepared text. The only identifiers that you can use are names
defined in the database, such as table names and columns.

� The statement cannot reference a host variable list or a descriptor;
hence it should not contain any ? placeholders, such as those allowed
with a PREPARE statement.

� The text should not include any embedded SQL statement prefix or
terminator, such as the dollar sign or semicolon, or the words EXEC
SQL. ♦

In the following IBM Informix 4GL example, the user is prompted for the
name of a table to drop. The statement text is formed using an IBM Informix
4GL character expression.

Figure 7-30
Sample EXECUTE IMMEDIATE statement in IBM Informix 4GL

DEFINE tabname CHAR(18)
PROMPT "Drop which table?" FOR tabname
EXECUTE IMMEDIATE "DROP TABLE ", tabname

An example of EXECUTE IMMEDIATE using IBM Informix ESQL/C follows.

Figure 7-31
Sample EXECUTE IMMEDIATE statement in IBM Informix ESQL/C

sprintf(cdb_text, "create database %s", usr_db_id);
$EXECUTE IMMEDIATE $cdb_text;

CLOSE EXECUTE OPEN SELECT

DECLARE FETCH PREPARE WHENEVER

ESQL
7-148 IBM Informix Guide to SQL: Reference

References
References
In this manual, see the following statements: EXECUTE, FREE, and PREPARE.

In the IBM Informix Guide to SQL: Tutorial, see the discussion of quick
execution.
Syntax 7-149

EXECUTE PROCEDURE
EXECUTE PROCEDURE

Purpose
Use the EXECUTE PROCEDURE statement to execute a procedure from the
DB-Access interactive editor, an embedded-language program, or another
stored procedure.

 Syntax

,

Procedure
Name

p. 7-424

()
DB

ESQL
+

EXECUTE PROCEDURE

,
Argument

INTO

ESQL

SPL

Argument

=parameter
name

host
variable

SPL
Expression

p. 8-23

SELECT
Statement
(singleton)
p. 7-258

host variable is a variable defined within the calling program.

parameter
name

is the name of the parameter as defined by its CREATE PROCE-
DURE statement.
7-150 IBM Informix Guide to SQL: Reference

Usage
Usage
The EXECUTE PROCEDURE statement invokes a procedure called Procedure
Name.

If there are more arguments in an EXECUTE PROCEDURE statement than are
expected by the called procedure, an error is returned.

If there are fewer arguments in an EXECUTE PROCEDURE statement than are
expected by the called procedure, the arguments are said to be missing.
Missing arguments are initialized to their corresponding default values, if
default values were specified. (See CREATE PROCEDURE on page 7-58.) This
initialization occurs before the first executable statement in the body of the
procedure.

If arguments are missing and do not have default values, they are initialized
to the value of UNDEFINED. An attempt to use any variable that has the value
of UNDEFINED results in an error.

Procedure arguments are bound to procedure parameters by name or
position, but not both. That is, you can use parameter name = syntax for none
or all of the arguments specified in one EXECUTE PROCEDURE statement.

For example, both of the procedure calls are valid for a procedure that expects
three character arguments: t, n, and d, as in the following example:

EXECUTE PROCEDURE add_col (t="customer", d ="integer", n = "newint")
EXECUTE PROCEDURE add_col("customer","newint","integer")

If the EXECUTE PROCEDURE statement returns more than one row, it must be
enclosed within an SPL FOREACH loop or accessed through a cursor. ♦

INTO Clause
The host variable list is a list of the host variables that receive the returned
values from a procedure call. A procedure that returns more than one row
must be enclosed in a cursor. If you execute a procedure from within a
procedure, the list contains procedure variables. ♦

ESQL

ESQL

SPL
Syntax 7-151

References
References
In this manual, see the following statements: CREATE PROCEDURE, GRANT,
and CALL.

In the IBM Informix Guide to SQL: Tutorial, see the discussion of creating the
data model.
7-152 IBM Informix Guide to SQL: Reference

FETCH
FETCH

Purpose
Use the FETCH statement to move a cursor to a new row in the active set and
to retrieve the row values into memory for use by the program.

Syntax

PRIOR

FIRST

LAST

PREVIOUS

CURRENT

ABSOLUTE row position
-

+

I4GL
ESQL

+

NEXT

FETCH cursor id

ESQL

cursor
variable

INTO

ESQL

USING "descriptor"SQL DESCRIPTOR

descriptor
variable

DESCRIPTOR
sqlda

pointer

E/C

,

data variable

ESQL

+ : indicator
variable

indicator

RELATIVE row position

+

indicator
variable

cursor id is the identifier of a cursor that was created in an earlier
DECLARE statement.

cursor variable is an embedded variable name that identifies a cursor that was
created in an earlier DECLARE statement.

data variable is a program variable or host object that receives one value
from the fetched row.
Syntax 7-153

Usage
Usage
The FETCH statement is one of four statements used for queries that return
more than one row from the database. The four statements, DECLARE, OPEN,
FETCH, and CLOSE, are used in the following sequence:

� Declare a cursor to control the active set of rows.

� Open the cursor to begin execution of the query.

� Fetch from the cursor to retrieve the contents of each row.

� Close the cursor to break the association between the cursor and the
active set.

A cursor is created as either a sequential cursor or scroll cursor. The way the
database server creates and stores members of the active set and then fetches
rows from the active set differs depending on whether the cursor is a
sequential cursor or scroll cursor. (See the DECLARE statement on page 7-107
for details on the types of cursors.)

In X/Open mode, if a cursor direction value (such as NEXT or RELATIVE) is
specified, a warning message appears indicating that the statement does not
conform to X/Open standards. ♦

descriptor is a string that identifies the system descriptor area that was
allocated with the ALLOCATE DESCRIPTOR statement.

descriptor
variable

is an embedded variable name that identifies the system
descriptor area that was allocated with the ALLOCATE
DESCRIPTOR statement.

indicator
variable

is a program variable that receives a return code if null data is
placed in the corresponding data variable.

row position is an integer or variable that contains an integer value, giving
the position of the desired row in the active set of rows.

sqlda pointer is a pointer to an sqlda structure that receives the values from
the fetched row.

X/O
7-154 IBM Informix Guide to SQL: Reference

FETCH with a Sequential Cursor
FETCH with a Sequential Cursor
A sequential cursor can fetch only the next row in sequence from the active
set. The only keyword option available to a sequential cursor is the default
value, NEXT. A sequential cursor only can read through a table once each time
it is opened. The following example in IBM Informix ESQL/C illustrates the
use of a sequential cursor:

$FETCH seq_curs INTO $fname,$lname;

When the program opens a sequential cursor, the database server processes
the query to the point of locating or constructing the first row of data. The
goal of the database server is to tie up as few resources as possible.

Since the sequential cursor can retrieve only the next row, it is frequently
possible for the database server to create the active set one row at a time. On
each FETCH operation, the database server returns the contents of the current
row and locates the next row. This one-row-at-a-time strategy is not possible
if the database server must create the entire active set to determine which is
the first row (as would be the case if the SELECT statement included an
ORDER BY clause).

FETCH with a Scroll Cursor
A scroll cursor can fetch any row in the active set, either by specifying an
absolute row position or a relative offset. You use keywords to specify a
particular row that you want retrieved.

NEXT Retrieves the next row in the active set.

PREVIOUS Retrieves the previous row in the active set.

PRIOR Synonymous with PREVIOUS; retrieves the previous row in the
active set.

FIRST Retrieves the first row in the active set.

LAST Retrieves the last row in the active set.
Syntax 7-155

FETCH with a Scroll Cursor
The following 4GL examples illustrate some uses of the FETCH statement.

Figure 7-32
Sample FETCH statements in IBM Informix 4GL

FETCH PREVIOUS q_curs INTO orders.*

FETCH LAST q_curs INTO orders.*

FETCH RELATIVE -10 q_curs INTO orders.*

PROMPT "Which row?" FOR row_num
FETCH ABSOLUTE row_num q_curs INTO orders.*

Row Numbers

The row numbers used with the ABSOLUTE keyword are valid only while the
cursor is open. Do not confuse them with rowid values. A rowid value is
based on the position of a row in its table, and remains valid until the table is
rebuilt. A row number for a FETCH statement is based on the position of the
row in the active set of the cursor; the next time the cursor is opened, different
rows may be selected.

How the Database Server Stores Rows

The database server must retain all the rows in the active set for a scroll cursor
until the cursor is closed, because it cannot be sure which row the program
will ask for next. When a scroll cursor is opened, the database server imple-
ments the active set as a temporary table, although it may not fill this table
immediately.

CURRENT Retrieves the current row in the active set (the same row as
returned by the preceding FETCH statement from the scroll
cursor).

RELATIVE Retrieves the nth row relative to the current cursor position in
the active set, where n is supplied by row position. A negative
value indicates the nth row prior to the current cursor position.
If row position is zero, the current row is fetched.

ABSOLUTE Retrieves the nth row in the active set, where n is supplied by
row position. Absolute row positions are numbered from 1.
7-156 IBM Informix Guide to SQL: Reference

Specifying Where Values Go in Memory
The first time a row is fetched, the database server copies it into the
temporary table as well as returning it to the program. When a row is fetched
for the second time, it can be taken from the temporary table. This scheme
uses the fewest resources in case the program abandons the query before it
has fetched all the rows. Rows that are never fetched are usually not created
or saved.

Specifying Where Values Go in Memory
Each value from the select list of the query must be returned into a memory
location for the program to use. You can specify these destinations in one of
the following ways:

� Using the INTO clause of a SELECT statement

� Using the INTO clause of a FETCH statement

� Using a system descriptor

� Using an sqlda structure ♦

Using the INTO Clause of SELECT

The SELECT statement that is associated with the cursor can contain an INTO
clause that specifies which program variables are to receive the values. You
only can use this method when the SELECT statement is written as part of the
declaration of the cursor (see the DECLARE statement on page 7-107). In this
case, the FETCH statement cannot contain an INTO clause. Here is an example
in IBM Informix 4GL.

Figure 7-33
Using the INTO clause of SELECT to specify program variables in IBM Informix 4GL

DECLARE ord_date CURSOR FOR
SELECT order_num, order_date, po_num

INTO o_num, o_date, o_po
OPEN ord_date
FETCH NEXT ord_date

You should use an indicator variable if there is the possibility that data
returned from the SELECT is NULL. See your embedded-language product
manual for more information about indicator variables. ♦

E/C

ESQL
Syntax 7-157

Specifying Where Values Go in Memory
Using the INTO Clause of FETCH

When the SELECT statement omits the INTO clause, you must specify the
destination of the data whenever a row is fetched. The FETCH statement can
include an INTO clause to retrieve data into a set of variables. This method
has the advantage that you can store different rows in different memory
locations.

You cannot use an array of host variables in the INTO clause.

In the following IBM Informix 4GL example, a series of complete rows is
fetched into a program array.

Figure 7-34
Fetching a series of rows with IBM Informix 4GL

DEFINE cust_list ARRAY[100] OF RECORD LIKE customer.*
DEFINE wanted_state LIKE customer.state
DEFINE row_count SMALLINT
DECLARE cust CURSOR FOR

SELECT * FROM customer WHERE state = wanted_state
PROMPT "Enter 2-letter state code:" FOR wanted_state
OPEN cust
LET row_count = 0
WHILE status = 0

LET row_count = row_count + 1
FETCH NEXT cust INTO cust_list[row_count].*

END WHILE
CLOSE cust

You can fetch into a program array element only by using an INTO clause in
the FETCH statement. When you are declaring a cursor, do not refer to an
array element within the SQL statement.

Using a System Descriptor

You can use a system descriptor area as an output variable. The keywords
USING SQL DESCRIPTOR introduce the name of the system descriptor area
into which you fetch the contents of a row. The values returned by the FETCH
statement can then be transferred from the system descriptor area into host
variables by using the GET DESCRIPTOR statement.

For more information, see Chapter 6 in this manual, as well as the manual for
the IBM Informix ESQL product you are using.

Following are examples of the use of system descriptors in three
IBM Informix embedded-language products.

ESQL
7-158 IBM Informix Guide to SQL: Reference

Using an sqlda Structure
Figure 7-35
Sample FETCH USING SQL DESCRIPTOR statement in ESQL/C

$ FETCH selcurs USING SQL DESCRIPTOR "desc";

Figure 7-36
Sample FETCH USING SQL DESCRIPTOR statement in ESQL/COBOL

EXEC SQL FETCH SEL_CURS USING SQL DESCRIPTOR "DESC" END-EXEC.
♦

Using an sqlda Structure
You can supply destinations using a pointer to an sqlda structure. This
structure contains data descriptors, each one specifying the data type and
memory location for one selected value. For more information, see Chapter 6
in this manual, as well as the IBM Informix ESQL/C Programmer’s Manual. The
keywords USING DESCRIPTOR introduce the name of the sqlda pointer
structure.

When you create a SELECT statement dynamically, you cannot use an INTO
host-variable clause because you cannot name host variables in a prepared
statement. If you are certain of the number and type of values in the select list,
you can use an INTO host-variable clause in the FETCH statement. However, if
the query was generated by user input, you might not be certain of the
number and type of values being selected. In this case, you must use an sqlda
pointer structure as follows:

� Use the DESCRIBE statement to fill in the sqlda.

� Allocate memory to hold the data values.

� Name the sqlda in the FETCH statement.

Figure 7-37
Sample FETCH USING DESCRIPTOR statement in IBM Informix ESQL/C

$ FETCH selcurs USING DESCRIPTOR pointer2;
♦

E/C
Syntax 7-159

Fetching a Row for Update
Fetching a Row for Update
The FETCH statement does not ordinarily lock a row that is fetched. Thus, the
fetched row can be modified (updated or deleted) by another process
immediately after your program receives it. A fetched row is locked in the
following cases:

� When you set the isolation level to Repeatable Read, each row you
fetch is locked with a read lock to keep it from changing until the
cursor is closed or the current transaction ends. Other programs also
can read the locked rows.

� When you set the isolation level to Cursor Stability, the current row
is locked.

� In an ANSI-compliant database, an isolation level of Repeatable Read
is the default; you can set it to something else. ♦

� When you are fetching through an update cursor (one declared FOR
UPDATE), each row you fetch is locked with a promotable lock. Other
programs can read the locked row, but no other program can place a
promotable or write lock; therefore, the row will be unchanged if
another user tries to modify it using the WHERE CURRENT OF clause
of UPDATE or DELETE.

When you modify a row, the lock is upgraded to a write lock and
remains until the cursor is closed or the transaction ends. If you do
not modify it, the lock may or may not be released when you fetch
another row, depending on the isolation level you have set. The lock
on an unchanged row is released as soon as another row is fetched,
unless you are using Repeatable Read isolation (see the SET ISOLA-
TION statement on page 7-307).

Tip: You can hold locks on additional rows even when Repeatable Read isolation is
not in use or unavailable. Update the row with unchanged data to hold it locked while
your program is reading other rows. You must evaluate the effect of this technique on
performance in the context of your application, and you should be aware of the
increased potential for deadlock.

When you use explicit transactions, be sure that a row is both fetched and
modified within a single transaction; that is, both the FETCH statement and
the subsequent UPDATE or DELETE statement must fall between a BEGIN
WORK statement and the next COMMIT WORK statement.

You cannot set the database isolation level on IBM Informix SE. ♦

ANSI

SE
7-160 IBM Informix Guide to SQL: Reference

Checking the Result of a FETCH
Checking the Result of a FETCH
You can check the result of each FETCH statement in the SQLCODE field of the
SQLCA. The variable you check is shown in the following table:

If a row is returned successfully, SQLCODE is set to zero. If no row is found,
the FETCH statement sets the return code to 100 to indicate “row not found,”
and the current row is unchanged. Five conditions set the variable value to
100, indicating “row not found,” as follows:

� The active set contains no rows.

� You issue a FETCH NEXT statement when the cursor points to the last
row in the active set or points past it.

� You issue a FETCH PRIOR or FETCH PREVIOUS statement when the
cursor points to the first row in the active set.

� You issue a FETCH RELATIVE n statement when no nth row exists in
the active set.

� You issue a FETCH ABSOLUTE n statement when no nth row exists in
the active set.

References
In this manual, for further information about using the FETCH statement with
dynamic management statements, see the following statements: ALLOCATE
DESCRIPTOR, CLOSE, DEALLOCATE DESCRIPTOR, DECLARE, DESCRIBE, GET
DESCRIPTOR, OPEN, PREPARE, and SET DESCRIPTOR.

Also in this manual, for further information about error checking, see
Chapter 5, “Error Handling with SQLCA.” For further information about the
system descriptor area, see Chapter 6, “Using Descriptors.”

In the IBM Informix Guide to SQL: Tutorial, see the discussion of the FETCH
statement.

4GL ESQL/C ESQL/COBOL

SQLCA.SQLCODE
STATUS

sqlca.sqlcode
SQLCODE

SQLCODE OF SQLCA
Syntax 7-161

FLUSH
FLUSH

Purpose
Use the FLUSH statement to force rows that were buffered by a PUT statement
to be written to the database.

Syntax

Usage
The PUT statement adds a row to a buffer and the buffer is written to the
database when it is filled. Use the FLUSH statement to force the insertion even
when the buffer is not full.

If the program terminates without closing the cursor, the buffer is left
unflushed. Rows placed into the buffer since the last flush are lost. Do not
expect the end of the program to close the cursor and flush the buffer.

An example of a FLUSH statement follows:

FLUSH icurs

cursor id is the identifier of a cursor that is associated with an INSERT
statement.

cursor
variable

is an embedded variable name that identifies a cursor that is
associated with an INSERT statement.

FLUSH
cursor

id

I4GL
ESQL

+

cursor
variable

ESQL
7-162 IBM Informix Guide to SQL: Reference

Error Checking FLUSH Statements
Error Checking FLUSH Statements
The SQLCA contains information on the success of each FLUSH statement and
the number of rows that are inserted successfully. The result of each FLUSH
statement is contained in the fields of the SQLCA, as shown in the following
table:

Data buffering with an insert cursor means that errors are not discovered
until the buffer is flushed. For example, an input value that is incompatible
with the data type of the column for which it is intended is only discovered
when the buffer is flushed. When an error is discovered, rows in the buffer
located after the error are not inserted; they are lost from memory.

The SQLCODE field is set either to an error code or to zero if no error occurs.
The third element of the SQLERRD array is set to the number of rows that are
successfully inserted into the database.

� If a block of rows is successfully inserted into the database, SQLCODE
is set to zero and SQLERRD to the count of rows.

� If an error occurs while the FLUSH statement is inserting a block of
rows, SQLCODE shows which error, while SQLERRD contains the
number of rows that were successfully inserted. (Uninserted rows
are discarded from the buffer.)

4GL ESQL/C ESQL/COBOL

STATUS
SQLCA.SQLCODE

sqlca.sqlcode
SQLCODE

SQLCODE OF SQLCA

SQLCA.SQLERRD[3] sqlca.sqlerrd[2] SQLERRD[3] OF SQLCA
Syntax 7-163

References
Counting Total and Pending Rows

To count the number of rows actually inserted into the database, as well as
the number not yet inserted, follow these steps:

1. Prepare two integer variables, for example, total and pending.

2. When the cursor is opened, set both variables to zero.

3. Each time a PUT statement is executed, increment both total and
pending.

4. Whenever a PUT or FLUSH statement is executed, or the cursor is
closed, subtract the third field of the SQLERRD array from pending.

References
In this manual, see the following statements: CLOSE, DECLARE, OPEN, and
PUT.

Also in this manual, for information about SQLCA, see Chapter 5, “Error
Handling with SQLCA.”

In the IBM Informix Guide to SQL: Tutorial, see the discussion of FLUSH.
7-164 IBM Informix Guide to SQL: Reference

FREE
FREE

Purpose
The FREE statement releases resources that are allocated to a prepared
statement or to a cursor.

The FREE statement has the additional ability to release a program variable of
the TEXT or BYTE data type. ♦

I4GL
Syntax 7-165

Syntax
Syntax

Usage
The FREE statement releases the resources allocated for a prepared statement
or a declared cursor in the application development tool and the database
server. Resources are allocated when you prepare a statement or when you
open a cursor (see the DECLARE and OPEN statements on pages 7-107 and
7-207, respectively.)

The sum of the number of open cursors and the number of prepared state-
ments that you can have at one time, in one process, is limited by the amount
of free memory available in the system. Use FREE statement id or FREE
statement id variable to release the resources held by a prepared statement; use
FREE cursor id or FREE cursor variable to release resources held by a cursor.

blob variable is the name of an IBM Informix 4GL program variable of the
TEXT or BYTE data type.

cursor id is the identifier of a cursor that you declared for a SELECT or
INSERT statement.

cursor
variable

is an embedded variable name that identifies a cursor that you
declared for a SELECT or INSERT statement.

statement id is the identifier of an SQL statement that you prepared with the
PREPARE statement.

statement id
variable

is an embedded variable name that identifies an SQL statement
that you prepared with the PREPARE statement.

FREE cursor

cursor

id

variable

blob
variable

I4GL

ESQL

statement
id

statement
id variable

+
ESQL

ESQL

I4GL
7-166 IBM Informix Guide to SQL: Reference

Freeing a Statement
Freeing a Statement
If you prepared a statement (but did not declare a cursor for it), FREE
statement id (or statement id variable) releases the resources in both the appli-
cation development tool and the database server.

If you declared a cursor for a prepared statement, FREE statement id (or
statement id variable) only releases the resources in the application devel-
opment tool; the cursor still can be used. The resources in the database server
are released only when you free the cursor.

After freeing a statement, you cannot execute it or declare a cursor for it until
you prepare it again.

The following IBM Informix 4GL code shows the sequence of statements used
to free an implicitly prepared statement.

Figure 7-38
Freeing an implicitly prepared statement in IBM Informix 4GL

DECLARE s_curs CURSOR FOR SELECT * FROM orders
OPEN s_curs
CLOSE s_curs
FREE s_curs

The following IBM Informix 4GL example shows the sequence of statements
used to release the resources of an explicitly prepared statement.

Figure 7-39
Freeing an explicitly prepared statement in IBM Informix 4GL

PREPARE sel_stmt FROM
"SELECT * FROM customer ",
"WHERE customer_num BETWEEN 100 AND 200"

DECLARE sel_curs CURSOR FOR sel_stmt
OPEN sel_curs
.
.
.

CLOSE sel_curs
FREE sel_stmt
FREE sel_curs
Syntax 7-167

Freeing a Cursor
Freeing a Cursor
If you declared a cursor for a prepared statement, freeing the cursor releases
only the resources in the database server. To release the resources for the
statement in the application development tool, use FREE statement id (or
statement id variable).

If a cursor is not declared for a prepared statement, freeing the cursor releases
the resources in both the application development tool and the database
server.

After a cursor is freed, it cannot be opened until it is declared again. It is
recommended that the cursor be explicitly closed before it is freed.

Freeing BLOB Storage with IBM Informix 4GL
If you use a FREE statement with a BYTE or TEXT variable stored in memory,
the FREE statement releases all memory associated with the variable and
renders the variable unusable. You must reinitialize the variable using the
LOCATE statement before you can use it again.

If you declare a cursor and fetch a TEXT or BYTE variable into memory, you
must free the variable as well as the cursor. Using the FREE statement on both
the variable and cursor releases resources dedicated to each. However, if you
use a BYTE or TEXT variable inside a function and the variable is local to the
function, the memory is freed when the function is exited.

If you use a FREE statement with a BYTE or TEXT variable stored in a file, the
FREE statement deletes the file from the host operating system and renders
the variable unusable. You must reinitialize the variable using the LOCATE
statement before you can use it again. ♦

References
In this manual, see the following statements: CLOSE, DECLARE, EXECUTE,
EXECUTE IMMEDIATE, and PREPARE.

In the IBM Informix Guide to SQL: Tutorial, see the discussion of the FREE
statement.

I4GL
7-168 IBM Informix Guide to SQL: Reference

GET DESCRIPTOR
GET DESCRIPTOR

Purpose
Use the GET DESCRIPTOR statement to accomplish three separate tasks:

� Determine how many values are described in a system descriptor
area by retrieving the value in the COUNT field

� Determine characteristics of each of the columns or expressions
described in the system descriptor area

� Copy a value out of the system descriptor area and into a host
variable after a FETCH statement
Syntax 7-169

Syntax
Syntax

,

item
number

VALUE

descriptor
variable

"descriptor"GET DESCRIPTORESQL host variable = COUNT

item
number
variable

Described
Item Info

Described
Item Info

field host
variable

= TYPE

LENGTH

PRECISION

SCALE

NULLABLE

INDICATOR

NAME

DATA

ITYPE

IDATA

ILEN

descriptor is a quoted string that identifies a system descriptor area that
is already allocated.

descriptor
variable

is an embedded variable name that identifies a system descrip-
tor area that is already allocated.

field host
variable

is the name of a host variable that receives the contents of the
indicated field of the system descriptor area. The field host
variable must be of an appropriate type to receive the value
from the system descriptor area.

host variable is the name of an integer host variable.
7-170 IBM Informix Guide to SQL: Reference

Usage
Usage
If an error occurs during the assignment to any of the identified host
variables, the contents of the host variable is undefined.

The role and contents of each of the fields in a system descriptor area are
described in Chapter 6.

The host variables used in the GET DESCRIPTOR statement must be declared
in the BEGIN DECLARE SECTION of an ESQL program. See your embedded-
language manual for specifics.

Using the COUNT Keyword

Use the COUNT keyword to determine how many values are described into
the system descriptor area.

The following IBM Informix ESQL/C example shows how to use a GET
DESCRIPTOR statement with a host variable to determine how many values
are described in the system descriptor area called desc1.

main()
{
$int h_type, h_count;
$ALLOCATE DESCRIPTOR 'desc1' WITH MAX OCCURENCES 20;

/* This section of program would prepare a SELECT or INSERT *
 * statement int the s_id statement id.
*/
$DESCRIBE s_id USING SQL DESCRIPTOR 'desc1';

$GET DESCRIPTOR 'desc1' $h_count = COUNT;
...
}

item number is an unsigned integer that represents one of the values in the
descriptor area.

item number
variable

is the name of an integer variable that contains an unsigned
integer that represents one of the values in the descriptor area.
Syntax 7-171

Usage
VALUE Clause

Use the VALUE clause to obtain information about a described column or
expression or to retrieve values returned by the database server.

The item number must be greater than zero and less than the number of occur-
rences specified when the system descriptor area was allocated using
ALLOCATE DESCRIPTOR.

Using the VALUE Clause After a Describe

After you describe a SELECT or INSERT statement, the characteristics of each
of the columns or expressions in the select list of the SELECT statement or the
characteristics of each of the columns in the INSERT statement are returned
in the system descriptor area. Each of the values in the system descriptor area
describes one returned column or expression. Each of the fields, and its
possible contents, are described in Chapter 6.

The following IBM Informix ESQL/C example shows how a GET DESCRIPTOR
statement can be used to obtain data type information from the demodesc
system descriptor area.

Figure 7-40
A program fragment that copies data type information into host variables for later analysis
$ GET DESCRIPTOR 'demodesc' VALUE $index

 $type = TYPE,
 $len = LENGTH,
 $name = NAME;

 printf(" Column %d: type = %d, len = %d, name = %s\n",
index, type, len, name);

}

The value returned by the database server into the TYPE field is a defined
integer. You can evaluate the type returned by testing for a specific integer
value. The codes for the TYPE field are listed in Chapter 6.

In X/Open mode, the X/Open code is returned to the TYPE field. You must be
careful not to mix the two modes because errors can result. For example, if a
particular type is not defined under X/Open mode but is defined for
IBM Informix products, the execution of a GET DESCRIPTOR statement can
result in an error.

In X/Open mode, a warning message appears if ILENGTH, IDATA, or ITYPE is
used. It indicates that these types are not standard X/Open fields for a system
descriptor area. ♦

X/O
7-172 IBM Informix Guide to SQL: Reference

Usage
If the TYPE of a fetched value is DECIMAL or MONEY, the database server
returns the precision and scale information for a column into the PRECISION
and SCALE fields after a DESCRIBE statement is executed. If the TYPE is not
DECIMAL or MONEY, the SCALE and PRECISION fields are undefined.

Using the VALUE Clause After a Fetch

Each time your program fetches a row, it must copy the fetched value into
host variables so that the data can be used. To accomplish this, use a GET
DESCRIPTOR statement after each fetch for each of the values in the select list.
If there are three values in the select list, you need to use three GET
DESCRIPTOR statements after each fetch (assuming you want to read all
three values). The item numbers for each of the three GET DESCRIPTOR state-
ments are 1, 2, and 3.

The following IBM Informix ESQL/C example shows how you can copy the
data out of the DATA field into a host variable (result) after a fetch. For this
example, it is predetermined that all values returned are the same data type.

Figure 7-41
An ESQL/C program fragment that copies values from the DATA field into a host variable
 $FETCH democursor USING SQL DESCRIPTOR 'demodesc';
 if (sqlca.sqlcode != 0) break;
 for (i = 1; i <= desc_count; i++)
 {
 $ GET DESCRIPTOR 'demodesc' VALUE $i $result = DATA;
 printf("%s ", result);
 }
 printf("\n");
 }

The following IBM Informix ESQL/COBOL example shows how you can copy
the data out of the DATA field into host variables after a fetch. The first use of
GET DESCRIPTOR uses a literal item number; the second GET DESCRIPTOR
uses a host variable to hold the item number.

Figure 7-42
GET DESCRIPTOR after a fetch in ESQL/COBOL

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 COUNTSQLINT.
01 ITEMNOSQLINT.
01 TYPESQLINT.
01 LENGTHSQLINT.
01 LONGVALSQLINT.
01 CHVALSQLCHAR(21).
EXEC SQL END DECLARE SECTION END-EXEC.
Syntax 7-173

References
EXEC SQL GET DESCRIPTOR 'desc1' VALUE 1
 :TYPE = TYPE, :LENGTH = LENGTH, :CHVAL = DATA
 END-EXEC.

MOVE 2 TO ITEMNO.
EXEC SQL GET DESCRIPTOR 'desc1' VALUE :ITEMNO
 :TYPE = TYPE, :LONGVAL = DATA
 END-EXEC.

.

.

.

Fetching a Null Value

When you use GET DESCRIPTOR after a fetch and the value fetched is null,
then the INDICATOR field is set to -1 (NULL). The value of DATA is undefined
if INDICATOR indicates a null value. The host variable into which DATA is
copied has an unpredicatable value.

References
In this manual, for further information about using dynamic SQL statements,
see the following statements: ALLOCATE DESCRIPTOR, DEALLOCATE
DESCRIPTOR, DECLARE, DESCRIBE, EXECUTE, FETCH, OPEN, PREPARE, PUT,
and SET DESCRIPTOR.

Also in this manual, for further information about the system descriptor area,
see Chapter 6, “Using Descriptors.”
7-174 IBM Informix Guide to SQL: Reference

GRANT
GRANT

Purpose
Use the GRANT statement to specify access privileges for a database or for the
tables and views in a database.

Syntax

ON

WITH GRANT OPTION

TO PUBLIC

user

,

AS grantor

GRANT TO PUBLIC

user

,

Table
Name

p. 7-434

+

+

+

View
Name

p. 7-438

Database-
Level

 Privileges
p. 7-177

Table-
Level

Privileges
p. 7-179

Synonym
Name

p. 7-432

EXECUTE ON
Procedure

Name
p. 7-424
Syntax 7-175

Usage
Usage
A GRANT statement can extend user privileges but cannot limit existing
privileges. Later GRANT statements do not affect privileges already granted
to a user. When database-level privileges collide with table-level privileges,
the more restrictive privileges take precedence. You can grant table-level
privileges on a table or on a view.

Privileges granted to users remain in effect until you cancel them with a
REVOKE statement. Only grantors can revoke the privileges that they previ-
ously granted.

You cannot use a ROLLBACK WORK statement to undo a GRANT statement
that successfully executes. If you roll back a transaction that contains a
GRANT statement, the privilege is not revoked and you do not receive an
error message. ♦

grantor identifies the user who is granting the privilege to user. As the
current user, you are the default grantor.

user names the user or users who receive privileges. Granting priv-
ileges to PUBLIC extends a privilege to the class of all autho-
rized users, both current and future.

SE
7-176 IBM Informix Guide to SQL: Reference

Database-Level Privileges
Database-Level Privileges

When you create a database, you alone have access to it. The database
remains inaccessible to other users until you, as database administrator
(DBA), grant database privileges.

Three levels of database privileges control access. These privilege levels are,
from lowest to highest, Connect, Resource, and DBA. These privileges are
associated with the following keywords:

CONNECT Connect privilege gives you the ability to query and modify
data. You can modify the database schema if you own the
object you wish to modify. Any user with Connect privilege
can perform the following functions:

� Execute SELECT, INSERT, UPDATE, and DELETE state-
ments, provided the user has the necessary table-level
privileges

� Create views, provided the user has Select privilege
on the underlying tables

� Create synonyms

� Create temporary tables and create indexes on the
temporary tables

� Alter or drop a table or an index, provided the user
owns the table or index (or has Alter, Index, or Refer-
ences privileges on the table)

� Grant privileges on a table or view, provided the user
owns the table (or has been given privileges on the
table with the WITH GRANT OPTION keywords)

CONNECT

RESOURCE

DBA
Syntax 7-177

Database-Level Privileges
User informix has the privilege required to alter tables in the system catalog,
including the systables table.

Important: Although user informix can modify the system catalog tables, it is
strongly recommended that you do not update, delete, or alter any rows in these
tables. Modifying the system catalog tables can destroy the integrity of the database.

The following example uses the PUBLIC keyword to grant Connect privilege
on the stores5 database to all users:

GRANT CONNECT ON stores5 TO PUBLIC

RESOURCE Resource privilege gives you the ability to extend the structure
of the database. In addition to the capabilities of the Connect
privilege, the holder of the Resource privilege can perform the
following functions:

� Create new tables

� Create new indexes

� Create new procedures

DBA In addition to the capabilities of the Resource privilege, the
holder of the DBA privilege can perform the following func-
tions:

� Grant any database-level privilege, including DBA
privilege, to another user

� Use the NEXT SIZE keywords to alter extent sizes in the
system catalog

� Insert, delete, or update rows of any system catalog
table except systables

� Drop any object, regardless of who owns it

� Create tables, views, and indexes, and specify another
user as owner of the objects

� Execute the DROP DATABASE statements

� Execute the START DATABASE and ROLLFORWARD
DATABASE statements ♦

SE
7-178 IBM Informix Guide to SQL: Reference

Table-Level Privileges
Table-Level Privileges

As owner of a table, or as DBA, you control access to the table through seven
table-level privileges. Four privileges control access to the table data: Select,
Insert, Delete, and Update. The remaining three privileges are Index, which
controls index creation, Alter, which controls the ability to change the table
definition or alter an index, and References, which controls the ability to
place referential constraints on table columns.

The person who creates a table is its owner and receives all seven table-level
privileges by virtue of ownership. Table ownership cannot be transferred to
another user.

,

column

ALL

PRIVILEGES

DELETE

SELECT

UPDATE

REFERENCES

INDEX

ALTER

()

+

,

column()

,

column()

+

INSERT

,

Syntax 7-179

Table-Level Privileges
To use the GRANT statement, list the privileges that you are granting to user.
If you are granting all table-level privileges, use the keyword ALL. If you are
granting Select, Update, or References privilege, you can limit the privileges
by listing the names of specific columns.

If you are granting the Index privilege with the intent of allowing user to
make changes to the underlying structure of a table, be aware that user must
also have Resource privilege for the database to modify the database
structure. The table-level privileges are defined as follows:

The following example grants Delete and Select privileges on all columns,
and Update privilege on customer_num, fname, and lname for the customer
table, to users mary and john:

GRANT DELETE, SELECT, UPDATE (customer_num, fname, lname)
ON customer TO mary, john

SELECT Ability to name any column in SELECT statements. You can
restrict the Select privilege to one or more columns by listing
them.

UPDATE Ability to name any column in UPDATE statements. You can
restrict the Update privilege to one or more columns by listing
them.

INSERT Ability to insert rows.

DELETE Ability to delete rows.

INDEX Ability to create permanent indexes. You must have Resource
privilege to take advantage of Index privilege. (Any user with
Connect privilege can create an index on temporary tables.)

ALTER Ability to add or delete columns, modify column data types, or
add or delete constraints.

REFERENCES Ability to reference columns in referential constraints. You
must have Resource privilege to take advantage of References
privilege. (However, you can add a referential constraint dur-
ing an ALTER TABLE statement. This does not require that you
have Resource privilege on the database.) You can restrict the
References privilege to one or more columns by listing them.

ALL All privileges. The PRIVILEGES keyword is optional.
7-180 IBM Informix Guide to SQL: Reference

Stored Procedure Privileges
To grant these table-level privileges to all authorized users, use the keyword
PUBLIC as follows:

GRANT DELETE, SELECT, UPDATE (customer_num, fname, lname)
ON customer TO PUBLIC

You must take action to restrict privileges at the table level. The database
server automatically grants to PUBLIC all table-level privileges except Alter
and References when you create a table. To limit table access, you must
revoke all privileges and regrant only those you want, as shown in the
following example:

REVOKE ALL ON customer FROM PUBLIC
GRANT ALL ON customer TO john, mary
GRANT SELECT (fname, lname, company, city)

ON customer TO PUBLIC

In an ANSI-compliant database, only the table owner receives privileges
when a table is created. ♦

Stored Procedure Privileges
Use the EXECUTE ON option with a procedure name to grant another user the
ability to run a stored procedure that you own.

When you create an owner-privileged stored procedure, the default privilege
is PUBLIC.

If you create a procedure in a database that is ANSI-compliant, no default-
level privileges are granted. ♦

WITH GRANT OPTION
Using the WITH GRANT OPTION keywords conveys the specified privilege to
user along with the right to grant those same privileges to other users. You
create a chain of privileges that begins with you and extends to user, and to
whomever user conveys the right to grant privileges. If you use the WITH
GRANT OPTION keywords, you can no longer control the dissemination of
privileges.

ANSI

ANSI
Syntax 7-181

AS grantor
If you revoke from user the privilege that you granted using the WITH GRANT
OPTION keywords, you sever the chain of privileges. That is, when you
revoke privileges from user, you revoke automatically the privileges of all
users who received privileges from user or from the chain that user created
(unless user, or the users who received privileges from user, were granted the
same set of privileges by someone else). The following examples illustrate
this situation. You, as the owner of table items, issue these statements to grant
access only to Mary:

REVOKE ALL ON items FROM PUBLIC
GRANT SELECT, UPDATE ON items TO mary WITH GRANT OPTION

Mary uses her new authority to grant both Cathy and Paul access to the table:

GRANT SELECT, UPDATE ON items TO cathy
GRANT SELECT ON items TO paul

Later you issue the following statement to cancel Mary’s access privileges on
items:

REVOKE SELECT, UPDATE ON items FROM mary

This single statement effectively revokes all privileges on items from Mary,
Cathy, and Paul.

If you want to create a chain of privileges with some other user as the source
of the privilege, use the AS grantor clause.

AS grantor
The AS grantor clause enables you to establish a chain of privileges with
another user as the source of the privileges. In so doing, you relinquish your
ability to break the chain of privileges. Even a DBA cannot revoke a privilege
unless that DBA originally granted the privilege. The following example illus-
trates this situation. You are the owner of table items and you grant all
privileges to Tom, along with the right to grant all privileges:

REVOKE ALL ON items FROM PUBLIC
GRANT ALL ON items TO tom WITH GRANT OPTION
7-182 IBM Informix Guide to SQL: Reference

Privileges on a View
You also grant Select and Update privileges to Jim, but you specify that the
grant is made as Tom. (This means that the records of the database server will
show that Tom is the grantor of the grant in the systabauth system catalog
table, rather than you.)

GRANT SELECT, UPDATE ON items TO jim AS tom

Later, you decide to revoke Tom’s privileges on items; you issue the
following statement:

REVOKE ALL ON items FROM tom

When you try to revoke Jim’s privileges with a similar statement, however,
the database server returns an error:

REVOKE SELECT, UPDATE ON items FROM jim

580: Cannot revoke permission.

Because the database server record shows the original grantor as Tom, you
cannot revoke the privilege. Even though you are the table owner, you cannot
revoke a privilege that another user granted.

Privileges on a View
You must explicitly grant access privileges on the view to users, because no
automatic grant is made to PUBLIC as is the case with a newly created table.

When creating a view, if you do not own the underlying tables, you must
have at least Select privilege on the table or columns. As view creator, the
privileges you have on the underlying table apply to the view built on the
table. You do not receive any other privileges, or the ability to grant any other
privileges, because you own the view on the table. If the view meets all the
requirements for updating, any Delete, Insert, or Update privileges you have
on the table also apply to the view.

You can grant (or revoke) privileges on a view only if you are the owner of
the underlying tables or if you received these privileges on the table with the
right to grant them (WITH GRANT OPTION). If you are able to create the view,
you can grant at least Select privilege on it. If a view is built on more than one
table, the view only has Select privilege. You cannot grant Index, Alter, or
References privileges on a view (or All privilege, since All includes Index and
Alter).
Syntax 7-183

References
For views that reference only tables in the current database, if the owner of a
view loses Select privilege on any of the tables underlying the view, the view
is dropped.

For detailed information, refer to the CREATE TABLE statement, which also
describes creating views.

References
In this manual, see the following statements: CREATE TABLE and REVOKE.

In the IBM Informix Guide to SQL: Tutorial, see the discussions of database and
table-level privileges, and privileges and security.
7-184 IBM Informix Guide to SQL: Reference

INFO
INFO

Purpose
Use the INFO statement to display a variety of information about databases
and tables.

Syntax

Usage
The following types of information can be displayed by issuing the INFO
statement:

� The names of the tables in the current database

� Column information for a specified table

� Index information for a specified table

� Access privileges for a specified table

� References privileges for the columns of a specified table

� Status information for a specified table

Instead of using the SQL statement INFO, you can use the Info options on the
SQL menu or TABLE menu to display the same information.

INFO TABLES

COLUMNS

INDEXES

ACCESS

PRIVILEGES

REFERENCES

FOR
Table
Name

p. 7-434

DB
ISQL

+

STATUS
Syntax 7-185

Usage
Displaying Tables, Columns, and Indexes

You can use keywords in your INFO statement to display a list of tables, infor-
mation about the columns of a table, or information about the indexes of a
table.

Use the TABLES keyword to display a list of the tables in the current database.
The name of a table can appear in one of two ways:

� If you are the owner of the cust_calls table, it appears as cust_calls.

� If you are not the owner of the cust_calls table, the table name is
preceded by the owner’s name, as in “june”.cust_calls.

Use the COLUMNS FOR keywords to display the names and data types of the
columns in a specified table and whether null values are allowed. The
following examples show an INFO statement and the resulting display of
information about the columns in a table.

Figure 7-43
INFO statement requesting column information

INFO COLUMNS FOR cust_calls

Figure 7-44
Display of column information

Column name Type Nulls

customer_num INTEGER no
call_dtime DATETIME YEAR TO MINUTE yes
user_id CHAR(18) yes
call_code CHAR(1) yes
call_descr CHAR(240) yes
res_dtime DATETIME YEAR TO MINUTE yes
res_descr CHAR(240) yes

Use the INDEXES FOR keywords to display the name, owner, and type of each
index in a specified table, whether the index is clustered, and the names of
the columns that are indexed. The following examples show an INFO
statement and the resulting display of information about the indexes of a
table.
7-186 IBM Informix Guide to SQL: Reference

Usage
Figure 7-45
INFO statement requesting index information

INFO INDEXES FOR cust_calls

Figure 7-46
Display of index information

Index name Owner Type Cluster Columns

c_num_dt_ix velma unique No customer_num
call_dtime

c_num_cus_ix velma dupls No customer_num

Displaying Privileges, References, and Status

You can use keywords in your INFO statement to display information about
the access privileges (including References privilege) or status of a table.

Use the ACCESS FOR or PRIVILEGES FOR keywords to display six of the user
access privileges for a specified table. The following examples show an INFO
statement and the resulting display of user privileges for a table.

Figure 7-47
INFO statement requesting privileges information

INFO PRIVILEGES FOR cust_calls

Figure 7-48
Display of privileges information

User Select Update Insert Delete Index Alter

public All All Yes Yes Yes No

Use the REFERENCES FOR keywords to display the References privilege for
users for the columns of a specified table. The following examples show an
INFO statement and the resulting display.

Figure 7-49
INFO statement requesting References privilege information

INFO REFERENCES FOR newtable
Syntax 7-187

Usage
Figure 7-50
Display of References privilege information

User Column References

betty col1
col2
col3

wilma All
public None

The output indicates that the user “betty” can reference columns col1, col2,
and col3 of the specified table, the user “wilma” can reference all the columns
in the table, and “public” cannot access any of the columns in the table.

If you want information about database-level privileges, you must use a
SELECT statement to access the sysusers system catalog table.

See the GRANT and REVOKE statements for more information about database
and table access privileges.

Use the STATUS FOR keywords to display information about the owner, row
length, number of rows and columns, creation date, and status of audit trails
for a specified table. The following examples show an INFO statement and
the resulting display of status information for a table on an IBM Informix SE
database server.

Figure 7-51
INFO statement requesting status information

INFO STATUS FOR cust_calls

Figure 7-52
Display of status information

Table Name cust_calls
Owner velma
Row Size 517
Number of Rows 7
Number of Columns 7
Date Created 01/28/1991
Audit Trail File

The audit trail file line does not appear for tables on IBM Informix OnLine. ♦OL
7-188 IBM Informix Guide to SQL: Reference

INSERT
INSERT

Purpose
Use the INSERT statement to insert one or more new rows into a table or view.
Syntax 7-189

Syntax
Syntax

Usage
You can use the INSERT statement to create either a single new row of column
values or a group of new rows using data selected from other tables.

To insert data into a table, you must either own the table or have Insert
privilege for the table (see the GRANT statement on page 7-175). To insert data
into a view, you must have the required Insert privilege, and the view must
meet the requirements explained in “Inserting Rows Through a View” later
in this section.

column name is the column that receives the new data.

parameter
name

is the name of the parameter as defined by its CREATE PROCE-
DURE statement.

,

Synonym
Name

p. 7-432

,

column
name

()

INSERT INTO
Table
Name

 p. 7-434

View
Name

 p. 7-438

EXECUTE PROCEDURE
Procedure

Name
p. 7-424

Argument

)(

VALUES Clause
 p. 7-194

SELECT
Statement
(Subset)
p. 7-197

parameter
name =

SELECT
Statement
(singleton)
p. 7-258

SPL
Expression

p. 8-23

Argument
7-190 IBM Informix Guide to SQL: Reference

Specifying Columns
If you insert data into a table that has data integrity constraints associated
with it, the data inserted must meet the constraint criteria. If it does not, the
database server returns an error.

Specifying Columns
If you do not explicitly specify one or more columns, data is inserted into
columns using the column order of the table established when the table was
created or last altered. The column order is listed in the syscolumns system
catalog table.

You can use the DESCRIBE statement with a SELECT statement to obtain the
column order or the data type of the columns in a table. (For more infor-
mation about the DESCRIBE statement, see page 7-125.) ♦

The number of columns specified in the INSERT INTO clause must equal the
number of values supplied in the VALUES clause, or supplied by the SELECT
statement, either implicitly or explicitly. If you specify columns, the columns
receive data in the order in which you list them. The first value following the
VALUES keyword is inserted into the first column listed, the second value is
inserted into the second column listed, and so on.

Inserting Rows Through a View
You can insert data through a single-table view if you have Insert privilege on
the view. To do this, the defining SELECT statement can select from only one
table and it cannot contain any of the following components:

� DISTINCT keyword

� GROUP BY clause

� Derived value (also referred to as a virtual column)

� Aggregate value

Columns in the underlying table that are unspecified in the view receive
either a default value or a null value if no default is specified. If one of these
columns does not specify a default value and a null value is not allowed, the
insert fails.

E/C
Syntax 7-191

Inserting Rows with a Cursor
You can use data integrity constraints to prevent users from inserting values
into the underlying table that do not fit the view-defining SELECT statement.
For further information, refer to the WITH CHECK OPTION discussion under
the CREATE VIEW statement (page 7-100).

If several users are entering sensitive information into a single table, you can
use the USER function to limit the their view to only the specific rows that
each inserted. The following example contains a view and an INSERT
statement that achieve this effect:

CREATE VIEW salary_view AS
SELECT lname, fname, current_salary

FROM salary
WHERE entered_by = USER

INSERT INTO salary
VALUES ("Smith", "Pat", 75000, USER)

Inserting Rows with a Cursor
If you associate a cursor with an INSERT statement, you must use the OPEN,
PUT, and CLOSE statements to carry out the INSERT operation. For databases
that have transactions but are not ANSI-compliant, you must issue these
statements within a transaction.

If you are using a cursor associated with an INSERT statement, the rows are
buffered before they are written to the disk. The insert buffer is flushed under
the following conditions:

� The buffer becomes full

� A FLUSH statement executes

� A CLOSE statement closes the cursor

� An OPEN statement implicitly closes and then reopens the cursor

� A COMMIT WORK statement ends the transaction

When the insert buffer is flushed, the front-end processor performs appro-
priate data conversion before it sends the rows to the database server. When
the database server receives the buffer, it begins to insert the rows one at a
time into the database. If an error is encountered while the database server
inserts the buffered rows into the database, any buffered rows following the
last successfully inserted rows are discarded. ♦

I4GL

ESQL
7-192 IBM Informix Guide to SQL: Reference

Inserting Rows into a Database Without Transactions
Inserting Rows into a Database Without Transactions
If you are inserting rows into a database without transactions, you must take
explicit action to restore inserted rows. For example, if the INSERT statement
fails after inserting some rows, the successfully inserted rows remain in the
table. You cannot recover automatically from a failed insert.

Inserting Rows into a Database with Transactions
If you are inserting rows into a database with transactions and you are using
explicit transactions, you can undo the insertion using the ROLLBACK WORK
statement. If you do not execute BEGIN WORK before the insert and the insert
fails, the database server automatically rolls back any database modifications
made since the beginning of the insert.

If you are inserting rows into an ANSI-compliant database, transactions are
implicit and all database modifications take place within a transaction. In this
case, if an INSERT statement fails, you can use the ROLLBACK WORK
statement to undo the insertions. ♦

Rows that you insert within a transaction remain locked until the end of the
transaction. The end of a transaction is either a COMMIT WORK statement,
where all modifications are made to the database, or ROLLBACK WORK
statement, where none of the modifications are made to the database. If the
number of rows affected by a single INSERT statement is quite large, you can
exceed the maximum number of simultaneous locks permitted. To prevent
this situation, either insert fewer rows per transaction or lock the page or the
entire table before you execute the INSERT statement.

To prevent this situation, either insert fewer rows per transaction or lock the
entire table before you execute the INSERT statement. ♦

ANSI

SE
Syntax 7-193

VALUES Clause
VALUES Clause

indicator
variable

is a variable associated with a host variable that indicates
when an ESQL statement returns a null value to that host vari-
able.

variable name is a program variable, host variable, or record name as defined
in an IBM Informix 4GL program or Informix embedded-lan-
guage program.

variable
name

,

Quoted String
p. 7-426

USER
p. 7-377

TODAY p. 7-379

CURRENT p. 7-379

SITENAME p. 7-378

Literal Number
p. 7-422

Literal Datetime
 p. 7-416

Literal Interval
 p. 7-419

OL

I4GL
ESQL

NULL

)(

VALUES Clause

:indicator variable

$indicator variable

ESQL

+

DBSERVERNAME
p. 7-378

VALUES
7-194 IBM Informix Guide to SQL: Reference

VALUES Clause
When you use the VALUES clause, you can insert only one row at a time. Each
value that follows the VALUES keyword is assigned to the corresponding
column listed in the INSERT INTO clause (or in column order if a list of
columns is not specified).

If you previously defined a RECORD-type program variable for the table, you
can use the program variable in place of a list of values. ♦

If you are inserting a quoted string into a column, the maximum length of the
string is 256 bytes. If you insert a value greater than 256, the database server
returns an error.

If you are using variables, you can insert quoted strings longer than 256 bytes
into a table. ♦

Value and Column Type Compatibility

Although the values you insert do not have to be the same data type as the
columns receiving them, the value type and column type must be
compatible. You can insert only characters into CHAR columns and only
numbers or characters representing number data into number columns. The
following example inserts values into the columns of the customer table:

INSERT INTO customer
VALUES (0, "Nadia", "Broadam", "Ski & Stuff",

"89 Coniston Road", NULL, "Short Hills",
"NJ", "07079", "201-457-4100")

The database server makes every effort to perform data conversion. If the
data cannot be converted, the INSERT operation fails. Data conversion also
fails if the target data type cannot hold the value specified. For example, you
cannot insert the integer 123456 into a column defined as a SMALLINT data
type because this data type cannot hold a number that large.

I4GL

I4GL

ESQL
Syntax 7-195

VALUES Clause
Inserting Values into SERIAL Columns

If you want to insert consecutive serial values into a SERIAL column in the
table, enter a zero for a SERIAL column in the INSERT statement. When a
SERIAL column is set to zero, the database server assigns the next highest
value. If you want to enter an explicit value into a SERIAL column, specify the
nonzero value after first verifying that the value does not duplicate one
already in the table. If the SERIAL column is uniquely indexed or has a unique
constraint and you try to insert a value that duplicates one already in the
table, an error occurs. For more information about the SERIAL data type, see
Chapter 3, “Data Types.”

Using Functions in the VALUES Clause

You can insert the current date, date and time, login name of the current user,
or database server name of the current OnLine database into a column. The
TODAY keyword returns the system date. The CURRENT keyword returns the
system date and time. The USER keyword returns an eight-character string
containing the login account name of the current user. The SITENAME or
DBSERVERNAME keyword returns the database server name on which the
current database resides. The following example uses the CURRENT and
USER keywords to insert a new row into the cust_calls table:

INSERT INTO cust_calls (customer_num, call_dtime, user_id,
call_code, call_descr)

VALUES (212, CURRENT, USER, "L", "2 days")

Inserting Nulls with the VALUES Clause

When you execute an INSERT statement, a null value is inserted into any
column for which you do not provide a value and for all columns not listed
explicitly that do not have default values associated with them. You also can
use the keyword NULL to indicate that a column should be assigned a null
value. The following example inserts values into three columns of the orders
table:

INSERT INTO orders (orders_num, order_date, customer_num)
VALUES (0, NULL, 123)

In this example, a null value is explicitly entered in the order_date column,
while all other columns of the orders table not explicitly listed in the INSERT
INTO clause are also filled with null values.
7-196 IBM Informix Guide to SQL: Reference

Subset of SELECT Statement
Subset of SELECT Statement
You can insert the rows of data that result from a SELECT statement into a
table if the insert data is selected from another table or tables. The following
SELECT clauses are not supported:

� INTO TEMP clause

� ORDER BY clause

In addition, the FROM clause of the SELECT statement cannot contain the
same table name as the table into which you are inserting rows, as shown in
the following example:

INSERT INTO newtable
SELECT item_num, order_num, quantity, stock_num,

manu_code, total_price
FROM items

Detailed information on SELECT statement syntax is provided on page 7-258.

Using INSERT as a Dynamic Management Statement
You can use the INSERT statement to handle situations in which you need to
write code that can insert data whose structure is unknown at the time you
compile. For more information, refer to the dynamic management section in
the manual for your IBM Informix embedded-language product. ♦

Inserting Data Using a Stored Procedure
You can insert the rows of data that result from a procedure call into a table.

The values returned by the procedure must match those expected by the
column-list in number and data type. The number and data types of the
columns must match those expected by the column-list.

ESQL
Syntax 7-197

References
References
In this manual, for general use information, see the following statement:
SELECT.

Also in this manual, for specific information about dynamic management
statements, see the following statements: DECLARE, DESCRIBE, EXECUTE,
FLUSH, OPEN, PREPARE, and PUT.

In the IBM Informix Guide to SQL: Tutorial, see the discussion of inserting data.
7-198 IBM Informix Guide to SQL: Reference

LOAD
LOAD

Purpose
Use the LOAD statement to insert data from an ASCII operating system file
into an existing table, synonym, or view.

Syntax

(

,

)

INSERT INTO

DELIMITER " delimiter "

column

insert
variable

Table
Name

p.7-434

LOAD FROM " filename "

I4GL

filename
variable

I4GL

delimiter
variable

I4GL

I4GL
DB

ISQL
+

Synonym
Name

p.7-432

View
Name

p.7-438

column is a column belonging to Table Name, Synonym Name, or View
Name. You must specify column names if you are not loading
data into all columns in the table, synonym, or view.

delimiter is a quoted string constant that contains the character to use as
the delimiting character in the load file.

delimiter
variable

is a character variable that contains the character to use as the
delimiter between fields. The default delimiter is the vertical
bar (| = ASCII 124).
Syntax 7-199

Usage
Usage
The LOAD statement appends new rows to the table. It does not overwrite
existing data.

You cannot add a row that has the same key as an existing row.

To use the LOAD statement, you must have INSERT privileges for the table
into which you want to insert the data. For information on database-level and
table-level privileges, see the GRANT statement on page 7-175.

If your database has transactions but is not ANSI-compliant, you must issue
a BEGIN WORK statement before using the LOAD statement.

You cannot use the PREPARE statement to preprocess a LOAD statement. ♦

The LOAD FROM File

The LOAD FROM file is the file that contains the data to add to a table. You can
use the file created by the UNLOAD statement as the LOAD FROM file.

If you do not include a list of columns in the INSERT INTO clause, the fields
in the file must match the columns specified for the table in number, order,
and type.

filename is a quoted string constant or character string that specifies the
file that contains the data to load. It includes the pathname of
an operating system file.

filename
variable

is a CHARACTER or VARCHAR variable that specifies the name
of the file that contains the data to load.

insert variable is a CHARACTER or VARCHAR variable that contains an
INSERT statement. IBM Informix 4GL uses the INSERT state-
ment to determine the tables and columns in which to load the
new data. The INSERT statement cannot contain a VALUES or
SELECT clause. (See the INSERT statement on page 7-189.)

I4GL
7-200 IBM Informix Guide to SQL: Reference

Usage
Each line of the file must have the same number of fields. You must define
field lengths that are less than or equal to the length specified for the corre-
sponding column. Specify only values that IBM Informix 4GL, IBM Informix
SQL, or DB-Access can convert to the data type of the corresponding column.
The following table indicates how your IBM Informix product expects you to
represent the data types in the LOAD FROM file.

Figure 7-53
Types of data and their input format for a LOAD statement

If you include any of the following special characters as part of the value of a
field, you must precede the character with a backslash (\):

� Backslash

� Delimiter

� New line anywhere in the value for a VARCHAR column

� New line at end of a value for a TEXT value

Do not use the backslash character as a field separator. It serves as an escape
character to inform the LOAD command that the next character is to be inter-
preted as part of the data.

Type of Data Expected Input Format

blank One or more blank characters between delimiters. You can
include leading blanks in fields that do not correspond to
character columns.

date A character string in the following format: month/day/year.
You must state the month as a two-digit number. You can
use a two-digit number for the year if the year is in the 20th
century. The value must be an actual date; for example,
February 30 is illegal.

MONEY A value that can have leading currency symbols.

NULL Nothing between the delimiters.

time A character string in the following format: year-month-day
hour:minute:second.fraction

You cannot use type specification or qualifiers for
DATETIME or INTERVAL values. The year must be a four-
digit number and the month a two-digit number.
Syntax 7-201

Usage
The fields corresponding to character columns can contain more characters
than the defined maximum for the field. IBM Informix 4GL, IBM Informix SQL,
and DB-Access ignore the extra characters.

If you are loading files containing VARCHAR or BLOB data types, note the
following information:

� If you give the LOAD statement data in which the character
(including VARCHAR) fields are longer than the column size, the
excess characters are disregarded.

� You cannot have leading and trailing blanks in BYTE fields.

� Use the backslash to escape embedded delimiter and backslash
characters in all character fields, including VARCHAR and TEXT.

� Data being loaded into a BYTE column must be in ASCII-hexadecimal
form. BYTE columns cannot contain preceding blanks.

� Do not use the following characters as delimiting characters in the
LOAD FROM file: 0-9, a-f, A-F, space, tab, backslash.

For more information about the format of the input file, see the discussion of
the dbload utility in either the IBM Informix OnLine Administrator’s Guide or
the IBM Informix SE Administrator’s Guide.

The following example shows the contents of a hypothetical input file named
new_custs:

0|Jeffery|Padgett|Wheel Thrills|3450 El Camino|Suite 10|
Palo Alto|CA|94306||
0|Linda|Lane|Palo Alto Bicycles|2344 University||
Palo Alto|CA|94301|(415)323-6440

This data file conveys the following information:

� Indicates a serial field by specifying a zero (0)

� Uses the default delimiter character, the vertical bar (|)

� Assigns null values to the phone field for the first row and the
address2 field for the second row

The following statement loads the values from the new_custs file into the
customer table owned by jason:

LOAD FROM "new_custs" INSERT INTO jason.customer
7-202 IBM Informix Guide to SQL: Reference

References
DELIMITER Clause

Use the DELIMITER clause to specify the delimiter that separates the data
contained in each column in a row in the input file. If you omit this clause,
IBM Informix 4GL, IBM Informix SQL, and DB-Access check the DBDELIMITER
environment variable.

If the DBDELIMITER variable has not been set, the default delimiter is the
vertical bar (| = ASCII 124). See Chapter 4 in this manual for information
about how to set the DBDELIMITER environment variable.

The following statement identifies the semicolon (;) as the delimiting
character:

LOAD FROM "/a/data/ord.loadfile" DELIMITER ";"
INSERT INTO orders

INSERT INTO Clause

Use the INSERT INTO clause to specify the table, synonym, or view in which
to load the new data. (See the discussion of Synonym Name, Table Name, and
View Name beginning on page 7-432 for details.)

You must specify the column names only if one of the following conditions is
true:

� You are not loading data into all columns.

� The input file does not match the default order of the columns (deter-
mined when the table was created).

The following example identifies the price and discount columns as the only
columns in which to add data:

LOAD FROM "/tmp/prices" DELIMITER ","
INSERT INTO norman.worktab(price,discount)

References
In this manual, see the following statements: UNLOAD and INSERT.

In the IBM Informix OnLine Administrator’s Guide or the IBM Informix SE Admin-
istrator’s Guide, see the discussion of the dbload utility.
Syntax 7-203

LOCK TABLE
LOCK TABLE

Purpose
Use the LOCK TABLE statement to control access to a table by other processes.

Syntax

Usage
You can lock a table if you own the table or have Select privilege on the table
or on a column in the table, either from a direct grant or from a grant to
PUBLIC. The LOCK TABLE statement fails if the table is already locked in
exclusive mode by another process or if an exclusive lock is attempted while
another user has locked the table in share mode.

The SHARE keyword locks a table in shared mode. Shared mode allows other
processes read access to the table, but denies write access. Other processes
cannot update or delete data if a table is locked in shared mode.

The EXCLUSIVE keyword locks a table in exclusive mode. Exclusive mode
denies other processes both read and write access to the table.

Exclusive-mode locking automatically occurs when you execute the ALTER
INDEX, CREATE INDEX, DROP INDEX, and ALTER TABLE statements.

The IBM Informix SE database server does not permit more than one user to
lock a table in shared mode. ♦

 LOCK TABLE IN SHARE

EXCLUSIVE

MODE+ Table
Name

p. 7-434

Synonym
Name

p. 7-432

SE
7-204 IBM Informix Guide to SQL: Reference

Databases with Transactions
Databases with Transactions
If your database was created with transactions, the LOCK TABLE statement
succeeds only if it is executed within a transaction. You must issue a BEGIN
WORK statement before you can execute a LOCK TABLE statement.

Transactions are implicit in an ANSI-compliant database. The LOCK TABLE
statement succeeds whenever the specified table is not already locked by
another process. ♦

The following guidelines apply to the use of the LOCK TABLE statement
within transactions:

� You cannot lock system catalogs.

� You cannot switch between shared and exclusive table locking
within a transaction. For example, once you lock the table in shared
mode, you cannot upgrade the lock mode to exclusive.

� If you issue a LOCK TABLE statement before you access a row in the
table, no row locks are set for the table. In this way, you can override
row-level locking and prevent a situation in which you exceed the
maximum number of locks defined in the IBM Informix OnLine
configuration.

The maximum number of locks allowed by the IBM Informix SE data-
base server is a characteristic of the particular operating system on
which your database server is running. ♦

� All row and table locks release automatically after a transaction is
completed. Note that the UNLOCK TABLE statement fails within a
database that uses transactions.

The following example shows how to change the locking mode of a table in
a database that was created with transaction logging:

BEGIN WORK
LOCK TABLE orders IN EXCLUSIVE MODE
 ...
COMMIT WORK
BEGIN WORK
LOCK TABLE orders IN SHARE MODE
 ...
COMMIT WORK

ANSI

SE
Syntax 7-205

Databases Without Transactions
Databases Without Transactions
In a database created without transactions, table locks set using the LOCK
TABLE statement are released after any of the following occurrences:

� An UNLOCK TABLE statement executes.

� The user closes the database.

� The user exits the application.

To change the lock mode on a table, release the lock with the UNLOCK TABLE
statement and then issue a new LOCK TABLE statement.

The following example shows how to change the lock mode of a table in a
database that was created without transactions:

LOCK TABLE orders IN EXCLUSIVE MODE
 ...
UNLOCK TABLE orders
 ...
LOCK TABLE orders IN SHARE MODE

References
In this manual, see the following statements: BEGIN WORK, SET ISOLATION,
SET LOCK MODE, COMMIT WORK, ROLLBACK WORK, and UNLOCK TABLE.

In the IBM Informix Guide to SQL: Tutorial, see the discussion of locks.
7-206 IBM Informix Guide to SQL: Reference

OPEN
OPEN

Purpose
Use the OPEN statement to activate a cursor associated with a SELECT or
INSERT statement, and thereby begin execution of the SELECT or INSERT
statement.

Syntax

,

variable name

I4GL

ESQL

E/C

ESQL

ESQL

SQL DESCRIPTOR "

descriptor
variable

cursor
id

USING

OPEN

descriptor"

cursor
variable

sqlda
pointer

DESCRIPTOR

cursor id identifies a cursor that was created by an earlier DECLARE
statement.

cursor
variable

is an embedded-language variable that identifies a cursor that
was created by an earlier DECLARE statement.

descriptor is a quoted string that identifies the system descriptor area that
was previously allocated.

descriptor
variable

 is an embedded-language variable name that identifies the
system descriptor area that was previously allocated.
Syntax 7-207

Usage
Usage
A cursor is created and associated with a statement using the DECLARE
statement (page 7-107). When the program opens the cursor, the associated
SELECT or INSERT statement is passed to the database server, which begins
execution. When the program has retrieved or inserted all the rows it needs,
the cursor should be closed using the CLOSE statement.

The specific actions taken by the database server differ, depending on
whether the cursor is associated with a SELECT statement or an INSERT
statement.

The (SELECT, INSERT, EXECUTE PROCEDURE) statement associated with a
cursor is prepared implicitly by the OPEN statement. The total number of
prepared objects and open cursors allowed in one program at any time is
limited by the available memory. You can use the FREE statement (to free the
cursor) to release the database server resources.

An error code is returned if you open a cursor that is already open. ♦

Opening a SELECT Cursor
When you open either a select cursor or an update cursor, the SELECT
statement is passed to the database server along with any values specified in
the USING clause. (If the statement was previously prepared, the statement
was passed to the database server when it was prepared.) The database
server processes the query to the point of locating or constructing the first
row of the active set.

sqlda pointer points to an sqlda structure that defines the type and memory
location of values that correspond to the question mark (?)
placeholder in a prepared statement.

variable name is a program or host variable whose contents are to replace a ?
placeholder in a prepared statement.

ANSI
7-208 IBM Informix Guide to SQL: Reference

Opening an Insert Cursor
Since this is the first time that the database server sees the query, it is the time
when many errors are detected. The database server does not actually return
the first row of data, but it sets a return code in the SQLCODE field of the
SQLCA. The name of the field in each product is indicated in the following
table:

The return code value is either negative or zero, as follows:

If the SELECT statement is valid but no rows match its criteria, the first FETCH
statement returns a value of 100 (SQLNOTFOUND), end of data.

The following example illustrates a simple OPEN statement in IBM Informix
4GL:

DECLARE s_curs CURSOR FOR
SELECT * FROM orders

OPEN s_curs

If you are working in a database with explicit transactions, you must open an
update cursor within a transaction. This requirement is waived if you
declared the cursor using the WITH HOLD keywords. (See the DECLARE
statement on page 7-107.)

Opening an Insert Cursor
When you open an insert cursor, the cursor passes the INSERT statement to
the database server, which checks the validity of the keywords and column
names. The database server also allocates memory for an insert buffer to hold
new data. (See the DECLARE statement on page 7-107.)

An OPEN statement for a cursor associated with an INSERT statement cannot
include a USING clause.

4GL ESQL/C ESQL/COBOL

SQLCA.SQLCODE
STATUS

sqlca.sqlcode
SQLCODE

SQLCODE OF SQLCA

negative An error was detected in the SELECT statement.

zero The SELECT statement is valid.
Syntax 7-209

Reopening a SELECT Cursor
The following IBM Informix 4GL code fragment illustrates an OPEN statement
with an insert cursor.

Figure 7-54
An OPEN statement with an insert cursor in IBM Informix 4GL

PREPARE s1 FROM
"INSERT INTO manufact ",

"VALUES ("NPR", "Napier")"
DECLARE in_curs CURSOR FOR s1
OPEN in_curs
PUT in_curs
CLOSE in_curs

Reopening a SELECT Cursor
The values named in the USING clause are evaluated only when the cursor is
opened. While the cursor is open, subsequent changes to program variables
in the USING clause do not change the active set of selected rows. The active
set remains constant until the program closes the open cursor, which releases
the active set, or until a subsequent OPEN statement closes the cursor and
reopens it.

Reopening the cursor creates a new active set based on the current values of
the variables. If the program variables changed since the previous OPEN
statement, reopening the cursor can generate an entirely different active set.
Even if the values of the variables are unchanged, if data in the table was
modified since the previous OPEN statement, the rows in the active set can be
different.

Reopening an INSERT Cursor
When you reopen an insert cursor that is already open, you effectively flush
the insert buffer; any rows stored in the INSERT buffer are written into the
database table. The database server first closes the cursor, which accounts for
the flush, and then reopens the cursor. See the discussion of the PUT
statement on page 7-230 for information about checking errors and counting
inserted rows.
7-210 IBM Informix Guide to SQL: Reference

USING Clause
USING Clause
The USING clause is required when the cursor is associated with a prepared
SELECT statement that includes ? placeholders. (See the PREPARE statement
on page 7-218.) You can supply values for these parameters in one of two
ways.

Naming Variables in USING

If you know the number of parameters to be supplied at run time and their
data types, you can define the parameters needed by the statement as host
variables in your program. You pass parameters to the database server by
opening the cursor with the USING keyword, followed by the names of the
variables. These variables are matched with the SELECT statement ? param-
eters in a one-to-one correspondence, from left to right.

You cannot include indicator variables in the list of variable names. To use an
indicator variable, you must code the SELECT statement as part of the
DECLARE statement. ♦

The following IBM Informix 4GL code fragment illustrates how a program
employs the USING clause and input variables to establish the search criteria
in a SELECT statement. The program stores user input in a program variable
named zip and names this variable in the USING clause. Its current value
replaces the ? in the prepared SELECT statement so that the rows returned
through the cursor are the ones requested by the user.

Figure 7-55
The USING keyword with the OPEN statement in IBM Informix 4GL

PREPARE zipsel FROM
"SELECT * FROM customer WHERE zipcode MATCHES ?"

DECLARE q_curs CURSOR FOR zipsel
PROMPT "Enter a zipcode: " FOR zip
OPEN q_curs USING zip

The next example illustrates the USING clause in an IBM Informix ESQL/C
code fragment.

ESQL
Syntax 7-211

USING Clause
Figure 7-56
The USING keyword with the OPEN statement in IBM Informix ESQL/C

sprintf (select_1, "%s %s %s %s %s",
"select o.order_num, sum(total price)",
"from orders o, items i",
"where o.order_date > ? and o.customer_num = ?",
"and o.order_num = i.order_num",
"group by o.order_num");

$prepare statement_1 from select_1;
$declare q_curs cursor for statement_1;
$open q_curs using $o_date, $c_num;

USING SQL DESCRIPTOR Clause

You also can associate input values from a system descriptor area. The
keywords USING SQL DESCRIPTOR indicate the use of a system descriptor.
This allows you to associate input values from a system descriptor area and
open a cursor.

If a systemdescriptor area is used, the count value specifies the number of
input values that are described in occurrences of sqlvar. This number must
correspond to the number of dynamic parameters in the prepared statement.
The value of count must be less than or equal to the value of occurrences
specified when the system descriptor area was allocated.

For further information, refer to the discussion of the system descriptor area
in the manual for your IBM Informix ESQL product and in Chapter 6.

Figure 7-57
Sample OPEN USING SQL DESCRIPTOR clause in ESQL/C

$OPEN selcurs USING SQL DESCRIPTOR "desc1";

Figure 7-58
Sample OPEN USING SQL DESCRIPTOR clause in ESQL/COBOL

EXEC SQL OPEN SEL_CURS USING SQL DESCRIPTOR "DESC1" END-EXEC.
♦

ESQL
7-212 IBM Informix Guide to SQL: Reference

USING DESCRIPTOR Clause
USING DESCRIPTOR Clause
You can pass parameters for a prepared statement in the form of an sqlda
pointer structure, which lists the data type and memory location of one or
more values to replace ? placeholders. For further information, refer to the
sqlda discussion in the IBM Informix ESQL/C Programmer’s Manual.

Figure 7-59
Sample OPEN USING DESCRIPTOR clause in ESQL/C

struct sqlda *sdp;
...
$open selcurs using descriptor sdp;
♦

Choosing Between OPEN and FOREACH
IBM Informix 4GL contains a FOREACH statement that performs an implied
OPEN statement. You can use the FOREACH statement with a cursor
associated with a SELECT statement to replace the OPEN, FETCH, and CLOSE
combination of statements. The FOREACH statement is compatible with
sequential, scroll, or hold cursors.

You cannot use the FOREACH statement if the OPEN statement would require
a USING clause. That is, if the cursor is associated with a prepared SELECT
statement that includes ? parameters, you are required to open the cursor
with an OPEN statement that includes a USING clause.

An example illustrating a FOREACH loop that replaces the OPEN, FETCH, and
CLOSE series of statements follows. This IBM Informix 4GL program fragment
selects records from the customer table into the program array p_cust. The
program assumes that fewer than 2,000 customers are listed in the table. ♦

E/C

I4GL
Syntax 7-213

The Relationship Between OPEN and FREE
Figure 7-60
A FOREACH loop that replaces OPEN, FETCH, and CLOSE in IBM Informix 4GL

GLOBALS
DEFINE p_cust ARRAY[2000] OF RECORD

customer_num LIKE customer.customer_num,
fname LIKE customer.fname,
lname LIKE customer.lname,
company LIKE customer.company

END RECORD
END GLOBALS

FUNCTION load_cust() { fill array p_cust, return count }
DEFINE i SMALLINT
DECLARE cust_cur CURSOR FOR

SELECT customer_num, fname, lname, company
FROM customer

LET i = 1
FOREACH cust_cur INTO p_cust[i].*

LET i = i + 1
IF i > 2000 THEN

DISPLAY "Stopping at 2000 customers"
EXIT FOREACH

END IF
END FOREACH
RETURN i

END FUNCTION

MAIN
DISPLAY load_cust(), "customers read from database."

END MAIN

The Relationship Between OPEN and FREE
The database server allocates resources to prepared statements and open
cursors. If you release resources with a FREE cursor id or FREE cursor variable
statement, you cannot use the cursor unless you declare the cursor again. If
you execute a FREE statement id or FREE statement id variable statement, you
cannot open the cursor associated with the statement id or statement id variable
unless you prepare the statement id or statement id variable again.
7-214 IBM Informix Guide to SQL: Reference

References
References
In this manual, see the following cursor-related statements: CLOSE,
DECLARE, and FREE. For insert cursors, see also PUT and FLUSH.

Also in this manual, for further information about dynamic SQL statements,
see the following statements: ALLOCATE DESCRIPTOR, DEALLOCATE
DESCRIPTOR, DESCRIBE, EXECUTE, FETCH, GET DESCRIPTOR, PREPARE, PUT,
and SET DESCRIPTOR. For further information about the system descriptor
area and the sqlda strucure, see Chapter 6 of this manual.

In the IBM Informix Guide to SQL: Tutorial, see the discussion of the OPEN
statement.

Refer also to the manual for your embedded-language product for further
information about the system descriptor area and the sqlda structure.
Syntax 7-215

OUTPUT
OUTPUT

Purpose
Use the OUTPUT statement to send query results directly to an operating
system file or to pipe it to another program.

Syntax

Usage
You can send the results of a query to an operating system file by specifying
the full pathname for the file. If the file already exists, the output overwrites
the current contents, as follows:

OUTPUT TO /usr/april/query1
SELECT * FROM cust_calls WHERE call_code = "L"

You can display the results of a query without column headings by using the
WITHOUT HEADINGS keywords, as follows:

OUTPUT TO /usr/april/query1
WITHOUT HEADINGS
SELECT * FROM cust_calls WHERE call_code = "L"

filename is the name of the operating system file in which you want to
store the results of the query.

program is the name of the program where you want the query results
piped or otherwise sent.

OUTPUT TO

WITHOUT
HEADINGS

SELECT
statement
p. 7-258

DB
ISQL

+
filename

PIPE program
7-216 IBM Informix Guide to SQL: Reference

References
You also can use the keyword PIPE to send the query results to another
program, as follows:

OUTPUT TO PIPE more
SELECT customer_num, call_dtime, call_code

FROM cust_calls

References
In this manual, see the following statements: SELECT and UNLOAD.
Syntax 7-217

7-218 IBM Informix Guide to SQL: Reference

PREPARE
PREPARE

Purpose
Use the PREPARE statement to parse, validate, and generate an execution plan
for SQL statements in an 4GL or IBM Informix ESQL program at run time.

Syntax

The maximum length for a quoted string in a PREPARE statement is 2048
bytes.

statement id is an SQL statement identifier. The statement id must conform to
the same rules as any identifier, as described in the Identifier
segment on page 7-399.

statement id
variable

is the name of an embedded-language character variable that
contains the SQL statement identifier. The id variable and the
identifier it contains must conform to the same rules as any
identifier, as described in the Identifier segment on page 7-399.

variable name is a character IBM Informix 4GL program variable or an
IBM Informix ESQL host variable that contains the text of the
SQL statement to be prepared.

PREPARE
I4GL
ESQL

statement
id

variable
name

Quoted
String

 p. 7-426

statement
id variable

ESQL

FROM

Usage
Usage
The PREPARE statement permits your program to assemble the text of an SQL
statement at run time and make it executable. This dynamic form of SQL is
accomplished in three steps:

1. A PREPARE statement accepts statement text as input, either as a
quoted string or stored within a character variable. Statement text
can contain question mark (?) placeholders to represent values that
are to be defined when the statement is executed.

2. An EXECUTE or OPEN statement can supply the required input
values and execute the prepared statement once or many times.

3. Resources allocated to the prepared statement can be released later
using the FREE statement.

The number of prepared objects in a single program is limited by the
available memory. This includes both statement identifiers named in
PREPARE statements and cursor declarations that incorporate SELECT or
INSERT statements. To avoid exceeding the limit, use a FREE statement to
release some statements or cursors.

The term “statement identifier” means statement id or statement id variable.

Statement Identifier

A PREPARE statement sends the statement text to the database server where
it is analyzed. If it contains no syntax errors, the text is converted to an
internal form. This translated statement is saved for later execution in a data
structure that the PREPARE statement allocates. The structure has the name
statement identifier. Subsequent SQL statements refer to the statement using
the statement identifier.

A subsequent FREE statement releases the resources allocated to the
statement. After you release the database server resources, you cannot use
the statement identifier with a DECLARE cursor or with the EXECUTE
statement until you prepare the statement again.

A program can consist of one or more source code files. By default, the scope
of a statement identifier is global to the program. This means that a statement
identifier prepared in one file can be referenced from another file.
Syntax 7-219

Usage
In a multiple-file program, if you want to limit the scope of a statement
identifier to the file in which it is prepared, you should preprocess all the files
with the -local command line option. See your ESQL product manual for
more information, restrictions, and performance issues when preprocessing
with the -local option.

Releasing a Statement Identifier

A statement identifier can represent only one SQL statement or sequence of
statements at a time. You can execute a new PREPARE statement with an
existing statement identifier, if you wish to bind a given statement identifier
to different SQL statement text.

The PREPARE statement supports dynamic statement identifier names,
allowing you to prepare a statement identifier as an identifier or as a host
character string variable. In the following pairs of examples, the first example
shows a statement identifier prepared as an embedded-language variable
and the second shows it as a character string constant.

Figure 7-61
Preparing a statement identifier in IBM Informix ESQL/C

strcpy (stmtid, "query2");
$ PREPARE $stmtid FROM

"SELECT * FROM customer";

$ PREPARE query2 FROM
"SELECT * FROM customer";

Figure 7-62
Preparing a statement identifier in IBM Informix ESQL/COBOL

MOVE "QUERY_2" TO STMTID.
EXEC SQL
 PREPARE :STMTID FROM

"SELECT * FROM CUSTOMER"
END-EXEC.

EXEC SQL
 PREPARE QUERY_2 FROM

"SELECT * FROM CUSTOMER"
END-EXEC.

A statement id variable must be of the CHARACTER data type. In C, it must be
defined as $char. In COBOL, id variables must be declared as a standard
CHARACTER type. ♦

ESQL
7-220 IBM Informix Guide to SQL: Reference

Usage
Statement Text

The PREPARE statement can take statement text either as a quoted string or as
text stored in a program variable. The following restrictions apply to the
statement text:

� The text can contain only SQL statements. It cannot contain state-
ments or comments from the host programming language.

Comments preceded by “--” (two hyphens), or enclosed in “{ }”
(curly braces) are standard in SQL and are allowed in the statement
text. The comment ends at the end of the line or at the end of the
statement.

� The text can contain either a single SQL statement or a sequence of
statements separated by semicolons.

� Names of host-language variables are not recognized as such in
prepared text. The only identifiers that you can use are names
defined in the database, such as names of tables and columns.
Therefore, you cannot prepare a SELECT statement that contains an
INTO clause, since the INTO clause requires a host-language variable.

Use a ? as a placeholder to indicate where data should be supplied
when the statement is executed.

� The text cannot include an embedded SQL statement prefix or termi-
nator, such as the dollar sign, semicolon, or the words EXEC SQL. ♦

Here is an example of a PREPARE statement in IBM Informix 4GL.

Figure 7-63
Sample PREPARE statement in IBM Informix 4GL

PREPARE new_cust FROM
"INSERT INTO customer(fname,lname)",

"VALUES(?,?)"

ESQL
Syntax 7-221

Usage
Permitted Statements

You can prepare any single SQL statement except the ones in the following
list:

In addition to the preceding statements, you also cannot prepare the LOAD
and UNLOAD statements. ♦

You can prepare a SELECT statement. If the SELECT statement includes the
INTO TEMP clause, you can execute the prepared statement with an EXECUTE
statement. If it does not include the INTO TEMP clause, the statement returns
rows of data. You should use DECLARE, OPEN, and FETCH cursor statements
to retrieve the rows.

A prepared SELECT statement can include a FOR UPDATE clause. This clause
normally is used with the DECLARE statement to create an update cursor. An
example segment of 4GL code follows.

Figure 7-64
Preparing a SELECT statement with a FOR UPDATE clause in IBM Informix 4GL

PREPARE up_sel FROM
"SELECT * FROM customer ",
"WHERE customer_num between ? and ? ",
"FOR UPDATE"

DECLARE up_curs CURSOR FOR up_sel

OPEN sel_cursor USING low_cust, high_cust

Multistatement Prepares

You cannot use the following statements (in addition to the ones listed previ-
ously) in a text that contains multiple statements separated by semicolons:

CLOSE EXECUTE IMMEDIATE FREE PUT

DECLARE FETCH OPEN WHENEVER

EXECUTE FLUSH PREPARE

CLOSE DATABASE DATABASE SELECT

CREATE DATABASE DROP DATABASE START DATABASE

I4GL
7-222 IBM Informix Guide to SQL: Reference

Preparing Statements When Parameters Are Known
Thus, a SELECT statement is not allowed in a multistatement prepare; the
statements that could cause the current database to be closed in the middle
of executing the sequence of statements also are not allowed.

Preparing Statements When Parameters Are Known
In some prepared statements, all needed information is known at the time the
statement is prepared. Here is an example in IBM Informix ESQL/C in which
two statements are prepared from constant data.

Figure 7-65
Preparing two statements from constant data in IBM Informix ESQL/C

sprintf(redo_st, "%s; %s",
"DROP TABLE workt1",
"CREATE TABLE workt1 (wtk serial, wtv float)");

$PREPARE redotab FROM redo_st;

Although all parts of the statement are known prior to the prepare, they also
can be derived dynamically from program input. In this IBM Informix 4GL
example, user input is incorporated into a SELECT statement, which is then
prepared and associated with a cursor.

Figure 7-66
Preparing 4GL statement text, including user input

DEFINE u_po LIKE orders.po_num
PROMPT "Enter p.o. number please: " FOR u_po
PREPARE sel_po FROM

"SELECT * FROM orders ",
"WHERE po_num = '", u_po, "'"

DECLARE get_po CURSOR FOR sel_po

For further information, consult the manual for your application devel-
opment tool.

Preparing Statements That Receive Parameters Later
In some statements, parameters are not known when the statement is
prepared because a different value can be inserted each time the statement is
executed. In these statements, you can use a ? placeholder where a parameter
must be supplied when the statement is executed.

The PREPARE statements in the following examples show some of the uses of
? placeholders.
Syntax 7-223

Preparing Statements That Receive Parameters Later
Figure 7-67
Preparing 4GL statements with ? placeholders

PREPARE s3 FROM
"SELECT * FROM customer WHERE state MATCHES ?"

PREPARE in1 FROM
"INSERT INTO manufact VALUES (?,?,?)"

PREPARE update2 FROM
"UPDATE customer SET zipcode = ?"
"WHERE CURRENT OF zip_cursor"

You only can use a placeholder to supply a value for an expression. You
cannot use a ? placeholder to represent an identifier such as a database name,
a table name, or a column name.

The following example segment of IBM Informix ESQL/C code prepares a
statement from a variable named demoquery. The text in the variable
includes one ? placeholder. The prepared statement is associated with a
cursor and, when the cursor is opened, the USING clause of the OPEN
statement supplies a value for the placeholder.

Figure 7-68
Preparing an IBM Informix ESQL/C statement that receives values

$char queryvalue [6];
$char demoquery [80];
$database stores5;
sprintf(demoquery, "%s %s",

"SELECT fname, lname FROM customer",
"WHERE lname > ? ");

$PREPARE quid FROM $demoquery;
$DECLARE democursor CURSOR FOR quid;
strcpy(queryvalue, "C");
$OPEN democursor USING $queryvalue;

The USING clause is available in both OPEN (for statements associated with a
cursor) and EXECUTE (all other prepared statements) statements. An
IBM Informix 4GL example follows.

Figure 7-69
Executing a 4GL prepared SELECT statement using an OPEN statement

DEFINE zip LIKE customer.zipcode
PREPARE zip_sel FROM

"SELECT * FROM customer WHERE zipcode MATCHES ?"
DECLARE zip_curs CURSOR FOR zip_sel
PROMPT "Enter a zipcode: " FOR zip
OPEN zip_curs USING zip
7-224 IBM Informix Guide to SQL: Reference

Preparing Statements with SQL Identifiers
If the prepared SELECT statement contains a ? placeholder, you cannot
execute the statement with a FOREACH statement; you must use the OPEN,
FETCH, and CLOSE group of statements. ♦

Preparing Statements with SQL Identifiers
You cannot use ? placeholders for SQL identifiers such as a database name, a
table name, or a column name; you must specify these identifiers in the
statement text when it is prepared.

However, if these identifiers are not available when the statement is written,
you can construct a statement that receives SQL identifiers from user input.
In the following 4GL example, the name of a column is supplied by the user
and inserted in the statement text before the PREPARE statement. The search
value in that column also is taken from user input, but it is supplied to the
statement with a USING clause.

Figure 7-70
Preparing an 4GL statement that receives SQL identifiers as input

DEFINEcolumn_name CHAR(30),
column_value CHAR(40),
del_str CHAR(100)

PROMPT "Enter column name: " FOR column_name

LET del_str =
"DELETE FROM customer WHERE ",
column_name CLIPPED, "=?"

PREPARE de4 FROM del_str

PROMPT "Enter search value in column ",column_name, ":"
FOR column_value

EXECUTE de4 USING column_value

The IBM Informix ESQL/C program fragment in the next example prompts
the user for the name of a table and uses that name in a SELECT statement.
Because the table name is not known until run time, the number and data
types of the table columns also are unknown. Therefore, the program cannot
allocate host variables to receive data from each row in advance. Instead, this
program fragment describes the statement into an sqlda descriptor and
fetches each row using the descriptor. The fetch puts each row into memory
locations dynamically provided by the program.

I4GL
Syntax 7-225

Preparing Statements with SQL Identifiers
If a program were to retrieve all rows in the active set, the FETCH statement
would be placed in a loop that fetched each row. If the FETCH statement
retrieved more than one data value (column), there would be another loop
after the FETCH, which performed some action on each data value.

Figure 7-71
Preparing an IBM Informix ESQL/C statement that receives SQL identifiers as input

#include <stdio.h>
$include sqlca;
$include sqlda;
$include sqltypes;

char *malloc();

main()
{
struct sqlda *demodesc;
$char demoselect[200];
char tablename[19];
int i;

 /* This program selects all the columns of a given tablename.
 The tablename is supplied interactively. */

$database stores5;

printf("This program does a SELECT * on a table\n");
printf("Enter table name: ");
scanf("%s",tablename);

sprintf(demoselect, "select * from %s", tablename);

$prepare iid from $demoselect;
$describe iid into demodesc;

/* Print what DESCRIBE returns */

for (i = 0; i < demodesc->sqld; i++)
prsqlda (demodesc->sqlvar + i);

/* Assign the data pointers. */

for (i = 0; i < demodesc->sqld; i++) {
switch (demodesc->sqlvar[i].sqltype & SQLTYPE) {

case SQLCHAR:
demodesc->sqlvar[i].sqltype = CCHARTYPE;
demodesc->sqlvar[i].sqllen++;
demodesc->sqlvar[i].sqldata =

malloc(demodesc->sqlvar[i].sqllen);
break;

case SQLSMINT:
case SQLINT:
case SQLSERIAL:

demodesc->sqlvar[i].sqltype = CINTTYPE;
demodesc->sqlvar[i].sqldata =

malloc(sizeof(int));
break;
7-226 IBM Informix Guide to SQL: Reference

Preparing Statements with SQL Identifiers
/* And so on for each type. */

}
}

/* Declare and open cursor for select . */

$prepare d_stmt from $demoselect;
$declare d_curs cursor for d_stmt;
$open d_curs;

/* Fetch selected rows one at a time into demodesc. */

for(; ;) {
printf("\n");
$fetch d_curs using descriptor demodesc;
if (sqlca.sqlcode != 0)

break;
for (i = 0; i < demodesc->sqld; i++) {

switch (demodesc->sqlvar[i].sqltype) {
case CCHARTYPE:

printf("%s: \"%s\"\n", demodesc->sqlvar[i].sqlname,
demodesc->sqlvar[i].sqldata);

break;
case CINTTYPE:

printf("%s: %d\n", demodesc->sqlvar[i].sqlname,
*((int *) demodesc->sqlvar[i].sqldata));

break;

/* And so forth for each type... */

}
}

}
$close d_curs;
$free d_curs;

/* Free the data memory. */

for (i = 0; i < demodesc->sqld; i++)
free(demodesc->sqlvar[i].sqldata);

printf ("Program Over.\n");
}

prsqlda(sp)
struct sqlvar_struct *sp;
{
printf ("type = %d\n", sp->sqltype);
printf ("len = %d\n", sp->sqllen);
printf ("data = %lx\n", sp->sqldata);
printf ("ind=%lx\n", sp->sqlind);
printf ("name=%lx\n", sp->sqlname);
}

Syntax 7-227

Preparing Sequences of Multiple SQL Statements
Preparing Sequences of Multiple SQL Statements
You can execute several SQL statements as one action if you include them all
in the same PREPARE statement. Multistatement text is processed as a unit;
actions are not treated sequentially. Therefore, multistatement text cannot
include statements that depend on action that occurs in a previous statement
in the text.

All compiled products return error status information on the first error in the
multistatement text. There is no indication of which statement in the
sequence caused an error.

The following example contains a fragment of IBM Informix 4GL code that
updates the stores5 database by replacing the existing manufacturer codes
with new codes. Since the manu_code columns are potential join columns
that link four of the tables, the new codes must replace the old codes in three
tables.

Figure 7-72
Preparing multistatement text in IBM Informix 4GL

DATABASE stores5
MAIN

DEFINE code_chnge RECORD
new_code LIKE manufact.manu_code,
old_code LIKE manufact.manu_code

END RECORD,
sqlmulti CHAR(250)

PROMPT "Enter new manufacturer code: "
FOR code_chnge.new_code

PROMPT "Enter old manufacturer code: "
FOR code_chnge.old_code

LET sqlmulti =
"UPDATE manufact SET manu_code = ? WHERE manu_code = ?;",
"UPDATE stock SET manu_code = ? WHERE manu_code = ?;",
"UPDATE items SET manu_code = ? WHERE manu_code = ?;",
"UPDATE catalog SET manu_code = ? WHERE manu_code = ?;"

PREPARE exmulti FROM sqlmulti
EXECUTE exmulti USING code_chnge.*, code_chnge.*, code_chnge.*

code_chnge.*
END MAIN

In the next example, six SQL statements are prepared into a single
IBM Informix ESQL/C string query. Individual statements are delimited with
semicolons. A single $prepare statement can prepare all six statements for
execution and a single $execute statement can execute the qid string.
7-228 IBM Informix Guide to SQL: Reference

Using Prepared Statements for Efficiency
Figure 7-73
Preparing multistatement text in IBM Informix ESQL/C

sprintf (query, "%s %s %s %s %s %s %s %s %s",
"begin work;",
"update account set balance = balance + ?",

"where acct_number = ?;",
"update teller set balance = balance + ?",

"where teller_number = ?;",
"update branch set balance = balance + ?",

"where branch_number = ?;",
"insert into history values (?, ?);",
"commit work;");

$prepare qid from $query;
$execute qid using

$delta, $acct_number, $delta, $teller_number,
$delta, $branch_number, $timestamp,$values;

Using Prepared Statements for Efficiency
To increase performance efficiency, you can use the PREPARE statement and
an EXECUTE statement in a loop to eliminate overhead caused by redundant
parsing and optimizing. For example, an UPDATE statement located within a
WHILE loop is parsed each time the loop runs. If you prepare the UPDATE
statement outside the loop, the statement is parsed only once, eliminating
overhead and speeding statement execution. An 4GL example follows.

Figure 7-74
Preparing an 4GL statement to improve performance

PREPARE up1 FROM "UPDATE customer ",
"SET discount = 0.1 WHERE customer_num = ?"

WHILE TRUE
PROMPT "Enter Customer Number" FOR dis_cust
IF dis_cust = 0 THEN
EXIT WHILE
END IF
EXECUTE up1 USING dis_cust

END WHILE

References
In this manual, see the following statements: DECLARE, DESCRIBE, EXECUTE,
FREE, and OPEN.

In IBM Informix Guide to SQL: Tutorial, see the discussion of PREPARE state-
ments and dynamic SQL.
Syntax 7-229

PUT
PUT

Purpose
Use the PUT statement to store a row in an insert buffer for later insertion into
the database.

Syntax

,

variable name

I4GL

ESQL

ESQL

SQL DESCRIPTOR

descriptor
variable

cursor
id

USING

PUT

"descriptor"

cursor
variable

sqlda
pointerDESCRIPTOR

FROM

E/C

ESQL+

cursor id is the identifier of a cursor declared for an INSERT statement.

cursor
variable

is an embedded variable name that identifies a cursor declared
for an INSERT statement.

descriptor is a quoted string that identifies a system descriptor area allo-
cated with the ALLOCATE DESCRIPTOR statement.

descriptor
variable

is an embedded variable name that identifies a system descrip-
tor area allocated with the ALLOCATE DESCRIPTOR statement.

sqlda pointer points to an sqlda structure representing values that corre-
spond to the ? placeholders in a prepared INSERT statement.

variable name is a program variable whose contents are to replace a ? place-
holder in a prepared INSERT statement.
7-230 IBM Informix Guide to SQL: Reference

Usage
Usage
Each PUT statement stores a row in an insert buffer that was created when
cursor name was opened. If the buffer has no room for the new row when the
statement is executed, the buffered rows are written to the database in a block
and the buffer is emptied. As a result, some PUT statement executions cause
database output and some do not.

You can use the FLUSH statement to write buffered rows to the database
without adding a new row. The CLOSE statement writes any remaining rows
before it closes an insert cursor.

If the current database uses explicit transactions, you must execute a PUT
statement within a transaction.

Here is an 4GL example of the use of a PUT statement.

Figure 7-75
Using the PUT statement in IBM Informix 4GL

DECLARE ins_curs CURSOR FOR
INSERT INTO state VALUES (code, sname)

OPEN ins_curs
LET code = "AK"
LET sname = "Alaska"
PUT ins_curs

Here is an example using IBM Informix ESQL/C and a prepared statement.

Figure 7-76
Using the PUT statement in IBM Informix ESQL/C

$PREPARE ins_mcode FROM "INSERT INTO manufact VALUES(?,?)";
$DECLARE mcode CURSOR FOR ins_mcode;
$OPEN mcode;
$PUT mcode FROM $the_code, $the_name;

PUT is not an X/Open standard SQL statement. Therefore, you will see a
warning message if you compile a PUT statement in X/Open mode in an
ESQL product. For details on compiling in X/Open mode, see your product
manual. ♦

X/O
Syntax 7-231

Supplying Inserted Values
Supplying Inserted Values
The values that compose the inserted row can come from one of four sources:

� Constant values written into the INSERT statement

� Program variables named in the INSERT statement

� Program variables named in the FROM clause of the PUT statement

� Values that are prepared in memory addressed by an sqlda structure
or a system descriptor area, and then named in the USING clause of
the PUT statement. ♦

Using Constant Values in INSERT

The VALUES clause of the INSERT statement lists the values of the inserted
columns. One or more of these values might be constants, that is, numbers or
character strings.

When all of the inserted values are constants, the PUT statement has a special
effect. Instead of creating a row and putting it in the buffer, the PUT statement
merely increments a counter. When you use a FLUSH or CLOSE statement to
empty the buffer, one row and a repetition count are sent to the database
server, which inserts that number of rows.

In the following IBM Informix 4GL example, 99 empty customer records are
inserted into the customer table. Since all values are constants, no disk output
occurs until the cursor is closed. (The constant zero for customer_num causes
generation of a SERIAL value.)

Figure 7-77
Inserting empty customer records into a table in IBM Informix 4GL

DECLARE fill_c CURSOR FOR
INSERT INTO customer(customer_num) VALUES(0)

DEFINE count SMALLINT
OPEN fill_c
FOR count = 1 TO 99

PUT fill_c
END FOR
CLOSE fill_c

ESQL
7-232 IBM Informix Guide to SQL: Reference

Supplying Inserted Values
Naming Program Variables in INSERT

When the INSERT statement is written as part of the cursor declaration (in the
DECLARE statement), you can name program variables in the VALUES clause.
When each PUT statement is executed, the contents of the program variables
at that time are used to compose the row that is inserted into the buffer.

Tip: You can only name program variables in the VALUES clause when the INSERT
statement is written as part of the DECLARE statement. Variable names are not
recognized in the context of a prepared statement that is associated with a cursor
through its statement identifier.

The IBM Informix ESQL/C example that follows illustrates the use of an insert
cursor. The code includes the following statements:

� The DECLARE statement associates a cursor called ins_curs with an
INSERT statement that inserts data into the customer table. The
VALUES clause names a data structure called cust_rec; the ESQL/C
preprocessor converts cust_rec to a list of values, one for each
component of the structure.

� The OPEN statement creates a buffer.

� A function not defined in the example obtains customer information
from an interactive user and leaves it in cust_rec.

� The PUT statement composes a row from the current contents of the
cust_rec structure and sends it to the row buffer.

� The CLOSE statement inserts into the customer table any rows that
remain in the row buffer and closes the insert cursor.

Figure 7-78
Using an insert cursor in IBM Informix ESQL/C

int keep_going = 1;
$struct cust_row { /* fields of a row of customer table */ } cust_rec;
$declare ins_curs cursor for

insert into customer values ($cust_rec);
$open ins_curs;
for (; (sqlca.sqlcode == 0) && (keep_going) ;)
{

keep_going = get_user_input(cust_rec); /* ask user for new customer */
if (keep_going)/* user did supply customer info */
{

cust_rec.customer_num = 0;/* request new serial value */
$put ins_curs;

}
if (sqlca.sqlcode == 0)/* no error from PUT */

keep_going = (prompt_for_y_or_n("another new customer") == 'Y')
}
$close ins_curs;
Syntax 7-233

Supplying Inserted Values
Naming Program Variables in PUT

When the INSERT statement is prepared (see the PREPARE statement on
page 7-218), you cannot use program variables in its VALUES clause.
However, you can represent values using a ? placeholder. You supply the
missing values by listing the names of program variables in the FROM clause
of the PUT statement. An example in IBM Informix 4GL follows.

Figure 7-79
Listing program variables in a PUT statement in IBM Informix 4GL

DEFINE answer CHAR(1), u_company LIKE customer.company
PREPARE sel2 FROM

"INSERT INTO customer (customer_num, company) ",
"VALUES (0, ?)"

DECLARE ins_curs CURSOR FOR sel2
OPEN ins_curs

LET answer = "y"
WHILE answer = "y"

PROMPT "Enter a customer: " FOR u_company
PUT ins_curs FROM u_company
PROMPT "Do you want to enter another customer (y/n) ? "

FOR answer
END WHILE

CLOSE ins_curs

Using a System Descriptor Area

You can create a system descriptor area that describes the data type and
memory location of one or more values. You then can specify that system
descriptor area in the USING SQL DESCRIPTOR clause of the PUT statement.

For details on using descriptors, see Chapter 6 in this manual and the manual
for the embedded-language product you are using. The following examples
show how to associate values from a system descriptor area.

Figure 7-80
Sample PUT USING SQL DESCRIPTOR statement in IBM Informix ESQL/C

$ PUT selcurs USING SQL DESCRIPTOR "desc1";

ESQL
7-234 IBM Informix Guide to SQL: Reference

Writing Buffered Rows
Figure 7-81
Sample PUT USING SQL DESCRIPTOR statement in IBM Informix ESQL/COBOL

EXEC SQL PUT SEL_CURS USING SQL DESCRIPTOR "DESC1" END-EXEC.
♦

Using an sqlda Structure

You can create an sqlda structure that describes the data type and memory
location of one or more values. Then you can specify the sqlda structure in
the USING DESCRIPTOR clause of the PUT statement. Each time the PUT
statement is executed, the values described by the sqlda are used to replace
? placeholders in the INSERT statement. This process is similar to using a
FROM clause with a list of variables, except that your program has full control
over the memory location of the data values.

For details on the sqlda structure, see Chapter 6 in this manual and the
IBM Informix ESQL/C Programmer’s Manual.

Figure 7-82
Sample PUT USING DESCRIPTOR statement in ESQL/C

$put selcurs using descriptor pointer2;
♦

Writing Buffered Rows
When the OPEN statement opens an insert cursor, an insert buffer is created.
The PUT statement puts a row into this insert buffer. The block of buffered
rows is inserted into the database table as a block only when necessary; an
activity called flushing the buffer. The buffer is flushed after any of the
following events:

� The buffer is too full to hold the new row at the start of a PUT
statement.

� A FLUSH statement is executed.

� A CLOSE statement closes the cursor.

� An OPEN statement is executed naming the cursor.

When applied to an open cursor, the OPEN statement closes the cur-
sor before reopening it; this implied CLOSE statement flushes the
buffer.

� A COMMIT WORK statement is executed.

E/C
Syntax 7-235

Error Checking
If the program terminates without closing an insert cursor, the buffer remains
unflushed. Rows inserted into the buffer since the last flush are lost. Do not
rely on the end of the program to close the cursor and flush the buffer.

Error Checking
The SQLCA contains information on the success of each PUT statement, as
well as information that lets you count the rows that were inserted. The result
of each PUT statement is contained in the fields of the SQLCA, as shown in the
following table.

Data buffering with an insert cursor means that errors are not discovered
until the buffer is flushed. For example, an input value that is incompatible
with the data type of the column for which it is intended is only discovered
when the buffer is flushed. When an error is discovered, rows in the buffer
located after the error are not inserted; they are lost from memory.

The SQLCODE field is set to zero if no error occurs; otherwise, it is set to an
error code. The third element of the SQLERRD array is set to the number of
rows that are successfully inserted into the database.

� If a row is put into the insert buffer and buffered rows are not written
to the database, SQLCODE and SQLERRD both are set to zero
(SQLCODE because there was no error and SQLERRD because no rows
were inserted).

� If a block of buffered rows is written to the database during the
execution of a PUT statement, SQLCODE is set to zero and SQLERRD
is set to the number of rows successfully inserted into the database.

� If an error occurs while the buffered rows are written to the database,
SQLCODE indicates the error, while SQLERRD contains the number of
rows that were successfully inserted. (The uninserted rows are
discarded from the buffer.)

4GL ESQL/C ESQL/COBOL

STATUS
SQLCA.SQLCODE

sqlca.sqlcode
SQLCODE

SQLCODE OF SQLCA

SQLCA.SQLERRD[3] sqlca.sqlerrd[2] SQLERRD[3] OF SQLCA
7-236 IBM Informix Guide to SQL: Reference

References
Counting Total and Pending Rows

To count the number of rows actually inserted in the database and the
number not yet inserted, follow this procedure:

� Prepare two integer variables, for example, total and pending.

� When the cursor is opened, set both variables to zero.

� Each time a PUT statement is executed, increment both total and
pending.

� Whenever a PUT or FLUSH statement is executed, or the cursor is
closed, subtract the third field of the SQLERRD array from pending.

At any time, total minus pending is the number of rows actually inserted. If
all commands are successful, pending should contain zero after the cursor is
closed. If an error occurs during a PUT, FLUSH, or CLOSE statement, the value
remaining in pending is the number of uninserted (discarded) rows.

References
In this manual, see the following cursor-related statements: CLOSE, FLUSH,
DECLARE, and OPEN. See also the ALLOCATE DESCRIPTOR statement.

In IBM Informix Guide to SQL: Tutorial, see the discussion of the PUT statement.
Syntax 7-237

RECOVER TABLE
RECOVER TABLE

Purpose
Use the RECOVER TABLE statement with IBM Informix SE to restore a
database table in the event of failure.

Syntax

Usage
The RECOVER TABLE statement applies the table audit trail to an archive copy
of the database. IBM Informix SE uses audit trails to record operations on a
per-table basis. You can issue a RECOVER TABLE statement if you own the
table or have DBA privilege on the database.

In the event of a system failure, use an operating system utility to restore each
of the table files for which you have an audit trail. Issue the RECOVER TABLE
statement to update each newly restored table with the transactions recorded
in the audit trail.

RECOVER TABLE
SE Table

Name
p. 7-434

+

7-238 IBM Informix Guide to SQL: Reference

Backup/Restore Procedure
Backup/Restore Procedure
The recommended backup/restore procedure for making archive copies of a
database that includes audit trails is as follows:

� Execute the DROP AUDIT statement for each table that has an audit
trail. The DROP AUDIT statement ends system logging to the audit
trail files.

� Execute the CREATE AUDIT statement for each table, specifying the
pathname of the new audit trail. For maximum protection, specify a
location that is not on the same storage device as the database. You
also can select a filename that reflects the table name and the
sequence of the file in the audit trail; for example, audit_cust_001 or
audit_cust_002. The CREATE AUDIT statement registers the new
name and location of the audit trail file in the systables system
catalog table.

� Back up the database files using an operating system utility.

During execution, the RECOVER TABLE statement checks that the audit trail
and table name have consistent record numbers for rows where changes
occurred. In extremely rare instances, the RECOVER TABLE statement can find
an inconsistency caused by a system crash. In this case only, the RECOVER
TABLE statement stops and you must restore the table manually.

The following list of actions and statements serves as a guide for a recovery
of the customer table. First, restore the customer table from your last archive
copy. Second, run the following statements, which assume that your audit
trail began immediately after you created the archive copy:

RECOVER TABLE customer
DROP AUDIT FOR customer
CREATE AUDIT FOR customer

Third, create a new backup of the recovered table.

The audit trail file is not in human-readable form. Even so, it is possible for
the DBA to copy the file to a database (.dat) file and manipulate the file, if
desired. The modified file can be copied back to the audit trail file, enabling
customized restorations of particular tables. For example, you can modify the
audit trail file to exclude rows entered by a particular user or to undo specific
transactions. For specific instructions on modifying audit trail files, refer to
the manual for your application development tool.
Syntax 7-239

References
References
In this manual, see the following statements: CREATE AUDIT and DROP
AUDIT.
7-240 IBM Informix Guide to SQL: Reference

RENAME COLUMN
RENAME COLUMN

Purpose
Use the RENAME COLUMN statement to change the name of a column.

Syntax

Usage
You can rename a column of a table if any one of the following conditions is
true:

� You own the table.

� You have DBA privilege on the database.

� You have Alter privilege on the table.

When you rename a column, choose a column name that is unique within the
table.

If the column is referenced by a view in the database, the text of the view in
the sysviews system catalog table is updated to reflect the new column name.
If the column is referenced by a check constraint in the database, the text of
the check constraint in the syschecks system catalog table is updated to
reflect the new column name. ♦

new column is the new name of the column.

old column is the column you are renaming.

RENAME COLUMN TO.old column new column+ Table
Name

p. 7-434

DB

ESQL
Syntax 7-241

References
The following example assigns the customer_num column in the customer
table the new name of c_num:

RENAME COLUMN customer.customer_num TO c_num

You cannot use a ROLLBACK WORK statement to undo a RENAME COLUMN
statement that successfully executes. If you roll back a transaction that
contains a RENAME COLUMN statement, the column retains its new name
and you do not receive an error message. ♦

References
In this manual, see the following statements: ALTER TABLE, CREATE TABLE,
and RENAME TABLE.

SE
7-242 IBM Informix Guide to SQL: Reference

RENAME TABLE
RENAME TABLE

Purpose
Use the RENAME TABLE statement to change the name of a table.

Syntax

Usage
You can rename a table if any one of the following statements is true:

� You own the table.

� You have DBA privilege on the database.

� You have Alter privilege on the table.

You cannot change the table owner by renaming the table. You can specify
owner as part of old name, but an error occurs during compilation if you try to
specify owner as part of new name.

If a view references this table, the text of the view in the sysviews system
catalog table is updated to reflect the new table name.

In an ANSI-compliant database, you must specify owner if you are referring
to a table that you do not own. ♦

new name is the new name you are assigning to the table.

old name is the table you are renaming.

owner is the owner of the table.

RENAME TABLE

owner.

old name TO new name+

ANSI
Syntax 7-243

References
The following example reorganizes the items table. The intent is to move the
quantity column from the fifth position to the third. The example illustrates
four steps:

� Create a new table, new_table, that contains the column quantity in
the third position.

� Fill the table with data from the current items table.

� Drop the old items table.

� Rename new_table with the name items.

Figure 7-83
Reorganizing the items table using the RENAME TABLE statement

CREATE TABLE new_table
(
item_num SMALLINT,
order_num INTEGER,
quantity SMALLINT,
stock_num SMALLINT,
manu_code CHAR(3),
total_price MONEY(8)
)

INSERT INTO new_table
SELECT item_num, order_num, quantity, stock_num,

manu_code, total_price
FROM items

DROP TABLE items
RENAME TABLE new_table TO items

You cannot use a ROLLBACK WORK statement to undo a RENAME TABLE
statement that successfully executes. If you roll back a transaction that
contains a RENAME TABLE statement, the table retains its new name and you
do not receive an error message. ♦

References
In this manual, see the following statements: ALTER TABLE, CREATE TABLE,
DROP TABLE, and RENAME COLUMN.

SE
7-244 IBM Informix Guide to SQL: Reference

REPAIR TABLE
REPAIR TABLE

Purpose
Use the REPAIR TABLE statement to remove and rebuild table indexes or data
that may have been damaged or corrupted because of a power failure,
computer crash, or other unexpected program stoppage. Only those tables
that are found to be damaged are rebuilt. You can determine whether you
need to use the REPAIR TABLE statement by first issuing the CHECK TABLE
statement.

Syntax

Usage
Specify the name of the table for which you want to restore the integrity of
the index files. For example:

REPAIR TABLE cust_calls

You cannot use the REPAIR TABLE statement on a table unless you own it or
have DBA privilege on the database. You cannot use the REPAIR TABLE
statement on the system catalog table systables unless you have the DBA
privilege on the database.

The REPAIR TABLE statement calls the bcheck utility. See the IBM Informix SE
Administrator’s Guide for a full description of bcheck.

SE
DB

ISQL
+

Table
Name

p. 7-434
REPAIR TABLE
Syntax 7-245

References
References
In this manual, see the CHECK TABLE statement.

In the IBM Informix SE Administrator’s Guide, for a discussion of the bcheck
utility.
7-246 IBM Informix Guide to SQL: Reference

REVOKE
REVOKE

Purpose
Use the REVOKE statement to take away another user’s privileges for a table,
database, or procedure.

Syntax

Usage
You can use the REVOKE statement with the GRANT statement to finely
control the ability of users to modify the database and access and modify data
in the tables.

REVOKE ON FROM PUBLIC

user

,
+

Synonym
Name

p. 7-432

View
Name

p. 7-438

Table
Name

p. 7-434

Table-
Level

Privileges
p. 7-249

Database-
Level

Privileges
p. 7-251

Procedure
 Name

p. 7-424
ONEXECUTE

user names the user or users whose privileges are revoked. The
keyword PUBLIC revokes privileges from all users.
Syntax 7-247

Usage
You can revoke all or some of the privileges that you granted to other users.
No one can revoke privileges that another user granted. However, if you
revoke from user the privileges that you granted using the WITH GRANT
OPTION keywords, you sever the chain of privileges granted by that user. In
this case, when you revoke privileges from user, you automatically revoke the
privileges of all users who received privileges from user or from the chain
that user created.

If you revoke the EXECUTE privilege on a stored procedure from a user, the
user can no longer run that procedure using either the EXECUTE PROCEDURE
or CALL statements.

Users cannot revoke privileges from themselves.

You cannot use a ROLLBACK WORK statement to undo a REVOKE statement
that successfully executes. If you roll back a transaction that contains a
REVOKE statement, the privilege is not regranted to the user and you do not
receive an error message. ♦

SE
7-248 IBM Informix Guide to SQL: Reference

Table-Level Privileges
Table-Level Privileges

To revoke a table-level privilege from a user, you must revoke all occurrences
of the privilege. For example, if two users grant the same privilege to a user,
then both of them must revoke the privilege. If only one of the grantors
revokes the privilege, the user retains the privilege received from the other
grantor. (The database server keeps a record of each table-level grant in the
syscolauth and systabauth system catalog tables.)

If a table owner grants a privilege to PUBLIC, the owner cannot revoke the
same privilege from any particular user. For example, if the table owner
grants Select privilege to PUBLIC and then attempts to revoke Select privilege
from mary, the REVOKE statement generates an error. The Select privilege
was granted to PUBLIC, not to mary, and therefore the privilege cannot be
revoked from mary. (ISAM error number 111, No record found, refers to the
lack of a record in either the syscolauth or systabauth system catalog table
that would represent the grant that the table owner is now trying to revoke.)

ALL

PRIVILEGES

SELECT

UPDATE

INSERT

DELETE

INDEX

ALTER

,

REFERENCES

Table-Level
Privileges
Syntax 7-249

Table-Level Privileges
You can revoke table-level privileges individually or in combination. List the
keywords that correspond to the privileges that you are revoking from user.
The keywords are described in the following list. Note that, unlike the
GRANT statement, you cannot qualify the Select, Update, or References
privilege with a column name in a REVOKE statement. That is, you cannot
revoke access on specific columns.

The following example revokes Index and Alter privileges from all users for
the customer table. These privileges are then granted specifically to user
mary.

Figure 7-84
Revoking and granting Index and Alter privileges

REVOKE INDEX, ALTER ON customer FROM PUBLIC
GRANT INDEX, ALTER ON customer TO mary

SELECT is the ability to display data obtained from a SELECT statement.

UPDATE is the ability to change column values.

INSERT is the ability to insert rows.

DELETE is the ability to delete rows.

INDEX is the ability to create permanent indexes. You must have
Resource privilege to take advantage of Index privilege. (Any
user with Connect privilege can create indexes on temporary
tables.)

ALTER is the ability to add or delete columns, or to modify column
data types. You must have Resource privilege to take advan-
tage of Alter privilege.

REFERENCES is the ability to reference columns in referential constraints.
You must have Resource privilege to take advantage of the
References privilege. (However, you can add a referential con-
straint during an ALTER TABLE statement. This method does
not require that you have Resource privilege on the database.)
You can restrict the References privilege to one or more col-
umns by listing them.

ALL is all of the preceding privileges. The PRIVILEGES keyword is
optional.
7-250 IBM Informix Guide to SQL: Reference

Database-Level Privileges
Since you cannot revoke access on specific columns, when you revoke Select,
Update, or References privilege from a user, you revoke the privilege for all
columns in the table. You must use a GRANT statement to specifically regrant
any column-specific privilege that should be available to the user.

Figure 7-85
Regranting column-specific privileges

REVOKE ALL ON customer FROM PUBLIC
GRANT ALL ON customer TO john, cathy
GRANT SELECT (fname, lname, company, city)

ON customer TO PUBLIC

Database-Level Privileges

Only a user with DBA privilege can grant or revoke database-level privileges.

Three levels of database privileges control access. These privilege levels are,
from lowest to highest, Connect, Resource, and DBA. To revoke a database
privilege, specify one of the keywords CONNECT, RESOURCE, or DBA in the
REVOKE statement.

Because of the hierarchical organization of the privileges (as outlined in the
privilege definitions that follow), if you revoke either Resource or Connect
privilege from a user with DBA privilege, the statement has no effect. If you
revoke DBA privilege from a user with DBA privilege, the user retains
Connect privilege on the database. To deny database access to a user with
DBA or Resource privilege, you must first revoke the DBA or Resource
privilege, and then revoke the Connect privilege in a separate REVOKE
statement.

CONNECT

RESOURCE

DBA

Database-Level
Privileges
Syntax 7-251

Database-Level Privileges
Similarly, if you revoke Connect privilege from a user with Resource
privilege, the statement has no effect. If you revoke Resource privilege from
a user with Resource privilege, the user retains Connect privilege on the
database.

The three database privileges are associated with the following keywords:

CONNECT Connect privilege gives you the ability to query and modify
data. You can modify the database schema if you own the
object you wish to modify. Any user with Connect privilege
can perform the following functions:

� Execute SELECT, INSERT, UPDATE, and DELETE state-
ments, provided the user has the necessary table-level
privileges.

� Create views, provided the user has Select privilege
on the underlying tables.

� Create synonyms

� Create temporary tables and create indexes on the
temporary tables.

� Alter or drop a table or an index, provided the user
owns the table or index (or has Alter, Index, or Refer-
ences privileges on the table).

� Grant privileges on a table, provided the user owns
the table (or has been given privileges on the table
with the WITH GRANT OPTION keywords).

RESOURCE Resource privilege gives you the ability to extend the structure
of the database. In addition to the capabilities of the Connect
privilege, the holder of the Resource privilege can perform the
following functions:

� Create new tables

� Create new indexes

� Create new procedures
7-252 IBM Informix Guide to SQL: Reference

References
Tip: Although user informix can modify the system catalog tables, it is strongly
recommended that you do not update, delete, or alter any rows in these tables.
Modifying the system catalog tables can destroy the integrity of the database.

References
In this manual, see the following statement: GRANT.

In IBM Informix Guide to SQL: Tutorial, see the discussion of privileges and
security.

DBA In addition to the capabilities of the Resource privilege, the
holder of DBA privilege can perform the following functions:

� Grant any privilege, including DBA privilege, to
another user.

� Use the NEXT SIZE keywords to alter extent sizes in the
system catalog tables

� Insert, delete, or update rows of any system catalog
table except systables.

� Drop any object, regardless of who owns it.

� Create tables, views, and indexes, and specify another
user as owner of the objects.

� Execute the DROP DATABASE command.

� Execute the START DATABASE, and ROLLFORWARD
DATABASE commands. ♦

SE
Syntax 7-253

ROLLBACK WORK
ROLLBACK WORK

Purpose
Use the ROLLBACK WORK statement to cancel a transaction and undo any
changes that occurred since the beginning of the transaction.

Syntax

Usage
The ROLLBACK WORK statement is valid only in databases with transactions.

In a database that is not ANSI-compliant, you start a transaction with a BEGIN
WORK statement. You can end a transaction with a COMMIT WORK statement
or cancel the transaction with a ROLLBACK WORK statement. The ROLLBACK
WORK statement restores the database to the state that existed before the
transaction began.

The ROLLBACK WORK statement releases all row and table locks held by the
cancelled transaction. If you issue a ROLLBACK WORK statement when no
transaction is pending, an error occurs.

In an ANSI-compliant database, transactions are implicit. Transactions start
after each COMMIT WORK or ROLLBACK WORK statement. If you issue a
ROLLBACK WORK statement when no transaction is pending, the statement
is accepted but has no effect. ♦

ROLLBACK WORK

ANSI
7-254 IBM Informix Guide to SQL: Reference

References
If you are using IBM Informix SE, a ROLLBACK WORK statement undoes all
database changes except those that result from GRANT or REVOKE statements
or from data definition statements. Data definition statements are treated as
single transactions. If they were executed successfully, they are committed
automatically and cannot be rolled back by the ROLLBACK WORK statement.
Data definition statements include statements that modify the number,
names, or indexes of tables and statements that modify the number, names,
or data types of columns.

If a transaction is rolled back, the actions taken to undo the transaction are
also logged to table audit trails, if any exist. ♦

The ROLLBACK WORK statement closes all open cursors except those
declared with hold, which remain open despite transaction activity. ♦

Do not use a ROLLBACK WORK statement within a FOREACH loop. ♦

If you use the ROLLBACK WORK statement within a routine called by a
WHENEVER statement, specify WHENEVER SQLERROR CONTINUE and
WHENEVER SQLWARNING CONTINUE before the ROLLBACK WORK
statement. This prevents the program from looping if the ROLLBACK WORK
statement encounters an error or a warning. ♦

References
In this manual, see the following statements: BEGIN WORK and COMMIT
WORK.

If you are using 4GL, refer to the FOREACH and WHENEVER statements in the
manual for your application development tool.

In IBM Informix Guide to SQL: Tutorial, see the discussion of ROLLBACK WORK.

SE

I4GL

ESQL

I4GL

ESQL
Syntax 7-255

ROLLFORWARD DATABASE
ROLLFORWARD DATABASE

Purpose
Use the ROLLFORWARD DATABASE statement with the IBM Informix SE
database server to apply the transaction log file to a restored database.

Syntax

Usage
To restore a database, you need both the archive copy of the database and the
transaction log that was begun immediately after the archive copy was made.

To execute the ROLLFORWARD DATABASE statement, you need DBA
privilege. Always precede a ROLLFORWARD DATABASE statement with a
CLOSE DATABASE statement. The ROLLFORWARD DATABASE statement fails
if a database is open.

The ROLLFORWARD DATABASE statement sets an exclusive lock on the
database to prevent access by other processes. If another process is using the
database (even if the database is only being read), the ROLLFORWARD
DATABASE statement fails.

The database remains locked after the ROLLFORWARD DATABASE statement
executes. This allows you to check for errors before you give other users
access. When you are satisfied that the database is ready for use, release the
exclusive lock by executing the CLOSE DATABASE statement. You can open
the database with the DATABASE statement.

If you are using IBM Informix NET, you must be working on a database server
to issue a ROLLFORWARD DATABASE statement. You cannot execute the
statement from a client. ♦

ROLLFORWARD DATABASE
SE Database

Name
p. 7-362+

INET
7-256 IBM Informix Guide to SQL: Reference

References
References
In this manual, see the following statements: BEGIN WORK, COMMIT WORK,
CLOSE DATABASE, DATABASE, and ROLLBACK WORK.

In IBM Informix Guide to SQL: Tutorial, see the discussion of archives and logs.
Syntax 7-257

SELECT
SELECT

Purpose
Use the SELECT statement to query a database.

Syntax

Usage
You can query the tables in the current database or in a database that is not
current.

I4GL

SELECT

UNION

UNION ALL

FROM
Clause
p. 7-269

HAVING
Clause
p. 7-281

GROUP BY
Clause
p. 7-279

WHERE
Clause
p. 7-271

ESQL

Select
List

p. 7-260

ORDER BY
Clause
p. 7-283

INTO TEMP
Clause
p. 7-285

+

SPL
INTO

Clause
p. 7-265
7-258 IBM Informix Guide to SQL: Reference

Usage
You can query the tables in the databases that are on a different database
server from your current database. ♦

You only can query the current database. ♦

The SELECT statement is made up of eight basic parts. Each part is listed here
and explained in detail on the following pages:

SELECT clause names a list of items to be read from the database.

INTO clause specifies the program variables or host variables that
receive the selected data. ♦

FROM clause names the tables that contain the selected columns.

WHERE clause sets conditions on the rows that are chosen.

GROUP BY clause combines groups of rows into summary results.

HAVING clause sets conditions on the summary results.

ORDER BY clause orders the selected rows.

INTO TEMP clause creates a temporary table in the current database and
puts the results of the query into the table.

STAR

SE

I4GL

ESQL

SPL
Syntax 7-259

SELECT Clause
SELECT Clause
The SELECT clause contains the keyword SELECT and the list of objects to be
selected, as shown in the following diagram:

In the SELECT clause, you specify exactly what data is being selected, as well
as whether you want to omit duplicate values.

DISTINCT

UNIQUE

,

display
label

SELECT

*

.

.

.

Select
List

Select
List

Synonym
Name

p. 7-432

View
Name

p. 7-438

Table
Name

p. 7-434

ALL

Expression
p. 7-370

AS+

display label is a temporary name that you assign to the expression.
7-260 IBM Informix Guide to SQL: Reference

SELECT Clause
Allowing Duplicates

You can apply the keywords ALL, UNIQUE, or DISTINCT to indicate whether
duplicate values are returned, if any exist. If you do not specify any of these
keywords, all of the rows are returned by default.

For example, the following query lists the stock_num and manu_code of all
the items that have been ordered, excluding duplicate items:

SELECT DISTINCT stock_num, manu_code FROM items

You can use the DISTINCT or UNIQUE keywords once in each level of a query
or subquery. For example, the following query uses DISTINCT in both the
query and the subquery:

SELECT DISTINCT stock_num, manu_code FROM items
WHERE order_num = (SELECT DISTINCT order_num FROM orders

WHERE customer_num = 120)

Expressions in the Select List

You can use any of the four basic types of expressions (column, constant,
function, or aggregate function), or combinations thereof, in the select list.
The four expression types are described in detail beginning with the section
“Expression” on page 7-370.

The following sections present examples of using each type of simple
expression in the select list.

You can combine simple numeric expressions by connecting them with arith-
metic operators for addition, subtraction, multiplication, and division.
However, if you combine a column expression and an aggregate function,
you must include the column expression in the GROUP BY clause.

ALL specifies that all selected values are returned, regardless of
whether there are duplicates. ALL is the default state.

DISTINCT eliminates duplicate rows from the query results.

UNIQUE eliminates duplicate rows from the query results. UNIQUE is a
synonym for DISTINCT.
Syntax 7-261

SELECT Clause
Selecting Columns

Column expressions are the most common expressions used in a SELECT
statement. See “Column Expressions” on page 7-373 for a complete
description of the syntax and use of column expressions.

Examples of column expressions within a select list follow.

Figure 7-86
Column expressions within a select list

SELECT orders.order_num, items.price FROM orders, items

SELECT customer.customer_num ccnum, company FROM customer

SELECT catalog_num, stock_num, cat_advert [1,15] FROM catalog

SELECT lead_time - 2 UNITS DAY FROM manufact

Selecting Constants

If you include a constant expression in the select list, the same value is
returned for each row returned by the query. See “Constant Expressions” on
page 7-376 for a complete description of the syntax and use of constant
expressions.

Examples of constant expressions within a select list follow.

Figure 7-87
Constant expressions within a select list

SELECT "The first name is", fname FROM customer

SELECT TODAY FROM cust_calls

SELECT SITENAME FROM systables WHERE tabid = 1

SELECT lead_time - 2 UNITS DAY FROM manufact

SELECT customer_num + LENGTH("string") from customer

Selecting Function Expressions

A function expression is an expression that uses a function that is evaluated
for each row in the query. All function expressions require arguments. This
set of expressions contains the time functions and the length function when
they are used with a column name as an argument.
7-262 IBM Informix Guide to SQL: Reference

SELECT Clause
Some examples of function expressions within a select list follow.

Figure 7-88
Function expressions within a select list

SELECT EXTEND(res_dtime, YEAR TO SECOND) FROM cust_calls

SELECT LENGTH(fname) + LENGTH(lname) FROM customer

SELECT HEX(order_num) FROM orders

SELECT MONTH(order_date) FROM orders

Selecting Aggregate Expressions

An aggregate function returns one value for a set of queried rows. The
aggregate functions take on values that depend on the set of rows returned
by the WHERE clause of the SELECT statement. In the absence of a WHERE
clause, the aggregate functions take on values that depend on all the rows
formed by the FROM clause.

Some examples of aggregate functions in a select list follow.

Figure 7-89
Aggregate functions within a select list

SELECT SUM(total_price) FROM items WHERE order_num = 1013

SELECT COUNT(*) FROM orders WHERE order_num = 1001

SELECT MAX(LENGTH(fname) + LENGTH(lname)) FROM customer

Selecting Expressions That Use Arithmetic Operators

You can combine numeric expressions with arithmetic operators to make
complex expressions. You cannot combine expressions that contain
aggregate functions with column expressions. The following examples show
expressions that use arithmetic operators within a select list.

Figure 7-90
Expressions that use arithmetic operators within a select list

SELECT stock_num, quantity*total_price FROM customer

SELECT price*2 doubleprice FROM items

SELECT count(*)+2 FROM customer

SELECT count(*)+LENGTH("ab") FROM customer
Syntax 7-263

SELECT Clause
Using a Display Label

If you are creating a temporary table, you must supply a display label for any
columns that are not simple column expressions. The display label is used as
the name of the column in the temporary table.

A display label appears as the heading for that column in the output of the
SELECT statement. ♦

The value of display label is stored in the sqlname field of the sqlda structure.
See Chapter 6 of this manual for more information on the sqlda structure. ♦

If you are using the SELECT statement in creating a view, do not use display
labels. Specify the desired label names in the CREATE VIEW column list
instead.

Using the AS Keyword

If your display label also is a keyword, you can use the AS keyword with the
display label to clarify the use of the word. If you want to use the word
UNITS, YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, or FRACTION as your
display label, you must use the AS keyword with the display label. The
following example shows how to use the AS keyword to use minute as a
display label:

SELECT call_dtime AS minute FROM cust_calls

DB

ISQL

ESQL
7-264 IBM Informix Guide to SQL: Reference

INTO Clause
INTO Clause
Use the INTO clause to specify the program variables or host variables to
receive the data retrieved by the SELECT statement. The syntax of the INTO
clause is as follows:

If the SELECT statement stands alone, that is, it is not part of a DECLARE
statement and does not use the INTO clause, it must be a singleton SELECT
statement. A singleton SELECT statement returns only one row. The following
example shows a singleton SELECT statement in IBM Informix 4GL.

Figure 7-91
A singleton SELECT statement in IBM Informix 4GL

SELECT fname, lname, company_name
INTO p_fname, p_lname, p_coname
WHERE customer_num = 101

INTO Clause with Indicator Variables

You should use an indicator variable if there is the possibility that data
returned from the SELECT statement is NULL. See your embedded-language
product manual for more information about indicator variables.

data variable is a program variable or host object that agrees in type and
order with the corresponding columns or expressions in the
select list.

indicator
variable

is a program variable that receives a return code if null data is
placed in the corresponding data variable.

INTO
Clause

,

data variableINTO

ESQL

+ : indicator variable

indicator variableINDICATOR
Syntax 7-265

INTO Clause
INTO Clause with Cursors

If the SELECT statement returns more than one row, you must use a cursor to
FETCH the rows one at a time. You can put the INTO clause in the FETCH
statement rather than in the SELECT statement, but you cannot put it in both.

 The following IBM Informix 4GL code fragments are equivalent.

Figure 7-92
Using the INTO clause in SELECT in an IBM Informix 4GL program

DECLARE q_curs CURSOR FOR
SELECT lname, company

INTO p_lname, p_company
FROM customer

OPEN q_curs
WHILE status = 0
FETCH q_curs
...
END WHILE

CLOSE q_curs

Figure 7-93
Using the INTO clause in FETCH in an IBM Informix 4GL program

DECLARE q_curs CURSOR FOR
SELECT lname, company
FROM customer

OPEN q_curs
WHILE status = 0
FETCH q_curs INTO p_lname, p_company
...
END WHILE

CLOSE q_curs

With 4GL, you can use the FOREACH statement in place of the FETCH, OPEN,
and CLOSE statements.

The following IBM Informix 4GL code fragment accomplishes the same task
as the two preceding examples, except that it uses the FOREACH statement,
which is available only in IBM Informix 4GL.

I4GL
7-266 IBM Informix Guide to SQL: Reference

INTO Clause
Figure 7-94
Using FOREACH in IBM Informix 4GL

DECLARE q_curs CURSOR FOR
SELECT lname, company
FROM customer

FOREACH q_curs INTO p_lname, p_company
...

END FOREACH
♦

Preparing a SELECT...INTO Query

You cannot prepare a query that has an INTO clause. You can prepare the
query without the INTO clause, declare a cursor for the prepared query, open
the cursor, and then fetch the cursor into the program variable using the
FETCH statement with an INTO clause. Alternatively, you can declare a cursor
for the query without first preparing the query and include the INTO clause
in the query when you declare the cursor. Then, open the cursor and fetch the
cursor without using the INTO clause of the FETCH statement.

Using Array Variables with the INTO Clause

If you use a DECLARE statement with a SELECT statement that contains an
INTO clause and the program variable is an array element, you can identify
individual elements of the array with integer constants or with variables. The
value of the variable used as a subscript is determined when the cursor is
declared, so once declared, the subscript variable acts as a constant.

For example, the following IBM Informix 4GL code fragment declares a cursor
for a SELECT...INTO statement using the variables i and j as subscripts for the
array a. Once you declare the cursor, the INTO clause of the SELECT statement
is equivalent to INTOa[5],a[2].

Figure 7-95
Declaring a cursor for a SELECT...INTO statement in IBM Informix 4GL

LET i = 5
LET j = 2
DECLARE c CURSOR FOR

SELECT order_num, po_num INTO a[i], a[j] FROM orders
WHERE order_num =1005 AND po_num =2865
Syntax 7-267

INTO Clause
You also can use program variables in the FETCH statement to specify an
element of a program array in the INTO clause. With the FETCH statement, the
program variables are evaluated at each fetch, rather than when the cursor is
declared.

You also can use program variables in a FOREACH statement to specify an
element of a program array in the INTO clause. The program variables are
evaluated at each loop of the FOREACH statement, rather than when the
cursor is declared. ♦

Error Checking

If the number of variables listed in the INTO clause differs from the number
of items in the SELECT clause, a warning is returned in the SQLWARN
structure; the specific structure name is shown in the following diagram. The
actual number of variables transferred is the lesser of the two numbers. See
Chapter 5 of this manual for information about the SQLWARN structure.

If the number of variables listed in the INTO clause differs from the number
of items in the SELECT clause, an error is returned. ♦

If the data type of the receiving variable does not match that of the selected
item, the data type of the selected item is converted, if possible. If the
conversion is not possible, an error occurs and a negative value is returned in
the status variable. In this case, the value in the program variable is unpre-
dictable. The specific name of the status variable for each application
development tool is shown in the following diagram:

4GL ESQL/C ESQL/COBOL

SQLCA.SQLAWARN[4] sqlca.sqlwarn.sqlwarn3 SQLWARN3 OF
SQLWARN OF SQLCA

4GL ESQL/C ESQL/COBOL

STATUS
SQLCA.SQLCODE

sqlca.sqlcode
SQLCODE

SQLCODE OF SQLCA

I4GL

ANSI
7-268 IBM Informix Guide to SQL: Reference

FROM Clause
FROM Clause
The FROM clause lists the table or tables from which you are selecting the
data. The following diagram shows the syntax of the FROM clause:

OUTER

OUTER

()

,

FROM

Additional
Tables

+

,

,

Additional
Tables

Table
Name

p. 7-434

View
Name

p. 7-438

Synonym
Name

p. 7-432

table
alias

Additional
Tables

Table
Name

p. 7-434

View
Name

p. 7-438

Synonym
Name

p. 7-432
Table
Name

p. 7-434

View
Name

p. 7-438

Synonym
Name

p. 7-432

Table
Name

p. 7-434

View
Name

p. 7-438

Synonym
Name

p. 7-432

AS

table
alias

AS

table
alias

AS

table
alias

AS
Syntax 7-269

FROM Clause
Use the keyword OUTER to form outer joins. Outer joins preserve rows that
otherwise would be discarded by simple joins. See the IBM Informix Guide to
SQL: Tutorial for more information on outer joins.

You can supply an alias for a table name. You can use the alias to refer to the
table in other clauses of the SELECT statement. This is especially useful with
a self-join. (See the WHERE clause on page 7-271 for more information about
self-joins.)

The table alias that you can specify in a FROM clause is distinct from the alias
for a table that is sometimes required in the TABLES section of a form-specifi-
cation file. ♦

The following examples show typical uses of the FROM clause. The first
query selects all the columns and rows from the customer table. The second
query uses a join between the customer and orders table to select all
customers who have placed orders.

Figure 7-96
Typical uses of the FROM clause

SELECT * FROM customer

SELECT fname, lname, order_num
FROM customer, orders
WHERE customer.customer_num = orders.customer_num

The following example is the same as the second query in the preceding
example, except that it establishes table aliases in the FROM clause and uses
them in the WHERE clause.

Figure 7-97
Establishing and using table aliases

SELECT fname, lname, order_num
FROM customer c, orders o
WHERE c.customer_num = o.customer_num

The following example uses the OUTER keyword to create an outer join and
produce a list of all customers and their orders, regardless of whether they
have placed orders.

table alias is a name that you attach to the table within the scope of the
SELECT statement.

I4GL

ISQL
7-270 IBM Informix Guide to SQL: Reference

WHERE Clause
Figure 7-98
Creating an outer join

SELECT customer.customer_num, lname, order_num
FROM customer c, OUTER orders o
WHERE c.customer_num = o.customer_num

AS Keyword with Table Aliases

To use potentially ambiguous words as a table alias, you must precede them
with the keyword AS. Use the AS keyword if you want to use the words
ORDER, FOR, GROUP, HAVING, INTO, UNION, WHERE, WITH, CREATE, or
GRANT as a table alias.

WHERE Clause
Use the WHERE clause to specify search criteria and join conditions on the
data that you are selecting.

Using a Condition in the WHERE Clause

You can use five kinds of simple conditions or comparisons in the WHERE
clause:

� Relational-operator condition

� BETWEEN

� IN

� IS NULL

� LIKE or MATCHES

WHERE

AND

Condition
p. 7-345

Join
p. 7-277
Syntax 7-271

WHERE Clause
You also can use a SELECT statement within the WHERE clause; this is called
a subquery. There are three kinds of subquery WHERE clauses:

� IN

� EXISTS

� ALL/ANY/SOME

Examples of each type of condition are shown in the following sections. For
more information about each kind of condition, see the Condition segment
on page 7-345.

You cannot use an aggregate function in the WHERE clause unless it is part of
a subquery.

Relational-Operator Condition

For a complete description of the relational-operator condition, see
page 7-348.

A relational-operator condition is satisfied when the expressions on either
side of the relational operator fulfill the relation set up by the operator. The
following SELECT statements use the greater than (>) and equal (=) relational
operators.

Figure 7-99
Examples of the Relational-Operator condition

SELECT order_num FROM orders
WHERE order_date > "6/04/91"

SELECT fname, lname, company
FROM customer
WHERE city[1,3] = "San"

BETWEEN Condition

For a complete description of the BETWEEN condition, see page 7-349.

The BETWEEN condition is satisfied when the value to the left of the
BETWEEN keyword lies in the inclusive range of the two values on the right
of the BETWEEN keyword. The first two queries in the following example use
literal values after the BETWEEN keyword. The third query uses the
CURRENT function and a literal interval. It looks for dates between the
current day and seven days earlier.
7-272 IBM Informix Guide to SQL: Reference

WHERE Clause
Figure 7-100
Examples of the BETWEEN condition

SELECT stock_num, manu_code FROM stock
WHERE unit_price BETWEEN 125.00 AND 200.00

SELECT DISTINCT customer_num, stock_num, manu_code
FROM orders, items
WHERE order_date BETWEEN "6/1/90" AND "9/1/90"

SELECT * FROM cust_calls WHERE call_dtime
BETWEEN (CURRENT - INTERVAL(7) DAY TO DAY) AND CURRENT

IN Condition

For a complete description of the IN condition, see page 7-350.

The IN condition is satisfied when the expression to the left of the IN keyword
is included in the list of values to the right of the keyword.

Figure 7-101
Examples of the IN condition

SELECT lname, fname, company
FROM customer
WHERE state IN ("CA","WA", "NJ")

SELECT * FROM cust_calls
WHERE user_id NOT IN (USER)

IS NULL Condition

For a complete description of the IS NULL condition, see page 7-351.

The IS NULL condition is satisfied if the column contains a null value. If you
use the NOT option, the condition is satisfied when the column contains a
non-null value. The following example selects the order numbers and
customer numbers for which the order has not been paid.

Figure 7-102
Example of the IS NULL condition

SELECT order_num, customer_num FROM orders
WHERE paid_date IS NULL

LIKE or MATCHES Condition

For a complete description of the LIKE or MATCHES condition, see page 7-352.
Syntax 7-273

WHERE Clause
The LIKE or MATCHES condition is satisfied when the column value meets the
criteria specified in the quoted string.

The following SELECT statement returns all the columns in the customer
table from each row in which the lname column begins with the literal string
"Baxter". Since the string is a literal string, the condition is case sensitive.

SELECT * FROM customer WHERE lname LIKE "Baxter%"

The following examples use the LIKE condition with a wildcard. The first
SELECT statement finds all stock items that are some kind of ball. The second
SELECT statement finds all company names that contain a percent sign. The
backslash is used as the standard escape character for the wildcard "%". The
third SELECT statement uses the ESCAPE option with the LIKE condition to
retrieve rows from the customer table in which the company column
includes a percent sign. The z is used as an escape character for the wildcard
"%".

Figure 7-103
Examples of the LIKE condition

SELECT stock_num, manu_code FROM stock
WHERE description LIKE "%ball"

SELECT * FROM customer
WHERE company LIKE "%\%%"

SELECT * FROM customer
WHERE company LIKE "%z%%" ESCAPE "z"

The following examples use MATCHES with a wildcard. The first SELECT
statement finds all stock items that are some kind of ball. The second SELECT
statement finds all company names that contain an asterisk. The backslash is
used as the standard escape character for the wildcard "*". The third
statement uses the ESCAPE option with the MATCHES condition to retrieve
rows from the customer table in which the company column includes an
asterisk. The z character is used as an escape character for the wildcard "*".

Figure 7-104
Examples of the MATCHES condition

SELECT stock_num, manu_code FROM stock
WHERE description MATCHES "*ball"

SELECT * FROM customer
WHERE company MATCHES "***"

SELECT * FROM customer
WHERE company MATCHES "*z**" ESCAPE "z"
7-274 IBM Informix Guide to SQL: Reference

WHERE Clause
IN Subquery

For a complete description of the IN subquery, see page 7-350.

With the IN subquery, more than one row can be returned but only one
column can be returned. The following example shows the use of an IN
subquery in a SELECT statement.

Figure 7-105
Example of an IN subquery

SELECT DISTINCT customer_num FROM orders
WHERE order_num NOT IN

(SELECT order_num FROM items
WHERE stock_num = 1)

EXISTS Subquery

For a complete description of the EXISTS subquery, see page 7-356.

With the EXISTS subquery, one or more columns can be returned.

The following example of a SELECT statement with an EXISTS subquery
returns the stock number and manufacturer code for every item that has
never been ordered (and is therefore not listed in the items table). It is appro-
priate to use an EXISTS subquery in this SELECT statement because you need
the correlated subquery to test both stock_num and manu_code in items.

Figure 7-106
Example of an EXISTS subquery

SELECT stock_num, manu_code FROM stock
WHERE NOT EXISTS

(SELECT stock_num, manu_code FROM items
WHERE stock.stock_num = items.stock_num AND

stock.manu_code = items.manu_code)

The preceding example would work equally well if you use a SELECT * in the
subquery in place of the column names, since you are testing for the existence
of a row or rows.
Syntax 7-275

WHERE Clause
ALL/ANY/SOME Subquery

For a complete description of the ALL/ANY/SOME subquery, see page 7-357.

In the following example, the first SELECT statement returns the order
number of all orders that contain an item whose total price is greater than the
total price of every item in order number 1023. The second SELECT statement
produces the same result by using the MAX aggregate function, but it may
execute more quickly.

Figure 7-107
Example of an ALL subquery and an equivalent aggregate subquery

SELECT DISTINCT order_num FROM items
WHERE total_price > ALL (SELECT total_price FROM items

 WHERE order_num = 1023)

SELECT DISTINCT order_num FROM items
WHERE total_price > SELECT MAX(total_price) FROM items

 WHERE order_num = 1023)

The following SELECT statements return the order number of all orders that
contain an item whose total price is greater than the total price of at least one
of the items in order number 1023. The first statement uses the ANY keyword;
the second uses the MIN aggregate function.

Figure 7-108
Example of an ANY subquery and an equivalent aggregate subquery

SELECT DISTINCT order_num FROM items
WHERE total_price > ANY (SELECT total_price FROM items

 WHERE order_num = 1023)

SELECT DISTINCT order_num FROM items
WHERE total_price > (SELECT MIN(total_price) FROM items

WHERE order_num = 1023)

You can omit the keywords ANY, ALL, or SOME in a subquery if you know
that the subquery will return exactly one value. If you omit ANY, ALL, or
SOME and the subquery returns more than one value, you receive an error.
The subquery in the following example returns only one row because it uses
an aggregate function.

Figure 7-109
Example of a subquery omitting the ANY, ALL, or SOME keywords

SELECT order_num FROM items
WHERE stock_num = 9 AND quantity =

(SELECT MAX(quantity) FROM items WHERE stock_num = 9)
7-276 IBM Informix Guide to SQL: Reference

WHERE Clause
Using a Join in the WHERE Clause

You join two tables when you create a relationship in the WHERE clause
between at least one column from one table and at least one column from
another table. The effect of the join is to create a temporary composite table
in which each pair of rows (one from each table) satisfying the join condition
is linked to form a single row. You can create two-table joins, multiple-table
joins, and self-joins.

The following diagram shows the syntax for a join:

Two-Table Joins

The following example shows a two-table join.

Figure 7-110
Example of a two-table join

SELECT order_num, lname, fname
FROM customer, orders
WHERE customer.customer_num = orders.customer_num

Note that you do not have to select the column on which the two tables are
joined.

column
name. column

name
.

Join

Relational
Operator
p. 7-429

alias

Table
Name

p. 7-434

View
Name

p. 7-438

Synonym
Name

p. 7-432

alias

Table
Name

p. 7-434

View
Name

p. 7-438

Synonym
Name

p. 7-432

alias is the alias assigned in the FROM clause.

column name is the name of a column in one of the tables.
Syntax 7-277

WHERE Clause
Multiple-Table Joins

A multiple-table join is a join of more than two tables. Its structure is similar
to the structure of a two-table join, except that you have a join condition for
more than one pair of tables in the WHERE clause. When columns from
different tables have the same name, you must distinguish them by
preceding the name with its associated table or table alias, as in table.column.
See “Table Name” on page 7-434 for the full syntax of a table name.

The following multiple-table join yields the company name of the customer
who ordered an item, as well as the stock number and manufacturer code of
the item.

Figure 7-111
Example of a multiple-table join

SELECT DISTINCT company, stock_num, manu_code
FROM customer c, orders o, items i
WHERE c.customer_num = o.customer_num

AND o.order_num = i.order_num

Self-Joins

You can join a table to itself. To do so, you must list the table name twice in
the FROM clause and assign it two different table aliases. Use the aliases to
refer to each of the “two” tables in the WHERE clause.

The following example is a self-join on the stock table. It finds pairs of stock
items whose unit prices differ by a factor greater than two and one-half. The
letters x and y are each aliases for the stock table.

Figure 7-112
Example of a self-join

SELECT x.stock_num, x.manu_code, y.stock_num, y.manu_code
FROM stock x, stock y
WHERE x.unit_price > 2.5 * y.unit_price

Outer Joins

The following outer join lists the company name of the customer and all
associated order numbers, if the customer has placed an order. If not, the
company name still is listed and a NULL value is returned for the order
number.
7-278 IBM Informix Guide to SQL: Reference

GROUP BY Clause
Figure 7-113
Example of an outer join

SELECT company, order_num
FROM customer c, OUTER orders o
WHERE c.customer_num = o.customer_num

See the IBM Informix Guide to SQL: Tutorial for more information about outer
joins.

GROUP BY Clause
Use the GROUP BY clause to produce a single row of results for each group.
A group is a set of rows that have the same values for each column listed.

column name is the name of a column or set of columns joined by a relational
operator that is in the SELECT clause. Do not include columns
of type BYTE or TEXT.

select number is an integer that represents the placement of a column or
expression in the SELECT clause.

GROUP BY

,

column
name

select
number

Table
Name

p. 7-434

View
Name

p. 7-438

.

.

Synonym
Name

p. 7-432
.

+

Syntax 7-279

GROUP BY Clause
Using a GROUP BY clause restricts what you can enter in the SELECT clause.
If you use a GROUP BY clause, each of the columns that you select must be in
the GROUP BY list. If you use an aggregate function and one or more column
expressions in the select list, you must put all the column names that are not
used as part of an aggregate or time expression in the GROUP BY clause. Do
not put constant expressions or BYTE or TEXT column expressions in the
GROUP BY list. If you are selecting a BYTE or TEXT column, you cannot use
the GROUP BY clause.

The following example names one column that is not in an aggregate
expression. The total_price column should not be in the GROUP BY list
because it appears as the argument of an aggregate function. The COUNT and
SUM keywords are applied to each group, not the whole query set.

Figure 7-114
Example of a GROUP BY clause

SELECT order_num, COUNT(*), SUM(total_price)
FROM items
GROUP BY order_num

If a column stands alone in a column expression in the select list, you must
use it in the GROUP BY clause. If a column is combined with another column
by an arithmetic operator, you can choose to group by the individual
columns or by the combined expression using a select number.

Using Select Numbers

You can use one or more integers in the GROUP BY clause to stand for column
expressions. In the following example, the first SELECT clause uses select
numbers for order_date and paid_date - order_date in the GROUP BY clause.
Note that you only can group by a combined expression by using the select-
number notation. In the second SELECT clause, you cannot replace the 2 with
the expression paid_date - order_date.

Figure 7-115
Examples of select numbers in a GROUP BY clause

SELECT order_date, COUNT(*), paid_date - order_date
FROM orders
GROUP BY 1, 3

SELECT order_date, paid_date - order_date
FROM orders
GROUP BY order_date, 2
7-280 IBM Informix Guide to SQL: Reference

HAVING Clause
Select numbers (or column numbers) are required when SELECT statements
are joined by UNION or UNION ALL keywords and different names for
compatible columns appear in the same position.

Nulls in the GROUP BY Clause

Each row that contains a null value in a column specified by a GROUP BY
clause is considered to belong to a single group. That is, all null values are
grouped together.

HAVING Clause
Use the HAVING clause to apply one or more qualifying conditions to groups.

In the following examples, each condition compares one calculated property
of the group with another calculated property of the group or with a
constant. The first SELECT statement uses a HAVING clause that compares the
calculated expression COUNT(*) with the constant 2. The query returns the
average total price per item on all orders that have more than two items. The
second SELECT statement lists customers and the call months if they have
made two or more calls in the same month.

Figure 7-116
Using the HAVING clause with calculated values

SELECT order_num, AVG(total_price) FROM items
GROUP BY order_num
HAVING COUNT(*) > 2

SELECT customer_num, EXTEND (call_dtime, MONTH TO MONTH)
FROM cust_calls
GROUP BY 1, 2
HAVING COUNT(*) > 1

You can use the HAVING clause to place conditions on the GROUP BY column
values, as well as on calculated values. The following query returns the
customer_num, call_dtime (in full year-to-fraction format), and cust_code,
and groups them by call_code for all calls that have been received from
customers with customer_num less than 120.

HAVING Condition
p. 7-345
Syntax 7-281

HAVING Clause
Figure 7-117
Using the HAVING clause with column values

SELECT customer_num, EXTEND (call_dtime), call_code
FROM cust_calls
GROUP BY call_code, 2, 1
HAVING customer_num < 120

The HAVING clause generally complements a GROUP BY clause. If you use a
HAVING clause without a GROUP BY clause, the HAVING clause applies to all
rows that satisfy the query. Without a GROUP BY clause, all rows in the table
make up a single group. The following query returns the average price of all
the values in the table, as long as more than ten rows are in the table.

Figure 7-118
Using the HAVING clause without a GROUP BY clause

SELECT AVG(total_price) FROM items
HAVING COUNT(*) > 10
7-282 IBM Informix Guide to SQL: Reference

ORDER BY Clause
ORDER BY Clause
Use the ORDER BY clause to sort query results by the values contained in one
or more columns.

You only can order by columns, or expressions that contain column expres-
sions, that are named in the SELECT clause. The sole exception is aggregate
expressions; you cannot use aggregate expressions in the ORDER BY clause.

The following query explicitly selects the order date and shipping date from
the orders table and then orders the query by the order date. By default, the
query results are ordered in ascending order.

Figure 7-119
Using the ORDER BY clause when a column is selected explicitly

SELECT order_date, ship_date FROM orders
ORDER BY order_date

ORDER BY

,

column
name

select
number

display
label

ASC

DESC

Table
Name

p. 7-434

View
Name

p. 7-438

.

.

Synonym
Name

p. 7-432
.

column name is the name of a column from the SELECT clause by which you
want to sort the query results.

display label is the display label used for a column or expression in the
select list.

select number is an integer that represents the placement of a column or
expression in the SELECT clause.
Syntax 7-283

ORDER BY Clause
In the following query, the order_date column is selected implicitly by the
SELECT *, so you can use order_date in the ORDER BY clause.

Figure 7-120
Using the ORDER BY clause when a column is selected implicitly

SELECT * FROM orders
ORDER BY order_date

Ordering by a Derived Column

You can order by a derived column by supplying a display label in the
SELECT clause, as shown in the following example.

Figure 7-121
Ordering by a derived column

SELECT paid_date - ship_date span, customer_num
FROM orders
ORDER BY span

Ascending and Descending Orders

You can use the ASC and DESC keywords to specify ascending (smallest value
first) or descending (largest value first) order. The default order is ascending.

For DATE and DATETIME data types, “smallest” means earliest in time and
“largest” means latest in time. For character data types, the ASCII collating
sequence is used. See page 7-430 for a listing of the collating sequence.

Nulls in the ORDER BY Clause

Null values are ordered as less than non-null values. Using the ASC order, the
null value comes before the non-null value; using DESC order, the null value
comes last.

Nested Ordering

If you list more than one column in the ORDER BY clause, your query is
ordered by a nested sort. The first level of sort is based on the first column;
the second column determines the second level of sort. For example, the
following query selects all the rows in the cust_calls table, then orders them
by call_code and by call_dtime within call_code.
7-284 IBM Informix Guide to SQL: Reference

INTO TEMP Clause
Figure 7-122
A nested sort

SELECT * FROM cust_calls
ORDER BY call_code, call_dtime

Using Select Numbers

In the place of column names, you can enter one or more integers that refer
to the position of items in the SELECT clause. You can use a select number to
order by an expression. For example, the following query orders by the
expression paid_date - order_date and customer_num.

Figure 7-123
Using select numbers in a nested sort

SELECT order_num, customer_num, paid_date - order_date
FROM orders
ORDER BY 3, 2

Select numbers are required in the ORDER BY clause when SELECT statements
are joined by UNION or UNION ALL keywords and compatible columns in the
same position have different names.

ORDER BY Clause with DECLARE

You cannot use a DECLARE statement with a FOR UPDATE clause to associate
a cursor with a SELECT statement that has an ORDER BY clause. ♦

INTO TEMP Clause

The INTO TEMP clause creates a temporary table that contains the query
results.

temp table
name

is the simple name of a table. You cannot use any of the
extended syntax described in the Table Name segment on
page 7-434. You are limited to the conventions described in the
Identifier segment on page 7-399.

I4GL

ESQL

WITH NO LOG

INTO TEMP temp table name
Syntax 7-285

INTO TEMP Clause
Temporary tables are always located in the root dbspace. The initial and next
extents for the temp table are always eight pages.

The temporary table disappears when your program ends or when you issue
a DROP TABLE statement on the temporary table. If your database does not
have logging, or if it has logging and you created the temporary table without
the WITH NO LOG keywords, the temporary table disappears when you close
the current database.

If you use the same query results more than once, a temporary table saves
you time. In addition, using an INTO TEMP clause often gives you clearer and
more understandable SELECT statements. However, the data in the
temporary table is static; the data is not updated as changes are made to the
tables used to build the temporary table.

The column names of the temporary table are those named in the SELECT
clause. You must supply a display label for all expressions other than simple
column expressions. The display label for a column or expression becomes
the column name in the temporary table. If you do not provide a display label
for a column expression, the temporary table uses the column name from the
select list. For example, the following query creates the pushdate table with
two columns, customer_num and slowdate.

Figure 7-124
Creating a temporary table

SELECT customer_num, call_dtime + 5 UNITS DAY
FROM cust_calls INTO TEMP pushdate

You can put indexes on the temporary table.

INTO TEMP Clause and INTO

Do not use the INTO option with the INTO TEMP clause. If you do, no results
are returned to the program variables and the sqlcode variable is set to a
negative value. The name of the sqlcode variable for each product is shown
here.

4GL ESQL/C ESQL/COBOL

STATUS
SQLCA.SQLCODE

sqlca.sqlcode
SQLCODE

SQLCODE OF SQLCA

♦

I4GL

ESQL
7-286 IBM Informix Guide to SQL: Reference

UNION Operator
WITH NO LOG Option

If you use the WITH NO LOG keywords, operations on the temporary table are
not included in the transaction log operations. You can use this option to
reduce the overhead of transaction logging.

UNION Operator
Place the UNION operator between two SELECT statements to combine the
queries into a single query. You can string several SELECT statements
together using the UNION operator. Corresponding items do not need to
have the same name.

Restrictions on a Combined SELECT

There are several restrictions on the queries that you can connect with a
UNION operator:

� The number of items in the SELECT clause of each query must be the
same, and the corresponding items in each SELECT clause must have
compatible data types.

� If you use an ORDER BY clause, it must follow the last SELECT clause
and you must refer to the item ordered by integer, not by identifier.
Ordering takes place after the set operation is complete.

� You cannot use a UNION operator inside a subquery or in the
definition of a view.

� You cannot use an INTO clause in a query unless you are sure that the
compound query will return exactly one row and you are not using
a cursor. In this case, the INTO clause must be in the first SELECT
statement. ♦

You can put the results of a UNION operator into a temporary table by putting
an INTO TEMP clause in the final SELECT statement.

The displayed column names are the column names or display labels from
the first SELECT statement. ♦

I4GL

ESQL

ISQL
Syntax 7-287

Reference
Duplicate Rows in a Combined SELECT

If you use the UNION operator by itself, the duplicate rows are removed from
the complete set of rows. That is, if multiple rows contain identical values in
each column, only one row is retained. If you use the UNION ALL operator,
all the selected rows are returned (the duplicates are not removed). For
example, the following query uses the UNION ALL operator to join two
SELECT statements without removing duplicates. The query returns a list of
all the calls that were received during the first quarter of 1990 and the first
quarter of 1991.

Figure 7-125
Connecting two SELECT statements with a UNION ALL operator

SELECT customer_num, call_code FROM cust_calls
WHERE call_dtime BETWEEN

DATETIME (1990-1-1) YEAR TO DAY
AND DATETIME (1990-3-31) YEAR TO DAY

UNION ALL

SELECT customer_num, call_code FROM cust_calls
WHERE call_dtime BETWEEN

DATETIME (1991-1-1)YEAR TO DAY
AND DATETIME (1991-3-31) YEAR TO DAY

If you want to remove duplicates, use the UNION operator without the
keyword ALL in the query. In the preceding example, if the combination 101

B were returned in both SELECT statements, a UNION operator would cause
the combination to be listed just once. (If you want to remove duplicates
within each SELECT statement, you would use the DISTINCT keyword in the
SELECT clause, as described on page 7-260.)

Reference
In IBM Informix Guide to SQL: Tutorial, see the discussion of outer joins.
7-288 IBM Informix Guide to SQL: Reference

SET CONSTRAINTS
SET CONSTRAINTS

Purpose
Use the SET CONSTRAINTS statement to turn effective checking off and on in
database with logging.

Syntax

Usage
The default constraint checking mode is IMMEDIATE. When the SET
CONSTRAINTS statement is set to IMMEDIATE, effective checking is turned on
and all specified constraints are checked at the end of each INSERT, UPDATE,
or DELETE statement. If a constraint error occurs, the statement is not
executed.

When you set the SET CONSTRAINTS statement to DEFERRED, effective
checking is turned off and all specified constraints are not checked until the
transaction is committed. If a constraint error occurs while the transaction is
being committed, the transaction is rolled back. You only can set constraints
to deferred in a database with logging.

The duration of the SET CONSTRAINTS statement is the transaction in which
it is executed. You cannot execute the SET CONSTRAINTS statement outside
of a transaction. Once a COMMIT or ROLLBACK WORK statement is success-
fully completed, the constraint mode of all constraints reverts to IMMEDIATE.

To revert from deferred to effective checking, you either can set the SET
CONSTRAINTS to IMMEDIATE or use a COMMIT or ROLLBACK statement in
your transaction.

SET
CONSTRAINTS IMMEDIATE

DEFERRED

ALL

,

OL

Constraint Name
p. 7-360

+

Syntax 7-289

References
You cannot explicitly defer the NOT NULL constraint for a column (NOT
NULL constraints are not named) or set of columns. However, if you defer the
checking of a primary key constraint, the checking of the NOT NULL
constraint for that column or set of columns is also deferred. To defer the
checking of all NOT NULL constraints, you must defer all constraints.

References
In this manual, see the CREATE TABLE statement.
7-290 IBM Informix Guide to SQL: Reference

SET DEBUG FILE TO
SET DEBUG FILE TO

Purpose
Use the SET DEBUG FILE TO statement to name the file that is to hold the run-
time trace output of a stored procedure.

Syntax

Usage
This statement indicates that the output of the procedure TRACE statement
goes to the file indicated by filename. The WITH APPEND option indicates to
add to the file, if it exists. If you do not use the WITH APPEND keywords, the
file is overwritten when you issue another SET DEBUG FILE TO statement with
the same filename.

character
expression

is any expression that evaluates to a usable filename.

filename is the full path and filename of the file that is to contain the
trace statement output.

variable name is a character variable that contains the full path and filename
of the file that is to contain the trace statement output.

filename"
DB

ESQL
+

SET DEBUG FILE TO "

WITH APPENDvariable name

character
expression
Syntax 7-291

References
If you invoke a SET DEBUG FILE TO statement with a simple filename on a
local database, the output file is located in your current directory. If your
current database is on another database server, the output file is located in
your home directory on the machine of the database server. If you provide a
full pathname for the debug file, the file is placed in the directory and file
specified on the machine of the database server. If you do not have write
permissions in the directory, an error is returned. ♦

To close the file opened by the SET DEBUG FILE TO statement, issue another
SET DEBUG FILE TO statement with another filename. You can then edit the
contents of the first file.

You can use the SET DEBUG FILE TO statement outside of a procedure to direct
the trace output of the procedure to a file. You also can use this statement
inside a procedure to redirect its own output.

The following example sends the output of the SET DEBUG FILE TO statement
to a file called debugging.out:

SET DEBUG FILE TO "debugging" || ".out"

References
In this manual, see the section “Debugging a Procedure” on page 8-14 and
the TRACE statement on page 8-80.

In IBM Informix Guide to SQL: Tutorial, see the discussion of stored procedures.

STAR

INET
7-292 IBM Informix Guide to SQL: Reference

SET DESCRIPTOR
SET DESCRIPTOR

Purpose
Use the SET DESCRIPTOR statement to assign values to a system descriptor
area in three different instances:

� To set the COUNT field of a system descriptor area to match the
number of items for which you are providing descriptions in the
system descriptor area. (The items are typically those in a WHERE
clause.)

� To set the item descriptor fields for each value for which you are
providing descriptions in the system descriptor area. (The items are
typically those in a WHERE clause.)

� To modify the contents of an item descriptor field after you use the
DESCRIBE statement to fill the fields for a SELECT or an INSERT
statement.
Syntax 7-293

Syntax
Syntax

value"ESQL descriptor

item
number

SET DESCRIPTOR "

descriptor
variable ,

item
number
variable

VALUE

COUNT =

item
descriptor
information

item
descriptor
information

count
variable

literal integer

=

TYPE

LENGTH

PRECISION

SCALE

NULLABLE

INDICATOR

DATA

ITYPE

IDATA

ILEN

NAME

=

Literal Number
p. 7-422

Literal INTERVAL
p. 7-419

Literal DATETIME
p. 7-416

Quoted String
p. 7-426

data variable

integer-host
variable

count variable is a variable that holds a literal integer that specifies how
many items are being described in the system descriptor area.
The value must be less than or equal to the number of occur-
rences in the system descriptor area, which is set when the area
is allocated.

data variable is a host variable that contains the information appropriate for
the field being set.

descriptor is a string that identifies a currently allocated system descrip-
tor area.
7-294 IBM Informix Guide to SQL: Reference

Usage
Usage
If an error occurs during the assignment to any of the identified system
descriptor fields, the contents of all identified fields are set to zero or null,
depending on the type of that variable.

COUNT Option

Use the COUNT option to set the number of items that are to be used in the
system descriptor area.

If you allocated a system descriptor area with more items than you are using,
you need to set the COUNT field to the number of items that you actually are
using. For example, the sequence of statements in Figure 7-126 (shown using
IBM Informix ESQL/C) can be used in a program.

descriptor
variable

is an embedded variable name that contains a string that iden-
tifies a currently allocated system descriptor area.

integer host
variable

is the name of a variable that contains an integer value that is
appropriate for the indicated field. For the TYPE field, the cor-
respondence between the integer codes and data types is pro-
vided in Figure 7-127 on page 7-296.

item number is an unsigned integer that represents one of the items in the
descriptor area.

item number
variable

is the name of an integer host variable that contains an
unsigned integer that represents one of the items in the
descriptor area.

literal integer is a positive, nonzero integer that represents the data type of
the item. The correspondence between the integer codes and
data types is provided in Figure 7-127 on page 7-296.

value is a literal integer that specifies how many items are being
described in the system descriptor area. The value must be less
than or equal to the number of occurrences in the system
descriptor area, which is set when the area is allocated.
Syntax 7-295

Usage
Figure 7-126
Example of setting the COUNT field of a system descriptor using ESQL/C

EXEC SQL BEGIN DECLARE SECTION;
INT count, itemno, type, length;
CHAR chval[21];
EXEC SQL END DECLARE SECTION;

ALLOCATE DESCRIPTOR 'desc_100'; /*allocates for 100 items*/

count = 2;
EXEC SQL SET DESCRIPTOR 'desc_100' COUNT = :count;

VALUE Option

Use the VALUE option to assign values from host variables into fields for a
particular item in a system descriptor area. You can assign values for items
for which you are providing a description (such as parameters in a WHERE
clause), or you can modify values for items that have been described by the
database server during a DESCRIBE statement.

Setting the TYPE Field

Use the set of codes shown in Figure 7-127 to set the value of TYPE for each
item.

Figure 7-127
List of data type integer constants

SQL Data Type Integer Value

CHAR 0

SMALLINT 1

INTEGER 2

FLOAT 3

SMALLFLOAT 4

DECIMAL 5

SERIAL 6

DATE 7

(1 of 2)
7-296 IBM Informix Guide to SQL: Reference

Usage
Figure 7-128 shows how you can set the TYPE field in ESQL/C.

Figure 7-128
Examples of setting TYPE using ESQL/C

main()
{
$int count, itemno, type, length;
...
$ALLOCATE DESCRIPTOR 'desc1' WITH MAX 5;
...
$SET DESCRIPTOR "desc1" VALUE 2 TYPE = 5;

type = 2; itemno = 3;
$SET DESCRIPTOR "desc1" VALUE $itemno TYPE = $type;
}

If you do not compile using the -xopen option, the regular Informix SQL code
is assigned for TYPE. You must be careful not to mix normal and X/Open
modes because errors can result. For example, if a particular type is not
defined under X/Open mode but is defined under normal mode, execution
of a SET DESCRIPTOR statement can result in an error.

MONEY 8

DATETIME 10

BYTE 11

TEXT 12

VARCHAR 13

INTERVAL 14

SQL Data Type Integer Value

(2 of 2)
Syntax 7-297

Usage
Setting the TYPE Field in X/Open Programs

In X/Open mode, you must use the X/Open set of integer codes for the data
type in the TYPE field. The X/Open codes for data types are shown in
Figure 7-129.

Figure 7-129
X/Open data type codes

If you use the ILENGTH, IDATA, or ITYPE fields in a SET DESCRIPTOR
statement, a warning message appears. The warning indicates that these
fields are not standard X/Open fields for a system descriptor area. ♦

Setting the DATA Field

When you set the DATA field, you must provide the appropriate type of data
(character string for CHAR or VARCHAR, integer for INTEGER, and so on).

When any value other than DATA is set, the value of DATA is undefined. You
cannot set the DATA field for an item without setting TYPE for that item. If you
set the TYPE field for an item to a character type, you must set the LENGTH
field as well. If you do not set the LENGTH field for a character item, you
receive an error.

Using DECIMAL or MONEY Types

If you set the TYPE field for a DECIMAL or MONEY type and you want to use
a scale or precision other than the default values, set the SCALE and
PRECISION fields. You do not need to set the LENGTH field for a DECIMAL or
MONEY item; the LENGTH field is set accordingly for the SCALE and
PRECISION supplied.

SQL Data Type Integer Value

CHAR 1

SMALLINT 4

INTEGER 5

FLOAT 6

DECIMAL 3

X/O
7-298 IBM Informix Guide to SQL: Reference

Usage
Using DATETIME or INTERVAL Types

If you set the TYPE field for a DATETIME or INTERVAL value, you can set the
DATA field as a literal DATETIME or INTERVAL, or as a character string. If you
use a character string, you must set the LENGTH field to the encoded qualifier
value.

To determine the encoded qualifiers for a DATETIME or INTERVAL character
string, use the datetime and interval macros in the datetime.h header file.

If you set DATA to a host variable of type DATETIME or INTERVAL, you do not
need to set LENGTH explicitly to the encoded qualifier integer. ♦

To determine the encoded qualifiers for a DATETIME or INTERVAL character
string, use the ECO-IQL routine. ♦

Setting the INDICATOR Field

If you want to put a null value into the system descriptor area, set the
INDICATOR field to -1 and do not set the DATA field.

If you set the INDICATOR field to 0, indicating that the data is not null, you
must set the DATA field.

Setting the ITYPE Field

The ITYPE field expects an integer constant that indicates the data type of
your indicator variable. Use the same set of constants as for the TYPE field.
The constants are listed in Figure 7-127.

Modifying Values Set by the DESCRIBE Statement

You can modify the contents of a system descriptor area after it is set by a
DESCRIBE statement.

After you use a DESCRIBE statement on SELECT or an INSERT statement, you
must check to determine whether the TYPE field is set to either 11 or 12,
indicating a TEXT or BYTE data type. If TYPE contains an 11 or a 12, you must
use the SET DESCRIPTOR statement to reset the TYPE to 116 to indicate FILE
type. ♦

E/C

E/CO

E/CO
Syntax 7-299

References
References
In this manual, for further information about using dynamic SQL statements,
see the following statements: ALLOCATE DESCRIPTOR, DEALLOCATE
DESCRIPTOR, DECLARE, DESCRIBE, EXECUTE, FETCH, GET DESCRIPTOR,
OPEN, PREPARE, and PUT.

For further information about the system descriptor area, see Chapter 6,
“Using Descriptors.”
7-300 IBM Informix Guide to SQL: Reference

SET EXPLAIN
SET EXPLAIN

Purpose
Use the SET EXPLAIN statement to obtain a measure of the work involved in
performing a query.

Syntax

Usage
The SET EXPLAIN statement executes during the database server optimi-
zation phase, which occurs when a query is initiated. For queries associated
with a cursor, the query is initiated when you open the cursor.

When you issue a SET EXPLAIN ON statement, the access procedures of all
subsequent queries and the path chosen by the optimizer are passed forward
and stored in your current directory in a file with the name sqexplain .out. If
the file already exists, subsequent output is appended to it.

The SET EXPLAIN ON statement remains in effect until you issue another SET
EXPLAIN statement or until the program ends.

SET EXPLAIN Output
The SET EXPLAIN output file contains a copy of the query, a plan of execution
as selected by the database server optimizer, and an estimate of the amount
of work to be done. The optimizer selected this plan as the most efficient way
of performing the query, based on such things as the presence and type of
indexes and the number of rows in each table.

SET EXPLAIN

OFF

ON

+

Syntax 7-301

SET EXPLAIN Output
The estimate of work is a weighted sum that you can used to compare the cost
of one path to another. The work estimate is in arbitrary units. A single disk
access is one unit and other actions are scaled to that. However, the sum does
not translate directly into time and there is no direct correlation between the
work involved in a query and the resources used. It is generally true that a
query with a higher estimate is likely to take longer to run than one with a
smaller estimate.

In addition to the number estimate, the output file also contains the following
information:

� A guess at the number of rows to be returned

� The order in which the optimizer accesses tables

� One of the following methods (access paths) by which the optimizer
reads each table:

� The table column or columns that serve as a filter, if any, and whether
the filtering is through an index.

The name of the table owner precedes table names in the output file.

Information returned regarding queries that include joins can be inaccurate.
If the columns in the joins are indexed, the information is more reliable but
still subject to inaccuracy.

The optimizer chooses the best path of execution to produce the fastest
possible table join: either nested-loop join, sort-merge join, or a combination
of the two. When a sort-merge join is used, two lines appear in the output file
beginning with the words SORT SCAN and MERGE JOIN.

SEQUENTIAL
SCAN

Reads rows in sequence

INDEX PATH Scans one or more indexes

AUTOINDEX
PATH

Creates a temporary index

SORT SCAN Sorts the result of the preceding join or table scan

MERGE JOIN Uses a sort-merge join instead of nested-loop join
7-302 IBM Informix Guide to SQL: Reference

SET EXPLAIN Output
The SORT SCAN section indicates that a sort of the result of the preceding join
or table scan is to be done in preparation for a sort-merge join. It includes a
list of the columns that form the sort key. The order of the columns is the
order of the sort. As with indexes, the default order is ascending. Where
possible, this ordering is arranged to support any requested ORDER BY or
GROUP BY clause.

The MERGE JOIN section indicates that a sort-merge join, instead of the
(implied) nested-loop join, is to be used on the preceding join/table pair. It
includes a list of the filters that control the sort-merge join, and, where
applicable, a list of any other join filters. For example, a join of tables A and
B with the filters A.c1 = B.c1 and A.c2 < B.c2 lists the first under “Merge
Filters” and the second under “Other Join Filters.”

If you invoke a SET EXPLAIN statement on your home machine, the output
file is located in your current directory. If your current database is on another
machine, the output file still goes to your local machine.

Also, the output file can contain a sixth type of table access, as follows:

The IBM Informix SE database server generates fewer query-processing
statistics than are available from the IBM Informix OnLine database server. As
a result, estimates for the cost and the number of rows returned might be
more precise if you are using IBM Informix OnLine than if you are using
IBM Informix SE. Estimates returned for queries that include joins tend to be
highly inaccurate. ♦

The following output examples represent what you might see when a SET
EXPLAIN ON statement is issued using IBM Informix OnLine.

The first two examples contain two entries for a multiple-table query and
show the SORT SCAN and MERGE JOIN lines. Note that in both cases, if SORT
MERGE had not been chosen, the second table would have been scanned
using an autoindex path.

REMOTE PATH
♦

Access another database (distributed databases only).

STAR

INET

SE
Syntax 7-303

SET EXPLAIN Output
Figure 7-130
Sample output for multiple-table query and MERGE JOIN

QUERY:

select i.stock_num from items i, stock s, manufact m

where i.stock_num = s.stock_num
and i.manu_code = s.manu_code
and s.manu_code = m.manu_code

Estimated Cost: 52
Estimated # of Rows Returned: 130

1) rdtest.m: SEQUENTIAL SCAN

SORT SCAN: rdtest.m.manu_code

2) rdtest.s: SEQUENTIAL SCAN

SORT SCAN: rdtest.s.manu_code

MERGE JOIN:
 Merge Filters: rdtest.m.manu_code = rdtest.s.manu_code

3) rdtest.i: INDEX PATH

(1) Index Keys: stock_num manu_code
 Lower Index Filter: (rdtest.i.stock_num = rdtest.s.stock_num AND
 rdtest.i.manu_code = rdtest.s.manu_code)

QUERY:

select stock.description from stock, stock2

where stock.description = stock2.description
and stock.unit_price < stock2.unit_price

Estimated Cost: 15
Estimated # of Rows Returned: 370

1) rdtest.stock: SEQUENTIAL SCAN

SORT SCAN: rdtest.stock.description

2) rdtest.stock2: SEQUENTIAL SCAN

SORT SCAN: rdtest.stock2.description

MERGE JOIN
 Merge Filters: rdtest.stock2.description = rdtest.stock.description
 Other Join Filters: rdtest.stock.unit_price < rdtest.stock2.unit_price

The following sample output contains entries for a simple query and a
complex query from the customer table.
7-304 IBM Informix Guide to SQL: Reference

SET EXPLAIN Output
Figure 7-131
Results of SET EXPLAIN for a simple and a complex query

QUERY:

SELECT fname, lname, company FROM customer

Estimated Cost: 3
Estimated # of Rows Returned: 28

1) joe.customer: SEQUENTIAL SCAN

QUERY:

SELECT fname, lname, company FROM customer

WHERE company MATCHES "Sport*" AND customer_num BETWEEN 110 AND 115
ORDER BY lname;

Estimated Cost: 4
Estimated # of Rows Returned: 1
Temporary Files Required For: Order By

1) joe.customer: INDEX PATH

Filters: joe.customer.company MATCHES 'Sport*'

 (1) Index Keys: customer_num
Lower Index Filter: joe.customer.customer_num >= 110
Upper Index Filter: joe.customer.customer_num <= 115

The following sample output is from an output file with an entry for a
multiple-table query.

Figure 7-132
Results of SET EXPLAIN for a multiple-table query

QUERY:

SELECT * FROM customer, orders, items

WHERE customer.customer_num = orders.customer_num
AND orders.order_num = items.order_num

Estimated Cost: 20
Estimated # of Rows Returned: 69

1) joe.orders: SEQUENTIAL SCAN

2) joe.customer: INDEX PATH

 (1) Index Keys: customer_num
 Lower Index Filter: joe.customer.customer_num = joe.orders.customer_num

3) joe.items: INDEX PATH

(1) Index Keys: order_num
Lower Index Filter: joe.items.order_num = joe.orders.order_num
Syntax 7-305

Reference
Reference
In IBM Informix Guide to SQL: Tutorial, see the discussion of SET EXPLAIN.
7-306 IBM Informix Guide to SQL: Reference

SET ISOLATION
SET ISOLATION

Purpose
Use the SET ISOLATION statement with the IBM Informix OnLine database
server to define the degree of concurrency among processes that attempt to
access the same rows simultaneously.

Syntax

Usage
The database isolation level affects concurrency when rows are retrieved
from the database. IBM Informix OnLine uses shared locks to support four
levels of isolation among processes attempting to access data.

The default isolation level for a particular database is established when you
create the database, according to database type. The default isolation level for
each database type follows:

DIRTY READ Default level of isolation in a database without logging

COMMITTED
READ

Default level of isolation in a database with logging that is not
ANSI-compliant

REPEATABLE
READ

Default level of isolation in an ANSI-compliant database

SET ISOLATION TO DIRTY READ

COMMITTED READ

CURSOR STABILITY

REPEATABLE READ

OL
+

Syntax 7-307

Isolation Levels
The default level remains in effect until you issue a SET ISOLATION statement.
After a SET ISOLATION statement executes, the new isolation level remains in
effect until you enter another SET ISOLATION statement or until the end of the
program.

The level of isolation does not interfere with processes that are updating or
deleting data. The update or delete process always acquires an exclusive lock
on a row that is being modified.

Isolation Levels
The following definitions explain the critical characteristics of each isolation
level. The isolation levels are listed in order, from the lowest level of isolation
to the highest.

DIRTY READ Provides zero isolation. Dirty Read is appropriate for static
tables that are used for queries. With a Dirty Read isolation
level, it is possible for a query to return a phantom row; that is,
an uncommitted row that was inserted or modified within a
transaction which has subsequently rolled back. No other iso-
lation level allows access to a phantom row. Dirty Read is the
only isolation level available to databases that do not have
transactions.

COMMITTED
READ

Guarantees that every row retrieved is committed in the table
at the time that the row is retrieved. Even so, no locks are
acquired. While one process uses a row, another process can
acquire an exclusive lock on the same row and modify or
delete data in the row. Committed Read is the default level of
isolation in a database with logging that is not ANSI-
compliant.
7-308 IBM Informix Guide to SQL: Reference

Effects of Isolation Levels
Effects of Isolation Levels
You cannot set the database isolation level in a database that does not have
logging. Every retrieval in such a database occurs as a Dirty Read.

The data obtained during Binary Large Object (BLOB) retrieval can vary,
depending on the database isolation level. Under Dirty Read or Committed
Read levels of isolation, a process is permitted to read a BLOB that is either
deleted (if the delete is not yet committed), or in the process of being deleted.
That is, under these isolation levels, certain conditions exist under which an
application can read a deleted BLOB.

IBM Informix SQL and DB-Access do not use explicit cursors. The Committed
Read and Cursor Stability isolation levels appear to have the same effect,
although retrieval might be slower if you invoke Cursor Stability. ♦

You can issue a SET ISOLATION statement from a client machine only after a
database has been opened. ♦

If you use a scroll cursor in a transaction, you can force consistency between
your temporary table and the database table either by setting the isolation
level to Repeatable Read or by locking the entire table during the transaction.

CURSOR
STABILITY

Acquires a shared lock on the selected row. Another process
also can acquire a shared lock on the same row, but no process
can acquire an exclusive lock to modify data in the row. When
you fetch another row or close the cursor, IBM Informix OnLine
releases the shared lock.

REPEATABLE
READ

Acquires a shared lock on every row selected during the trans-
action. Another process also can acquire a shared lock on a
selected row, but no other process can modify any selected row
during your transaction. If you repeat the query during the
transaction, you reread the same information. The shared locks
are released only when the transaction is committed or rolled
back. Repeatable Read is the default isolation level in an ANSI-
compliant database.

ISQL

STAR

INET

I4GL

ESQL
Syntax 7-309

References
If you use a scroll cursor with hold in a transaction, you cannot force consis-
tency between your temporary table and the database table. A table-level
lock or locks set by Repeatable Read are released when the transaction is
completed, but the scroll cursor with hold remains open beyond the end of
the transaction. Thus, you can modify released rows as soon as the trans-
action ends, creating the possibility that the retrieved data in the temporary
table can become inconsistent with the actual data. ♦

References
In this manual, see the following statements: CREATE DATABASE and SET
LOCK MODE.

In IBM Informix Guide to SQL: Tutorial, see the discussion of isolation levels.
7-310 IBM Informix Guide to SQL: Reference

SET LOCK MODE
SET LOCK MODE

Purpose
Use the SET LOCK MODE statement to define how the database server
handles a process that tries to access a locked row or table.

Syntax

Usage
You can direct the response of the database server in the following ways
when a process tries to access a locked row or table:

IBM Informix SE does not support the seconds option. If you decide that a
process should wait for a lock to be released, you cannot limit the waiting
period. ♦

seconds is the maximum number of seconds that a process waits for a
lock to be released.

NOT WAIT End the operation immediately and return an error code. This
is the default condition.

WAIT Suspend the process until the lock is released.

WAIT seconds Suspend the process until the lock is released or until the end
of a waiting period, specified in seconds. If the lock remains
after waiting, end the operation and return an error code.

SET LOCK MODE TO WAIT

NOT WAIT

seconds

+

OL

SE
Syntax 7-311

WAIT Keyword
The lock mode has no effect with respect to exclusive locks. Whenever a
process attempts to access a row, table, or database that is locked in exclusive
mode, the operation ends and an error code is returned.

The SET LOCK MODE option is available on machines that use kernel locking.
To determine whether your machine uses kernel locking, inspect the
directory that holds the database files. If the directory contains files with the
extension .lok, your system does not use kernel locking and the SET LOCK
MODE option is unavailable. ♦

WAIT Keyword
The database server protects you against the possibility of a deadlock when
you request the WAIT option. Before suspending a process, the database
server checks whether suspending the process could create a deadlock. If the
database server discovers a deadlock could occur, it ends the operation
(overruling your instruction to wait) and returns an error code. In the case of
either a suspected deadlock or an actual deadlock, the database server
returns an error.

Use with caution the unlimited waiting period created when the WAIT option
is specified without seconds. If no upper limit is specified and the process that
placed the lock somehow fails to release it, suspended processes could wait
indefinitely. Since this is not a true deadlock situation, the database server
does not take corrective action.

You can issue a SET LOCK MODE statement from a client machine only after a
database has been opened. ♦

The DBA establishes a default value for seconds that applies to your entire
system. If you use a SET LOCK MODE statement to set your own upper limit,
your value applies only when your waiting period is shorter than the system
default. ♦

References
In this manual, see the following statements: LOCK TABLE, UNLOCK TABLE,
and SET ISOLATION MODE.

In IBM Informix Guide to SQL: Tutorial, see the discussion of SET LOCK MODE.

SE

STAR

INET

STAR
7-312 IBM Informix Guide to SQL: Reference

SET LOG
SET LOG

Purpose
Use the SET LOG statement to change your IBM Informix OnLine database
logging mode from buffered transaction logging to unbuffered transaction
logging, or vice versa.

Syntax

Usage
You activate transaction logging when you create a database or add logging
to an existing database. These transaction logs either can be buffered or
unbuffered.

The default condition for transaction logs is unbuffered logging. As soon as
a transaction ends, the IBM Informix OnLine database server writes the trans-
action to the disk. If a system failure occurs when you are using unbuffered
logging, you recover all completed transactions.

You gain a marginal increase in efficiency with buffered logging, but you
incur some risk. In the event of a system failure, the IBM Informix OnLine
database server cannot recover the completed transactions that were
buffered in memory.

The SET LOG statement changes the transaction logging mode to unbuffered
logging; the SET BUFFERED LOG statement changes the mode to buffered
logging.

The SET LOG statement redefines the mode for the current session only. The
default mode, which the DBA sets using the DB-Monitor, remains unchanged.

SET LOG

BUFFERED

OL
+

Syntax 7-313

References
The buffering option does not affect retrievals from external tables. A
database with logging only can access other databases with logging, but it
makes no difference whether the databases use buffered or unbuffered
logging. ♦

An ANSI-compliant database cannot use buffered logs. ♦

References
In this manual, see the following statements: CREATE DATABASE and START
DATABASE.

STAR

ANSI
7-314 IBM Informix Guide to SQL: Reference

SET OPTIMIZATION
SET OPTIMIZATION

Purpose
Use the SET OPTIMIZATION statement to specify a high or low level of
database server optimization.

Syntax

Usage
You can execute a SET OPTIMIZATION statement at any time. The optimi-
zation level carries across databases but applies only within the current
database server.

After a SET OPTIMIZATION statement executes, the new optimization level
remains in effect until you enter another SET OPTIMIZATION statement or
until the program ends.

The default database server optimization level, HIGH, remains in effect until
you issue another SET OPTIMIZATION statement. The LOW option invokes a
less sophisticated but faster optimization algorithm.

The algorithm invoked by a SET OPTIMIZATION HIGH statement is a sophis-
ticated, cost-based strategy that examines all reasonable choices and selects
the best overall alternative. For large joins, this algorithm can incur more
overhead than desired. In extreme cases, you can run out of memory.

SET OPTIMIZATION

HIGH

LOW

+

Syntax 7-315

References
The alternative algorithm invoked by a SET OPTIMIZATION LOW statement
eliminates unlikely join strategies during the early stages and thus reduces
the amount of time and resources spent during optimization. However, by
specifying a low level of optimization, you take the risk that the optimal
strategy is not selected because it was eliminated from consideration during
early stages of the algorithm.

The following examples show optimization across a network. The central
database (on machine 1) is to have LOW optimization; the western database
(on machine 2) is to have HIGH optimization. If the western database were
on the same machine as central, it would have LOW optimization.

Figure 7-133
Example of a SET OPTIMIZATION statement across an IBM Informix STAR network

set optimization low;
database central;
select * from stock;
close database;
database western@rockies;
select * from stock;

Figure 7-134
Example of a SET OPTIMIZATION statement across an IBM Informix NET network

set optimization low;
database central;
select * from stock;
close database;
database //rockies/western;
select * from stock;
♦

References
In IBM Informix Guide to SQL: Tutorial, see the discussion of optimizing queries.

STAR

INET
7-316 IBM Informix Guide to SQL: Reference

START DATABASE
START DATABASE

Purpose
Use the START DATABASE statement with an IBM Informix SE database server
to start recording transactions, to make a database ANSI-compliant or to
change the name of an existing transaction log file.

Syntax

Usage
To use the START DATABASE statement, all of the following conditions must
be true:

� You have DBA privilege.

� There is no current database.

� The directories specified in pathname exist.

For maximum protection, specify a location for the transaction log that is not
on the same storage device as the database.

Issue a CLOSE DATABASE statement before you create and start a transaction
log. The START DATABASE statement locks the database exclusively to
prevent access by other processes. If another process is using the database
(even if the database is only being read), the START DATABASE statement
fails.

MODE ANSI

START DATABASE WITH LOG IN "pathname"SE
+

Database
 Name

p. 7-362

pathname is the pathname of the transaction log file, enclosed in quota-
tion marks.
Syntax 7-317

MODE ANSI Keywords
The database remains locked after the START DATABASE statement executes.
When you are satisfied that the database is ready for use, remove the
exclusive lock by executing the CLOSE DATABASE statement. Reopen the
database with the DATABASE statement.

MODE ANSI Keywords
Use the MODE ANSI keywords to make a database ANSI-compliant. An ANSI-
compliant database conforms to different transaction-processing and object-
naming conventions than does a database that does not comply with ANSI
standards.

The following example starts an ANSI-compliant database named stores5:

START DATABASE stores5
WITH LOG IN "/u/myname/stores5.log" MODE ANSI
♦

Transaction Log Name Change
You must issue a START DATABASE statement immediately before you
archive the database if you plan to change the name or the location of the
transaction log. Specify the new path to the transaction log in the START
DATABASE statement.

References
In this manual, see the following statements: CREATE DATABASE and
ROLLFORWARD DATABASE.

In IBM Informix Guide to SQL: Tutorial, see the discussion of transaction
processing.

ANSI
7-318 IBM Informix Guide to SQL: Reference

UNLOAD
UNLOAD

Purpose
Use the UNLOAD statement to write the rows retrieved in a SELECT statement
to an ASCII operating system file.

Syntax

DELIMITER " delimiter "

UNLOAD TO " filename "

filename
variable

I4GL

delimiter
variable

I4GL

I4GL
DB

ISQL
+

SELECT
Statement
p. 7-258

delimiter is a quoted character that serves as the delimiter between
fields. The default delimiter is the vertical bar (| = ASCII 124)
or the value of the DBDELIMITER environment variable, if set.

delimiter
variable

is a character variable that contains the character to use as the
delimiter between fields. The default delimiter is the vertical
bar (| = ASCII 124) or the value of the DBDELIMITER environ-
ment variable, if set.

filename is a quoted string constant that specifies the name of a file.
Rows retrieved in the SELECT statement are written to this file.

filename
variable

is a CHARACTER or VARCHAR variable that contains a file
name. Rows retrieved in the SELECT statement are written to
this file.
Syntax 7-319

Usage
Usage
To use the UNLOAD statement, you must have Select privileges on all
columns selected in the SELECT statement. For information on database-level
and table-level privileges, see the GRANT statement on page 7-175.

The SELECT statement can consist of a literal SELECT statement or the name
of a character variable that contains a SELECT statement. (See the SELECT
statement on page 7-258.)

You cannot use the PREPARE statement to preprocess an UNLOAD
statement. ♦

UNLOAD TO File

The UNLOAD TO file contains the selected rows retrieved from the table.

The following table describes how IBM Informix 4GL, IBM Informix SQL, and
DB-Access format the output.

Figure 7-135
Types of data and their output format for an UNLOAD statement

Type of Data Output Format

character If a character field contains the delimiter character,
IBM Informix products automatically escape it with a
backslash to prevent interpretation as a special character.
(If you use a LOAD statement to insert the rows into a
table, backslashes are automatically stripped.) Trailing
blanks are automatically clipped.

date DATE values are represented as mm/dd/yyyy, where mm is
the month (January = 1, and so on), dd is the day, and yyyy
is the year, unless the DBDATE environment variable has
been set and another format specified.

MONEY MONEY values are unloaded with no leading currency
symbol.

NULL NULL columns are unloaded by placing no characters
between the delimiters.

(1 of 2)

I4GL
7-320 IBM Informix Guide to SQL: Reference

Usage
Do not use the backslash character as a field separator or UNLOAD delimiter.
It serves as an escape character to inform the UNLOAD command that the
next character is to be interpreted as part of the data.

If you are unloading files containing VARCHAR or BLOB data types, note the
following information:

� BYTE items are written in hexadecimal dump format with no added
spaces or new lines. Consequently, the logical length of an unloaded
file that contains BYTE items can be very long and thus very difficult
to print or edit.

� Trailing blanks are retained in VARCHAR fields.

� Do not use the following characters as delimiting characters in the
UNLOAD TO file: 0-9, a-f, A-F, space, tab, or backslash.

The following statement unloads rows from the customer table where the
value of customer_num is greater than or equal to 138, and puts them in a file
named cust_file:

UNLOAD TO "cust_file" DELIMITER "!"
SELECT * FROM customer WHERE customer_num> = 138

The output file, cust_file, looks as follows:

138!Jeffery!Padgett!Wheel Thrills!3450 El Camino!Suite 10!Palo
Alto!CA!94306!!
139!Linda!Lane!Palo Alto Bicycles!2344 University!!Palo
Alto!CA!94301!(415)323-5400

number Number data types are displayed with no leading blanks.

INTEGER or SMALLINT zero are represented as 0 and
FLOAT, SMALLFLOAT, DECIMAL, or MONEY zero are
represented as 0.00.

time DATETIME and INTERVAL values are represented in
character form, showing only their field digits and delim-
iters. No type specification or qualifiers are included in the
output. The following pattern is used: yyyy-mm-dd
hh:mi:ss.fff, omitting fields that are not part of the data.

Type of Data Output Format

(2 of 2)
Syntax 7-321

References
DELIMITER Clause

Use the DELIMITER clause to identify the delimiter that separates the data
contained in each column in a row in the output file. If you omit this clause,
IBM Informix 4GL, IBM Informix SQL, and DB-Access check the DBDELIMITER
environment variable.

If the DBDELIMITER variable has not been set, the default delimiter is the
vertical bar (| = ASCII 124). See Chapter 4, “Environment Variables,” for
information about how to set the DBDELIMITER environment variable.

The following statement specifies the semicolon (;) as the delimiter character:

UNLOAD TO "cust.out" DELIMITER ";"
SELECT fname, lname, company, city

FROM customer

References
In this manual, see the following statements: LOAD and SELECT.
7-322 IBM Informix Guide to SQL: Reference

UNLOCK TABLE
UNLOCK TABLE

Purpose
Use the UNLOCK TABLE statement in a database without transactions to
unlock a table that you previously locked with the LOCK TABLE statement.

Syntax

Usage
You can lock a table if you own the table or if you have Select privileges on
the table, either from a direct grant or from a grant to PUBLIC. You only can
unlock a table that you locked. You cannot unlock a table that was locked by
another process.

The table name either is the name of the table you are unlocking or a synonym
for the table. Do not specify a view or a synonym of a view.

Only one lock can apply to a table at a time.

To change the lock mode of a table in a database without transactions, you
first unlock the table using the UNLOCK TABLE statement, then issue a new
LOCK TABLE statement.

The UNLOCK TABLE statement fails if it is issued within a transaction. Table
locks set within a transaction are released automatically when the transaction
is completed.

You should not issue an UNLOCK TABLE statement within an ANSI-compliant
database. The UNLOCK TABLE statement fails if it is issued within a trans-
action, and a transaction is always in effect in an ANSI-compliant database. ♦

UNLOCK TABLE+ Table
Name

p. 7-434

Synonym
Name

p. 7-432

ANSI
Syntax 7-323

References
References
In this manual, see the following statements: COMMIT WORK, ROLLBACK
WORK, and LOCK TABLE.
7-324 IBM Informix Guide to SQL: Reference

UPDATE
UPDATE

Purpose
Use the UPDATE statement to change the values in one or more columns of
one or more rows in a table or view.

Syntax

Usage
To update data in a table, you must either own the table or have Update privi-
leges for the table (see the GRANT statement on page 7-175). To update data
in a view, you must have the required Update privileges, and the view must
meet the requirements explained in the section “Updating Rows Through a
View” on page 7-326.

If you omit the WHERE clause, all rows of the target table are updated.

If you omit the WHERE clause and are in interactive mode, IBM Informix SQL
and DB-Access do not run the UPDATE statement until you confirm that you
want to change all rows. However, if the statement is in a command file and
you are running IBM Informix SQL or DB-Access from the command line, the
statement executes immediately. ♦

UPDATE SET

WHERE

CURRENT OF
cursor
name

ESQL

I4GL

Table
Name

p. 7-434

View
Name

p. 7-438

Condition
p. 7-345

SET Clause
p. 7-328

Synonym
Name

p. 7-432

cursor name is the cursor identifier.

DB

ISQL
Syntax 7-325

Updating Rows Through a View
Updating Rows Through a View
You can update data through a single-table view if you have Update privileges
on the view (see the GRANT statement on page 7-175). To do this, the defining
SELECT statement can select from only one table and it cannot contain any of
the following elements:

� DISTINCT keyword

� GROUP BY clause

� Derived value (also referred to as a virtual column)

� Aggregate value

You can use data integrity constraints to prevent users from updating values
into the underlying table that do not fit the view-defining SELECT statement.
For further information, refer to the WITH CHECK OPTION discussion in the
CREATE VIEW statement on page 7-97.

Since duplicate rows can occur in a view even though the underlying table
has unique rows, be very careful when you update a table through a view. For
example, if a view is defined on the items table and contains only the
order_num and total_price columns, and if two items from the same order
have the same total price, the view contains duplicate rows. In this case, if
you were to update one of the two duplicate total price values, you would
have no way of knowing which item price was updated.

Updating Rows in a Database Without Transactions
If you are updating rows in a database without transactions, you must take
explicit action to restore updated rows. For example, if the UPDATE statement
fails after updating some rows, the successfully updated rows remain in the
table. You cannot automatically recover from a failed update.

Updating Rows in a Database with Transactions
If you are updating rows in a database with transactions and you are using
transactions, you can undo the update using the ROLLBACK WORK
statement. If you do not execute a BEGIN WORK statement before the update
and the update fails, the database server automatically rolls back any
database modifications made since the beginning of the update.
7-326 IBM Informix Guide to SQL: Reference

Locking Considerations
If you are updating rows in an ANSI-compliant database, transactions are
implicit and all database modifications take place within a transaction. In this
case, if an UPDATE statement fails, you can use the ROLLBACK WORK
statement to undo the update. ♦

Locking Considerations
If you are using an IBM Informix OnLine database server, when a row is
selected with the intent to update, the update process acquires an update
lock. Update locks permit other processes to read, or share, a row that is about
to be updated but not to update or delete it. Just before the update occurs, the
update process promotes the shared lock to an exclusive lock. An exclusive
lock prevents other processes from reading or modifying the contents of the
row until the lock is released.

IBM Informix OnLine allows only one update lock at a time on a row or a page
(the type of lock depends on the lock mode selected in the CREATE TABLE or
ALTER TABLE statements). An update process can acquire an update lock on
a row or a page that has a shared lock from another process, but you cannot
promote the update lock from shared to exclusive (and the update cannot
occur) until the other process releases its lock.

If the number of rows affected by a single update is very large, you can
exceed the limits placed on the maximum number of simultaneous locks. If
this occurs, you can reduce the number of transactions per UPDATE statement
or lock the page (IBM Informix OnLine database servers only) or the entire
table before you execute the statement.

Individual rows of a table are locked automatically when you execute an
UPDATE statement. This feature increases the likelihood that selecting
processes running on IBM Informix SE will encounter exclusive locks on
rows. As a result, you might experience reduced concurrency during
processing. ♦

ANSI

SE
Syntax 7-327

SET Clause
SET Clause

The SET clause identifies the columns to be updated and assigns values to
each column. The clause either pairs a single column to a single expression or
lists multiple columns and sets them equal to corresponding expressions.

*

,

,

() = ()

=
column
name

column
name

record
variable .*

I4GL

I4GL

Table
Name

p. 7-434

View
Name

p. 7-438

.*

.*

.*

Expression
(Subset)
p. 7-329

Expression
(Subset)
p. 7-329

SELECT
Statement
(Subset)
p. 7-329

SET
Clause

Synonym
Name

p. 7-432

()

()
SELECT

Statement
(Subset)
p. 7-329

,
,

* indicates that you want to update all columns in table name.

column name names the columns that you want to update. You cannot
update SERIAL data type columns.

record
variable

indicates that the columns are to be updated with values con-
tained in an 4GL program record.
7-328 IBM Informix Guide to SQL: Reference

SET Clause
Selecting All Columns with the Set Clause

You can use the .* extension with synonym name, table name, view name, or
record variable to indicate that you want to select all columns for update. ♦

Subset of Expressions Allowed in the SET Clause

You cannot use an expression made up of aggregate functions in the SET
clause. For a complete description of syntax and usage, see the Expression
segment on page 7-370.

Subset of SELECT Statements Allowed in the SET Clause

A SELECT statement used in a SET clause can return more than one column of
information in a row. However, the SELECT statement cannot return more
than one row of information in a table. For a complete description of syntax
and usage, refer to the SELECT statement on page 7-258.

Single Columns Paired to Single Expressions

You can include any number of single-column, single-expression pairs in an
UPDATE statement.

The following examples illustrate the single-column to single-expression
form of the SET clause.

Figure 7-136
Single-column to single-expression form of the SET clause

UPDATE customer
SET address1 = "1111 Alder Court",

city = "Palo Alto",
zipcode = "94301"

WHERE customer_num = 103

UPDATE orders
SET ship_charge =

(SELECT SUM(total_price) * .07
FROM items
WHERE orders.order_num = items.order_num)

WHERE orders.order_num = 1001

UPDATE stock
SET unit_price = unit_price * 1.07

I4GL
Syntax 7-329

SET Clause
Multiple Columns Equal to Multiple Expressions

The SET clause offers you two options for listing a series of columns you
intend to update:

� Explicitly list each column, separating by commas and enclosing all
in parentheses.

� Implicitly list all columns in table name using the asterisk notation (*).

To complete the SET clause, you must list each expression explicitly,
separated by commas and all enclosed in parentheses. An expression list can
include an SQL subquery that returns a single row of multiple values, as long
as the number of columns named, explicitly or implicitly, equals the number
of values produced by the expression or expressions that follow the equal
sign.

The following examples illustrate the multiple-column to multiple-
expression form of the SET clause.

Figure 7-137
Multiple-column to multiple-expression form of the SET clause

UPDATE customer
SET (fname, lname) = ("John", "Doe")
WHERE customer_num = 101

UPDATE manufact
SET * = ("HNT", "Hunter")
WHERE manu_code = "ANZ"

UPDATE items
SET (stock_num, manu_code, quantity) =

((SELECT stock_num, manu_code FROM stock
WHERE description = "baseball"), 2)

WHERE item_num = 1 AND order_num = 1001

UPDATE table1
SET (col1, col2, col3) =

((SELECT MIN (ship_charge),
MAX (ship_charge) FROM orders),
"07/01/1990")

WHERE col4 = 1001
7-330 IBM Informix Guide to SQL: Reference

SET Clause
IBM Informix 4GL provides an alternative to the implicit asterisk notation (*),
which is table name.*. IBM Informix 4GL also provides a second option for
listing the expressions that complete the SET clause. You can set the listed
columns equal to the full set of values contained in a 4GL record variable with
the record variable.* notation.

You can combine these additional elements with other SET clause options in
an 4GL UPDATE statement, as long as the statement adheres to syntax rules.
If you want to update all columns in a table that contain a SERIAL column,
you can use the record variable form of the SET clause even though you
cannot update SERIAL columns. When 4GL executes an UPDATE statement
that contains a record variable in the SET clause, it automatically skips any
SERIAL column and its corresponding value in the expression list produced
by record variable.*. ♦

The following 4GL example illustrates this form of the SET clause.

Figure 7-138
Example of a record variable in the SET clause in IBM Informix 4GL

DEFINE
p_cust RECORD LIKE customer.*
tmp_cust RECORD LIKE customer.*

LET upd_stmt = "SELECT * FROM customer ",
"WHERE customer_num = ? FOR UPDATE"

PREPARE upd_prep from upd_stmt
DECLARE upd_cur cursor for upd_prep

{ . . . Prompt here for p_cust search criteria. }

OPEN upd_cur USING p_cust.customer_num
FETCH upd_cur INTO p_cust.*

IF STATUS = NOTFOUND THEN
ERROR "No entry for customer number ", p_cust.customer_num, "."

ELSE
LET tmp_cust.* = p_cust.* { saves current values in case }

{ user aborts the update }

{ . . . Prompt here for new customer table values. }

LET int_flag = false
INPUT BY NAME p_cust.fname thru p_cust.phone

WITHOUT DEFAULTS

IF NOT int_flag THEN { User did not press Interrupt key. }

UPDATE customer SET customer.* = p_cust.*

I4GL
Syntax 7-331

WHERE Clause
ELSE { int_flag is true: user pressed INTERRUPT key }
LET int_flag = false
LET p_cust.* = tmp_cust.*
ERROR "Update cancelled."

END IF { int_flag test}
END IF { status = notfound on upd_cur }

WHERE Clause
The WHERE clause allows you to limit the rows that you want to update. If
you omit the WHERE clause, every row in the table is updated.

The WHERE clause consists of a standard search condition. (For more infor-
mation, see the SELECT statement on page 7-258). The following example
illustrates a WHERE condition within an UPDATE statement. In this example,
the statement updates three columns (state, zipcode, and phone) in each row
of the customer table that has a corresponding entry in a table of new
addresses called new_address.

Figure 7-139
Using a WHERE condition within an UPDATE statement

UPDATE customer
SET (state, zipcode, phone) =

(SELECT state, zipcode, phone FROM new_address
WHERE new_address.cust_num =

customer.cust_num)
WHERE customer.cust_num IN

(SELECT cust_num FROM new_address)
7-332 IBM Informix Guide to SQL: Reference

WHERE CURRENT OF Clause
WHERE CURRENT OF Clause
You can use the CURRENT OF keywords to update the current row of the
active set of a cursor. However, you cannot update a row with a cursor if that
row includes aggregates. The cursor named in the CURRENT OF clause only
can contain column names. The UPDATE statement does not advance the
cursor to the next row, so the current row position remains unchanged.

You can restrict the effect of the CURRENT OF keywords if you associate the
UPDATE statement with a cursor that was created with the FOR UPDATE
keywords. (See the DECLARE statement on page 7-107.) If the cursor was
created without specifying any columns for update, you can update any
column in a subsequent UPDATE...WHERE CURRENT OF statement. However,
if the DECLARE statement that created the cursor specified one or more
columns in the FOR UPDATE clause, you are restricted to updating only those
columns in a subsequent UPDATE...WHERE CURRENT OF statement. The
advantage to specifying columns in the FOR UPDATE clause of a DECLARE
statement is speed. IBM Informix SE and IBM Informix OnLine usually can
perform updates more quickly if columns are specified in the DECLARE
statement. ♦

The following IBM Informix 4GL example illustrates the WHERE CURRENT OF
form of the WHERE clause. In this example, updates are performed on a range
of customers who receive 10 percent discounts. The UPDATE statement is
prepared outside the WHILE loop to ensure that parsing is done only once.
(For more information, refer to the PREPARE statement on page 7-218.)

Figure 7-140
Example of the WHERE CURRENT OF form of the WHERE clause in an

IBM Informix 4GL program
PREPARE sel_stmt FROM

"SELECT * FROM customer ",
"WHERE cust_num between ? and ? FOR UPDATE"

DECLARE x CURSOR FOR sel_stmt
OPEN x USING low, high

PREPARE u FROM
"UPDATE customer SET discount = 0.1",

"WHERE CURRENT OF x"

WHILE TRUE
FETCH x INTO r_cust.*
IF STATUS = NOTFOUND THEN

EXIT WHILE
END IF

I4GL

ESQL
Syntax 7-333

References
LET ptext = "Update ", r_cust.fname CLIPPED, " ",
r_cust.lname CLIPPED, "?"

PROMPT ptext FOR CHAR yn

IF yn = "y" THEN
EXECUTE u

END IF
END WHILE
CLOSE x

Tip: You can use an update cursor to perform updates that are not possible with the
UPDATE statement. An update cursor is a sequential cursor that is associated with
a SELECT statement that is declared with the FOR UPDATE keywords. For more
information on the update cursor, see page 7-111.

References
In this manual, see the following statements: DECLARE, INSERT, OPEN, and
SELECT.

In IBM Informix Guide to SQL: Tutorial, see the discussion of the UPDATE
statement.
7-334 IBM Informix Guide to SQL: Reference

UPDATE STATISTICS
UPDATE STATISTICS

Purpose
Use the UPDATE STATISTICS statement to update the data in the system
catalog tables that are used to optimize search strategies and stored
procedures.

Syntax

Usage
When you issue an UPDATE STATISTICS statement, IBM Informix OnLine
recalculates the data in the systables, syscolumns, and sysindexes system
catalog tables that is used to optimize search strategies. The database server
does not update this statistical data automatically. When you issue an
UPDATE STATISTICS statement, you trigger the updating process.

Table
Name

p. 7-434

UPDATE STATISTICS

FOR TABLE

FOR PROCEDURE

Procedure
Name

p. 7-424

Synonym
Name

p. 7-432

+

Syntax 7-335

When to Update Statistics
Using the UPDATE STATISTICS statement also updates the optimized
execution plans for procedures in the sysprocplan system catalog table. Each
time a procedure is executed, the database server optimizes its execution plan
if any of the objects referenced in the procedure have changed. It can be
useful to optimize a procedure using the UPDATE STATISTICS statement
before the procedure is executed, to save time at execution.

The UPDATE STATISTICS statement requires a current database. If you omit
the FOR TABLE or FOR PROCEDURE clauses, statistics are updated for every
table and procedure in the current database.

If you use the FOR TABLE keywords without a table name, the statistics for all
tables in the current database are updated. If you use the FOR PROCEDURE
keywords without a procedure name, the statistics for all stored procedures
in the current database are updated.

You cannot update the optimizing statistics for a table or procedure that is
external to the current database.

When you issue an UPDATE STATISTICS statement, IBM Informix SE recalcu-
lates the data in the systables system catalog table that is used to optimize
search strategies. ♦

When to Update Statistics
Update the system catalog statistics when you perform extensive modifica-
tions to a table or when changes are made to tables that are used by one or
more procedures and you do not want the database server to reoptimize the
procedure at execution time.

If your application causes strong fluctuations in a particular table, you
should update the system catalog tables routinely with the UPDATE
STATISTICS statement to improve the efficiency of queries.

References
In IBM Informix Guide to SQL: Tutorial, see the discussion of UPDATE
STATISTICS.

SE
7-336 IBM Informix Guide to SQL: Reference

WHENEVER
WHENEVER

Purpose
Use the WHENEVER statement to trap errors and warnings that occur during
the execution of other SQL statements.

Syntax

WHENEVER

+

I4GL

ESQL
SQLERROR

NOT FOUND

WARNING

ANY

CONTINUE

GOTO

CALL

PERFORM

function
name

I4GL

SQLWARNING

I4GL

E/CO

I4GL

ERROR
E/CO

GO TO

STOP

paragraph
name

+
:label

label

function name is the name of an embedded-language function or an
IBM Informix 4GL function called when the error or warning
condition occurs.

label is a statement label to which program control transfers when
the error or warning condition occurs. If the label is an
unsigned integer, the statement conforms to ANSI-compliant
syntax. If the label is an identifier other than an unsigned inte-
ger, the statement is an Informix extension.

paragraph
name

is the name of a COBOL paragraph.
Syntax 7-337

Usage
Usage
Using the WHENEVER statement is equivalent to placing an error-checking
routine after every SQL statement. If you do not use a WHENEVER statement
in your program to look for errors or warnings and an error is encountered,
execution of the program stops.

The scope of a WHENEVER statement is from the location of the statement in
the source module until the next WHENEVER statement with the same
exception condition (SQLERROR, SQLWARNING, and so on) in the same
source module. If there is no other WHENEVER statement in the source
module, the statement remains in effect until the end of the program or
module.

For example, the following ESQL/C program has three WHENEVER state-
ments, two of which are WHENEVER SQLERROR statements. On line 6, the
CONTINUE keyword is specified; on line 10, STOP is used with SQLERROR.
Any errors encountered after line 6 and before line 10 are ignored. After line
10, and for the rest of the program, any SQL errors encountered cause the
program to terminate.

Figure 7-141
ESQL/C program that resets WHENEVER SQLERROR

1 main()
2 {
3 long char_num;
4
5 $ DATABASE test;
6 $ WHENEVER SQLERROR CONTINUE;
7 printf("\n\nGoing to try first insert\n\n");
8 $ INSERT INTO test_color VALUES ("green");
9 $ WHENEVER NOT FOUND CONTINUE;
10 $ WHENEVER SQLERROR STOP;
11 printf("\n\nGoing to try second insert\n\n");
12 $ INSERT INTO test_color VALUES ("blue");
13 $ CLOSE DATABASE;
14 printf("\n\nProgram over\n\n");
15 }
7-338 IBM Informix Guide to SQL: Reference

SQLERROR Keyword
SQLERROR Keyword
If you use the SQLERROR keyword, any SQL statement that fails is handled as
directed by the WHENEVER statement. An error occurs whenever the sqlcode
variable is less than zero. The specification for the sqlcode variable for each
product is listed in the following table:

The following statement causes SQL errors to be ignored each time they are
encountered:

WHENEVER SQLERROR CONTINUE

If you do not use any WHENEVER SQLERROR statements in a program and if,
at compile time, the database accessed by the program is not ANSI-compliant,
the default for WHENEVER SQLERROR is STOP.

If you do not use any WHENEVER SQLERROR statements in a program and if,
at compile time, the database accessed by the program is ANSI-compliant, the
default for WHENEVER SQLERROR is CONTINUE. ♦

In addition to checking for errors after SQL statements, WHENEVER
SQLERROR also checks for errors after Screen I/O statements and VALIDATE
statements. ♦

ANY Option
ANY Option

If you use the ANY keyword, the status variable is set after evaluating an
expression, even if it is outside of an SQL statement, Screen I/O statement, or
VALIDATE statement. ♦

4GL ESQL/C ESQL/COBOL

SQLCA.SQLCODE
STATUS

sqlca.sqlcode
SQLCODE

SQLCODE OF SQLCA

ANSI

I4GL

I4GL
Syntax 7-339

SQLWARNING Keyword
SQLWARNING Keyword
If you use the SQLWARNING keyword, any SQL statement that generates a
warning causes the action indicated by the WHENEVER SQLWARNING
statement to be executed. If a warning occurs, the first field of the SQLAWARN
record is set to W.

The following statement causes a program to halt execution whenever a
warning condition exists:

WHENEVER SQLWARNING STOP

NOT FOUND Keywords
If you use the NOT FOUND keywords, SELECT and FETCH statements are
treated differently from other SQL statements. The NOT FOUND keywords
check for the following cases:

� A FETCH statement that attempts to get a row beyond the first or last
row in the active set

� A SELECT statement that returns no rows

In both of these cases, the sqlcode variable is set to 100. See the figure in
“SQLERROR Keyword” on page 7-339 for the name of the sqlcode variable
in each IBM Informix product.

The following statement calls the no_rows function whenever the NOT
FOUND condition exists:

WHENEVER NOT FOUND CALL no_rows

Although both NOT FOUND and NOTFOUND indicate the same condition,
they cannot be used interchangeably. Use NOTFOUND (one word) in status
variables, and use NOT FOUND (two words) with the WHENEVER
statement. ♦

WARNING Keyword
WARNING is a synonym for SQLWARNING. ♦

I4GL

I4GL
7-340 IBM Informix Guide to SQL: Reference

ERROR Keyword
ERROR Keyword
ERROR is a synonym for SQLERROR. ♦

GOTO Keywords
Use the GOTO clause to transfer control to the statement identified by the
label. The keywords GO TO are a synonym for GOTO.

The label specified after the GOTO keyword must be in the same FUNCTION,
REPORT, or MAIN program block as the WHENEVER statement. ♦

For example, the WHENEVER statement in the following IBM Informix 4GL
code transfers control to the statement labeled missing: whenever the NOT
FOUND condition occurs:

FUNCTION query_data()
...
FETCH FIRST a_curs INTO p_customer.*
WHENEVER NOT FOUND GO TO :missing
...
LABEL missing:

MESSAGE "No customers found."
SLEEP 3
MESSAGE ""

END FUNCTION

If your module contains more than one program block, you might need to
redefine the error condition. For example, assume the module contains three
functions, and the first function includes a WHENEVER...GOTO statement and
a corresponding LABEL statement. When compilation moves from the first
function to the following function, the error condition still refers to the label;
however, the label is no longer defined. If the compiler reads an SQL
statement and you have not redefined the error condition (for example, to
WHENEVER ERROR CONTINUE), a compilation error results.

You can either reset the error condition by issuing another WHENEVER
statement, you can put a labeled statement with the same label-name in each
function, or you can use the CALL clause to call a separate function. ♦

I4GL

E/CO

I4GL

I4GL
Syntax 7-341

CALL Clause
If your program contains more than one function, you might need to redefine
the error condition. For example, assume the module contains three
functions, and the first function includes a WHENEVER...GOTO statement and
a corresponding labeled statement. When compilation moves from the first
function to the following function, the error condition still refers to the label;
however, the label is no longer defined. If the compiler reads an SQL
statement and you have not redefined the error condition (for example, to
WHENEVER SQLERROR CONTINUE), a compilation error results.

You either can reset the error condition by issuing another WHENEVER
statement, you can put a labeled statement with the same label-name in each
function, or you can use the CALL clause to call a separate function. ♦

CALL Clause
Use the CALL clause to transfer program control to the named function. Do
not include parentheses after the function name. You cannot pass variables to
the function.

The following statement executes a function called error_recovery if the
program detects an error condition:

WHENEVER SQLERROR CALL error_recovery

You cannot specify the name of a stored procedure with the CALL keyword.
If you want to call a stored procedure, use the CALL clause to execute a
function that contains the EXECUTE PROCEDURE statement.

CONTINUE Keyword
Use the CONTINUE keyword to instruct the program to take no action. You
can use this keyword to turn off a previously specified option.

STOP Keyword
Use the STOP keyword to exit from the program immediately. The following
statement terminates program execution when the database server issues a
warning:

WHENEVER SQLWARNING STOP

ESQL
7-342 IBM Informix Guide to SQL: Reference

References
References
In this manual, see the following statements: EXECUTE PROCEDURE and
FETCH.

In the IBM Informix 4GL Reference Manual, see the following statements: CALL,
DEFER, FOREACH, GOTO, IF, and LABEL.

In the user manual for your embedded-language product, see the chapter on
error-checking.
Syntax 7-343

7-344 IBM Informix Guide to SQL: Reference

Segments
Segments
Segments are the elements of syntax that are extracted from the syntax
diagrams and discussed separately for better clarification and ease of use.

The following segments, which are common to more than one statement, are
gathered in the following section:

� Condition

� Constraint Name

� Database Name

� Data Type

� DATETIME Field Qualifier

� Expression

� Identifier

� Index Name

� INTERVAL Field Qualifier

� Literal DATETIME

� Literal INTERVAL

� Literal Number

� Procedure Name

� Quoted String

� Relational Operator

� Synonym Name

� Table Name

� View Name

Condition
Condition

Purpose
Use a Condition segment to test data to determine whether it meets certain
qualifications. You can use the Condition segment in the following ways:

� In an ALTER TABLE or CREATE TABLE statement as a check constraint

� In a DELETE statement within the WHERE clause

� In a SELECT statement within the WHERE clause and the HAVING
clause

� In an UPDATE statement within the WHERE clause

� In an IF statement, if you are using SPL

� In a WHILE statement, if you are using SPL

Syntax

Usage
A condition is a collection of one or more search conditions, optionally
connected by the logical operators AND or OR. Search conditions fall into the
following categories:

� Comparison conditions (also called filters or Boolean expressions)

� Conditions with a subquery

AND

OR

NOT

Comparison
Condition
p. 7-346

Condition with
Subquery
p. 7-355
Syntax 7-345

Restrictions on a Condition
Restrictions on a Condition
A condition only can contain an aggregate function if it is used in the HAVING
clause of a SELECT statement or the HAVING clause of a subquery. You cannot
use an aggregate function in a comparison condition that is part of a WHERE
clause in a DELETE, SELECT, or UPDATE statement.

NOT Operator Option
If you preface a condition with the keyword NOT, the test is true only if the
condition that the NOT qualifies is false. If the condition qualified by the NOT
is unknown (uses a null in the determination), the NOT operator has no effect.
The following truth table shows the effect of NOT. The letter T represents a
true condition, F represents a false condition, and ? represents an unknown
condition. Unknown values occur when part of an expression that uses an
arithmetic operator is null.

Comparison Conditions (Boolean Expressions)
There are five kinds of comparison conditions: Relational Operator,
BETWEEN, IN, IS NULL, and LIKE and MATCHES. Comparison conditions are
often called Boolean expressions because they evaluate to a simple true or
false result. Their syntax is summarized in the following diagram and
explained in detail after the diagram.

NOT

T F

? ?
F T
7-346 IBM Informix Guide to SQL: Reference

Comparison Conditions (Boolean Expressions)
.

Relational
Operator
p. 7-429

Expression
p. 7-370

Expression
p. 7-370

Expression
p. 7-370

Expression
p. 7-370

Expression
p. 7-370

Datetime
Qualifier
p. 7-368

IS

Expression
p. 7-370

NOT

View
Name

p. 7-438

Table
Name

p. 7-434

Synonym
Name

p. 7-432
NOT

column
 name

column
 name

NOT

LIKE
Quoted
String

p. 7-426

,

BETWEEN AND

)(

MATCHES

IN

TODAY

USER

Literal
Number
p. 7-422

Literal
Datetime
p. 7-416

Literal
Interval
p. 7-419

Quoted
String

p. 7-426

SITENAME

NULL

CURRENT

DBSERVERNAME

ESCAPE "char"

NOT

OL

+

+

.

..

.

View
Name

p. 7-438

Table
Name

p. 7-434

Synonym
Name

p. 7-432

.

..
Syntax 7-347

Comparison Conditions (Boolean Expressions)
Relational-Operator Condition

Some examples of relational-operator conditions follow.

Figure 7-61
Examples of relational-operator conditions

city[1,3] = "San"

o.order_date > "6/12/86"

WEEKDAY(paid_date) = WEEKDAY(CURRENT-31 UNITS day)

YEAR(ship_date) < YEAR (TODAY)

quantity <= 3

customer_num <> 105

customer_num != 105

If either expression is null for a row, the condition evaluates to false. For
example, if paid_date has a null value, you cannot use either of the following
statements to retrieve that row.

Figure 7-62
Examples of relational-operator conditions that evaluate to false for null values

SELECT customer_num, order_date FROM orders
WHERE paid_date = ""

SELECT customer_num, order_date FROM orders
WHERE NOT PAID !=""

An IS NULL condition finds a null value, as shown in the following example.
The IS NULL condition is explained fully in an upcoming section.

Figure 7-63
Example of an IS NULL condition

SELECT customer_num, order_date FROM orders
WHERE paid_date IS NULL

Expression
p. 7-370

Relational
Operator
p. 7-429

Expression
p. 7-370
7-348 IBM Informix Guide to SQL: Reference

Comparison Conditions (Boolean Expressions)
BETWEEN Condition

For a BETWEEN test to be true, the value of the expression on the left of the
BETWEEN keyword must be in the inclusive range of the values of the two
expressions on the right of the BETWEEN keyword. Null values do not satisfy
the condition. You cannot use NULL for either expression that defines the
range.

Some examples of BETWEEN conditions follow.

Figure 7-64
Examples of BETWEEN conditions

order_date BETWEEN "6/1/90" and "9/7/90"

zipcode NOT BETWEEN "94100" and "94199"

EXTEND(call_dtime, DAY TO DAY) BETWEEN
(CURRENT - INTERVAL(7) DAY TO DAY) AND CURRENT

lead_time BETWEEN INTERVAL (1) DAY TO DAY
AND INTERVAL (4) DAY TO DAY

unit_price BETWEEN loprice AND hiprice

NOT

Expression
p. 7-370

Expression
p. 7-370

Expression
p. 7-370ANDBETWEEN
Syntax 7-349

Comparison Conditions (Boolean Expressions)
IN Condition

The IN condition is satisfied when the expression to the left of the word IN is
included in the list of items. The NOT option produces a search condition that
is satisfied when the expression is not in the list of items. Null values do not
satisfy the condition.

Some examples of IN conditions follow.

Figure 7-65
Examples of IN conditions

WHERE state IN ("CA", "WA", "OR")

WHERE manu_code IN ("HRO", "HSK")

WHERE user_id NOT IN (USER)

WHERE order_date NOT IN (TODAY)

TODAY is evaluated at execution time; CURRENT is evaluated when a cursor
is opened, or when the query is executed, if it is a singleton SELECT. ♦

Expression
p. 7-370

Datetime
Qualifier
p. 7-368

,

)(IN

TODAY

USER

Literal
Number
p. 7-422

Literal
Datetime
p. 7-416

Literal
Interval
p. 7-419

Quoted
String

p. 7-426

SITENAME

CURRENT

DBSERVERNAME

NOT

OL

I4GL

ESQL
7-350 IBM Informix Guide to SQL: Reference

Comparison Conditions (Boolean Expressions)
If you use the USER function, note that it is sensitive to case; it perceives
minnie and Minnie as different values.

IS NULL Condition

The IS NULL condition checks for the presence or absence of null values. The
syntax is as follows:

The IS NULL condition is satisfied if the column contains a null value. If you
use the IS NOT NULL option, the condition is satisfied when the column
contains a non-null value. The following example shows an IS NULL
condition:

WHERE paid_date IS NULL

alias is an alias for the table that contains the column.

column name is the name of the column to be checked.

NOT

name
IS NULL

column

.Table
Name

p. 7-434

alias

.
View
Name

p. 7-438

.

.

Synonym
Name

p. 7-432
Syntax 7-351

Comparison Conditions (Boolean Expressions)
LIKE and MATCHES Condition

A LIKE or MATCHES condition tests for matching character strings. The
syntax for this test is as follows:

The search condition is successful when the value of the column on the left
matches the pattern specified by the quoted string. You can use wildcard
characters in the string. Null values do not satisfy the condition.

You only can use the double quote (") with the quoted string to match a literal
quote; you cannot use the ESCAPE keyword.You can use the quote character
as the ESCAPE character in matching any other pattern if you write it as """".

NOT Option

The NOT option makes the search condition successful when the column on
the left has a non-null value and does not match the pattern specified by the
quoted string. For example, the following conditions exclude all rows that
begin with the characters Baxter in the lname column:

WHERE lname NOT LIKE "Baxter%"
WHERE lname NOT MATCHES "Baxter*"

NOT

LIKEname

MATCHES

column

+

Quoted
String

p. 7-426 ESCAPE
"char"

.Table
Name

p. 7-434

alias

.
View
Name

p. 7-438

.Synonym
Name

p. 7-432

.

alias is an alias for the table that contains the column.

char is a single character enclosed in quotation marks.

column name is the name of a column.
7-352 IBM Informix Guide to SQL: Reference

Comparison Conditions (Boolean Expressions)
LIKE Option

If you use the keyword LIKE, you can use the following wildcard characters
in the quoted string:

Use of the backslash as an escape character is an Informix extension to ANSI-
compliant SQL.

The following condition tests for the string “tennis”, alone or in a longer
string, such as “tennis ball” or “table tennis paddle”:

WHERE description LIKE "%tennis%"

The following condition tests for all descriptions that contain an underscore.
The backslash is necessary since the underscore is a wildcard character.

WHERE description LIKE "%_%"

MATCHES Option

If you use the keyword MATCHES, you can use the following wildcard
characters in the quoted string:

% A percent sign matches zero or more characters.

_ An underscore matches any single character.

\ A backslash removes the special significance of the next char-
acter (used to match % or _ by writing \% or _).

* An asterisk matches zero or more characters.

? A question mark matches any single character.

[...] Characters within brackets match any of the enclosed charac-
ters, including character ranges as in [a-z]. A caret (^) as the
first character within the brackets matches any character that
is not listed. Hence [^abc] matches any character that is not a,
b, or c.

\ A backslash removes the special significance of the next char-
acter (used to match * or ? by writing * or \?).
Syntax 7-353

Comparison Conditions (Boolean Expressions)
The following condition tests for the string “tennis”, alone or in a longer
string, such as “tennis ball” or “table tennis paddle”:

WHERE description MATCHES "*tennis*"

The following condition is true for the names “Frank” and “frank.”

WHERE fname MATCHES "[Ff]rank"

The following condition is true for any name that begins with either an “F”
or “f.”

WHERE fname MATCHES "[Ff]*"

ESCAPE with LIKE

The ESCAPE clause allows you to include an underscore (_) or a percent sign
(%) in the quoted string and avoid having them be interpreted as wildcards.
If you choose to use z as the escape character, the characters z_ in a string
stand for the character _. Similarly, the characters z% stand for the character
%. Finally, the characters zz in the string stand for the single character z. The
following statement retrieves rows from the customer table in which the
company column includes the underscore character:

SELECT * FROM customer
WHERE company LIKE "%z_%" ESCAPE "z"

ESCAPE with MATCHES

The ESCAPE clause allows you to include a question mark (?), an asterisk (*),
and a left or right bracket ([]) in the quoted string and avoid having them be
interpreted as wildcards. If you choose to use z as the escape character, the
characters z? in a string stand for the character ?. Similarly, the characters z*
stand for the character *. Finally, the characters zz in the string stand for the
single character z. The following statement retrieves rows from the customer
table in which the company column includes the question mark character.

SELECT * FROM customer
WHERE company LIKE "*z?*" ESCAPE "z"
7-354 IBM Informix Guide to SQL: Reference

Condition with a Subquery
Condition with a Subquery
You can use a SELECT statement within a condition; this is called a subquery.
You can use a subquery in a SELECT statement to perform the following
functions:

� Compare an expression to the result of another SELECT statement

� Determine whether an expression is included in the results of
another SELECT statement

� Ask whether any rows are selected by another SELECT statement

The subquery can depend on the current row being evaluated by the outer
SELECT statement; in this case, the subquery is a correlated subquery.

There are three kinds of subquery conditions. Each is shown here with its
syntax and examples.

Subset of a SELECT Allowed in a Subquery

A subquery can return a single value, no value, or a set of values depending
on the context in which it is used. If a subquery returns a value, it must select
only a single column. If the subquery simply checks whether a row (or rows)
exists, it can select any number of rows and columns. A subquery cannot
contain an ORDER BY clause. The full syntax of the SELECT statement is
described on page 7-258.

IN Subquery

An IN subquery condition is true if the value of the expression matches one
or more of the values selected by the subquery. The subquery must return
only one column; however, it can return more than one row. The keyword IN
is equivalent to the =ANY sequence. The keywords NOT IN are equivalent to
the !=ALL sequence. See the ALL/ANY/SOME section on page 7-357.

The following condition finds the order numbers for orders that do not
include baseball gloves (stock_num = 1).

NOT

IN ()Expression
p. 7-370

SELECT
(Subset)
p. 7-355
Syntax 7-355

Condition with a Subquery
Figure 7-66
Example of an IN subquery

WHERE order_num NOT IN
(SELECT order_num FROM items WHERE stock_num = 1)

Because the IN subquery tests for the presence of rows, duplicate rows in the
subquery results do not affect the results of the main query. Therefore,
putting the UNIQUE or DISTINCT keyword into the subquery has no effect on
the query results, although eliminating the testing of duplicates can reduce
the time needed for running the query.

EXISTS Subquery

An EXISTS subquery condition evaluates to true if the subquery returns a row.
With an EXISTS subquery, one or more columns can be returned. The
subquery always contains a reference to a column of the table in the main
query. If you use an aggregate function in an EXISTS subquery, at least one
row is always returned.

The following example of a SELECT statement with an EXISTS subquery
returns the stock number and manufacturer code for every item that has
never been ordered (and is therefore not listed in the items table). It is appro-
priate to use an EXISTS subquery in this SELECT statement because you use
the subquery to test both stock_num and manu_code in items.

Figure 7-67
Example of an EXISTS subquery

SELECT stock_num, manu_code FROM stock
WHERE NOT EXISTS (SELECT stock_num, manu_code FROM items

WHERE stock.stock_num = items.stock_num AND
stock.manu_code = items.manu_code)

The preceding example works equally well if you use a SELECT * in the
subquery in place of the column names, since the existence of the whole row
is tested, not specific column values.

NOT

()EXISTS
SELECT
(Subset)
p. 7-355
7-356 IBM Informix Guide to SQL: Reference

Condition with a Subquery
ALL/ANY/SOME Subquery

In the following example, the first condition tests whether each total_price is
greater than the total price of every item in order number 1023. The second
condition produces the same results by using the MAX aggregate function.

Figure 7-68
Example of an ALL subquery and an equivalent aggregate subquery

total_price > ALL (SELECT total_price FROM items
WHERE order_num = 1023)

total_price > (SELECT MAX(total_price) FROM items
WHERE order_num = 1023)

The following conditions are true when the total price is greater than the total
price of at least one of the items in order number 1023. The first condition
uses the ANY keyword; the second uses the MIN aggregate function.

Figure 7-69
Example of an ANY subquery and an equivalent aggregate subquery

total_price > ANY (SELECT total_price FROM items
WHERE order_num = 1023)

total_price > (SELECT MIN(total_price) FROM items
WHERE order_num = 1023)

ALL is a keyword that denotes that the search condition is true if the
comparison is true for every value returned by the subquery. If
the subquery returns no value, the condition is true.

ANY is a keyword that denotes that the search condition is true if the
comparison is true for at least one of the values returned. If the
subquery returns no value, the search condition is false.

SOME is an alias for ANY.

()Expression
p. 7-370

Relational
Operator
p. 7-429

ALL

ANY

SOME

SELECT
(Subset)
p. 7-355
Syntax 7-357

Conditions with AND or OR
Using the NOT keyword with an ANY subquery tests whether an expression
is not true for any of the subquery values. For example, the following
condition is true when the expression total_price is not greater than any of
the selected values. That is, it is true when total_price is greater than none of
the total prices in order number 1023.

Figure 7-70
Example of the keyword NOT with an ANY subquery

NOT total_price > ANY (SELECT total_price FROM items
WHERE order_num = 1023)

Omitting ANY, ALL, or SOME Keywords

You can omit the keywords ANY, ALL, or SOME in a subquery if you know
that the subquery will return exactly one value. If you omit the ANY, ALL, or
SOME keywords and the subquery returns more than one value, you receive
an error. The subquery in the following example returns only one row
because it uses an aggregate function:

SELECT order_num FROM items
WHERE stock_num = 9 AND quantity =

(SELECT MAX(quantity) FROM items WHERE stock_num = 9)

Conditions with AND or OR
You can combine simple conditions with the logical operators AND or OR.
The following SELECT statements contain examples of complex conditions in
their WHERE clauses.

Figure 7-71
Combining simple conditions with AND or OR

SELECT customer_num, order_date FROM orders
WHERE paid_date > "1/1/90" OR paid_date IS NULL

SELECT order_num, total_price FROM items
WHERE total_price > 200.00 AND manu_code LIKE "H%"

SELECT lname, customer_num FROM customer
WHERE zipcode BETWEEN "93500" AND "95700"
OR state NOT IN ("CA", "WA", "OR")
7-358 IBM Informix Guide to SQL: Reference

Conditions with AND or OR
The following truth tables show the effect of the AND and OR operators.The
letter T represents a true condition, F represents a false condition, and the ?
represents an unknown value. Unknown values occur when part of an
expression that uses a logical operator is null.

If the Boolean expression evaluates to UNKNOWN, the condition is not satisfied.

Consider the following condition within a WHERE clause:

WHERE ship_charge/ship_weight < 5
AND order_num = 1023

The row where order_num = 1023 is the row where ship_weight is null.
Since ship_weight is null, ship_charge/ship_weight is also null; therefore,
the truth value of ship_charge/ship_weight < 5 is UNKNOWN. Since
order_num = 1023 is TRUE, the AND table states that the truth value of the
entire condition is UNKNOWN. Consequently, that row is not chosen. If the
condition used an OR in place of the AND, the condition would be true.

AND

T

T

T

? ?
F F

?

?

?
F

F

F

F
F

OR

T

T

T

? T
F T

?

T

?
?

F

T

?
F

Syntax 7-359

Constraint Name
Constraint Name

Purpose
Use the Constraint Name syntax wherever you see a reference to a constraint
name in a syntax diagram. The Constraint Name segment appears in the
following statements:

� ALTER TABLE

� CREATE TABLE

� SET CONSTRAINTS

Syntax

Usage
The actual name of the constraint is an SQL identifier.

If you are creating a table, the .name of the constraint must be unique within
a database.

database is the name of the database in which the constraint resides.

owner is the user name of the owner of the constraint. If you are using
an ANSI-compliant database, you must use the owner. conven-
tion for a constraint that you do not own.

server is the name of the IBM Informix OnLine database server that is
home to database. The at sign (@) is a literal character that you
must use to introduce the database server name.

@server

owner.

database

OL

Identifier
p. 7-399
7-360 IBM Informix Guide to SQL: Reference

Usage
If you are creating a table, the combination owner.name must be unique within
a database.

The owner.name is case sensitive. For more information, see the discussion of
case sensitivity in ANSI-compliant databases on page 7-436. ♦

ANSI
Syntax 7-361

Database Name
Database Name

Purpose
Use the Database Name syntax wherever you see a reference to a database
name in a syntax diagram. The Database Name segment is used in the
following statements:

� CREATE DATABASE

� DATABASE

� DROP DATABASE

� ROLLFORWARD DATABASE

� START DATABASE

Syntax

dbname is the name of the database itself.

dbservername is the name of the database server that is home to the database.

directory-path is the path of the database directory up to the parent directory
of the .dbs directory.

variable-name is a program or host variable that contains the name of a data-
base.

Identifier
p. 7-399

dbserver-
name@

OL

"//dbservername/dbname"

variable-name

"//dbservername/directory-path/dbname"SE

I4GL

ESQL

OL
7-362 IBM Informix Guide to SQL: Reference

Usage
Usage
The simple database name is an SQL identifier, as described on page 7-399. If
you are creating a database, the name that you assign to the database can be
up to 18 characters long. Database names are not case sensitive.

The following example shows a database specification:

empinfo@personnel

@dbservername Option
If you use a database server name, do not put any spaces between the names
and the @. For example, the following statement is valid for the stores5
database on the training database server:

DATABASE stores5@training

Specifying a database server name allows you to choose a database on
another database server as your current database. You can name the current
database server using db-server-name, even though that is extra information.

//dbservername/dbname Option
If you use the alternative naming method, do not put spaces between the
quotes, slashes, and names, as shown in the following example:

DATABASE "//training/stores5"

As with the @dbservername option, specifying a database server name allows
you to choose a database that is on another database server as your current
database. You can name the local database server by using dbservername
along with the dbname.

variable-name Option
You can use a variable within an 4GL or embedded-language program to hold
the name of a database. ♦

I4GL

ESQL
Syntax 7-363

//dbservername/directory-path/dbname Option
You can use a variable to hold a database name within a function or the MAIN
program block. You cannot use a variable to hold a database name if you are
using a DATABASE statement to define global variables defined LIKE
database columns. ♦

If you want to specify a database that neither resides in your current
directory nor in a directory specified by the DBPATH environment variable,
you must follow the DATABASE keyword with a program variable that
evaluates to the full pathname of the database (excluding the .dbs
extension). ♦

//dbservername/directory-path/dbname Option
If you are using IBM Informix NET, you can specify a database on a different
database server. Do not put spaces between the quotes, slashes, and names.
The following database name describes a stores5 database that resides on the
business database server:

//business/u/acctng/demo/stores5
♦

I4GL

SE

I4GL

ESQL

SE

INET
7-364 IBM Informix Guide to SQL: Reference

Data Type
Data Type

Purpose
Use the Data Type segment whenever you have to specify the data type of a
column or value. The Data Type segment is used in the following statements:

� ALTER TABLE

� CREATE PROCEDURE

� CREATE TABLE

Syntax
Syntax 7-365

Syntax
DATETIME

INTERVAL

TEXT

BYTE

MONEY

SMALLINT

INTEGER

INT

FLOAT

DOUBLE PRECISION

DECIMAL

DEC

NUMERIC

REAL

SMALLFLOAT

CHARACTER

CHAR

precision

precision()

, scale

()

()size

()

()

, reserve

DATE

maximum

float

+

+

+

+

+

+

INTERVAL Field Qualifier p. 7-414

DATETIME Field Qualifier p. 7-368

16

16

precision

SERIAL

(1)
(start)

VARCHAR

,2
, scale

IN TABLE

blobspace

OL
+

OL
+

,0

(1)
7-366 IBM Informix Guide to SQL: Reference

Usage
Usage
For more information, see the discussion of all the data types in Chapter 3,
“Data Types.”

blobspace is the name of a blobspace that already exists.

float precision is an integer between 1 and 14, inclusive. The float precision is
ignored.

maximum is the maximum possible length of a VARCHAR.

precision is the total number of significant digits in a decimal or money
type; it is an integer between 1 and 16, inclusive.

reserve is the amount of space reserved for a VARCHAR even if the
actual data is shorter than reserve.

scale is the number of digits to the right of the decimal point.

size is the number of characters in the column.

start is the starting number for values in a SERIAL column.
Syntax 7-367

DATETIME Field Qualifier
DATETIME Field Qualifier

Purpose
The DATETIME field qualifier specifies the largest and smallest unit of time in
a DATETIME column or value. Use the DATETIME field qualifier with the
following segments:

� Data type

� Expression (in a constant expression)

Syntax

digit is a single integer between 1 and 5 indicating to how many dig-
its of precision the fraction is measured.

YEAR

MONTH

DAY

MINUTE

SECOND

FRACTION

TO YEAR

TO MONTH

TO DAY

TO HOUR

TO MINUTE

TO SECOND

TO FRACTION

HOUR

(3)

(digit)
7-368 IBM Informix Guide to SQL: Reference

Usage
Usage
Specify the largest unit for the first DATETIME value; after the word TO,
specify the smallest unit for the value. The keywords imply that the
following values are used in the DATETIME object:

Some examples of DATETIME qualifiers follow.

Figure 7-72
Examples of DATETIME qualifiers

DAY TO MINUTE

YEAR TO MINUTE

DAY TO FRACTION(4)

MONTH TO MONTH

YEAR A year numbered from A.D. 1 to 9999.

MONTH A month, numbered from 1 to 12.

DAY A day, numbered from 1 to 31, as appropriate to the month in
question.

HOUR An hour, numbered from 0 (midnight) to 23.

MINUTE A minute, numbered from 0 to 59.

SECOND A second, numbered from 0 to 59.

FRACTION A fraction of a second, with up to five decimal places. The
default scale is three digits (thousandth of a second).
Syntax 7-369

Expression
Expression
An expression is one or more pieces of data contained in or derived from the
database or database server. The Expression segment is used in the following
statements and segments:

� SELECT

� DELETE within the Condition segment

� UPDATE within the Condition segment

� In an SPL Expression
7-370 IBM Informix Guide to SQL: Reference

Syntax
Syntax

Usage
You can combine expressions by connecting them with arithmetic operators
for addition, subtraction, multiplication, and division.

You cannot use an aggregate expression in a condition that is part of a WHERE
clause unless the aggregate expression is used within a subquery.

variable name is the name of a program or host variable that contains a value.

/

 -

*

+

_
+

variable
name

Column
 Expressions

p. 7-372

Constant
Expressions

p. 7-376

Function
Expressions

p. 7-383

Aggregate
Expressions

p. 7-393

Expression)(

| |
Syntax 7-371

Concatenation Operator
Concatenation Operator
You can use the concatenation operator (||) to concatenate two expressions
together. For example, the following are some possible concatenated-
expression combinations. The first example concatenates the zipcode column
to the first three letters of the lname column. The second example
concatenates the suffix .dbg to the contents of a host variable called
file_variable. The third example concatenates the value returned by the
TODAY function to the string Date.

lname[1,3] || zipcode
$file_variable || ".dbg"
"Date:" || TODAY

You cannot use the concatenation operator in an ESQL-only statement. The
ESQL-only statements are as follows:

ALLOCATE DESCRIPTOR FETCH

CLOSE FLUSH

DEALLOCATE DESCRIPTOR FREE

DECLARE GET DESCRIPTOR

DESCRIBE OPEN

EXECUTE PREPARE

EXECUTE IMMEDIATE PUT
7-372 IBM Informix Guide to SQL: Reference

Column Expressions
Column Expressions
The possible syntax for column expressions is as follows:

Some examples of column expressions follow.

Figure 7-73
Examples of column expressions

company

items.price

cat_advert [1,15]

column
name

[first, last]

alias

@

Table
Name

p. 7-434

View
Name

p. 7-438

I4GL

ROWID

+

Synonym
Name

p. 7-432

.

.

.

.

alias is used in a SELECT statement in any clause but the SELECT and
FROM clauses; it is the alternative name for the table as estab-
lished in the FROM clause.

column name is the name of the column that you are selecting.

first is the position of the first character of the column (CHAR, VAR-
CHAR, or TEXT).

last is the position of the last character of the portion that you are
selecting.
Syntax 7-373

Column Expressions
Use a table or alias name whenever it is necessary to distinguish between
columns that have the same name but are in different tables. For example, the
following SELECT statements use customer_num from both the customer
and orders tables so they precede the column names with the table names.

Figure 7-74
Using table and alias names to distinguish between columns that have the same name

SELECT * FROM customer, orders
WHERE customer.customer_num = orders.customer_num

SELECT * FROM customer c, orders o
WHERE c.customer_num = o.customer_num

Using Subscripts on Character Columns

You can use subscripts on CHAR, VARCHAR, and TEXT columns. The
subscripts indicate the starting and ending character positions contained in
the expression. For example, if a value in the lname column of the customer
table is Greenburg, then the following expression evaluates to burg:

fname[6,9]

Using Rowids

You can use the rowid associated with each row of the table as a property of
the row. The rowid is essentially a hidden column. It is unique for each row
but it is not necessarily sequential.

The rowid is sequential and starts at 1 for each table. ♦

The following examples show possible uses of the ROWID keyword in a
SELECT statement.

Figure 7-75
Using the ROWID keyword in a SELECT statement

SELECT *, ROWID FROM customer

SELECT fname, ROWID FROM customer
ORDER BY ROWID

SE
7-374 IBM Informix Guide to SQL: Reference

Column Expressions
Using the At Sign

If your program variable has the same name as a column, you must precede
the column name with an at sign (@). If you include the table, view, or alias
name with the column name, you do not need the @ sign. ♦

The following examples show column expressions preceded by @ signs.

Figure 7-76
Examples of column expressions preceded by @ signs

SELECT @fname, @lname INTO fname, lname FROM customer
WHERE customer_num = 119

SELECT stock_num, manu_code FROM stock
WHERE @stock_num >= stock_num

INSERT INTO customer (@fname, @lname) VALUES (fname,lname)

I4GL
Syntax 7-375

Constant Expressions
Constant Expressions
The possible syntax for constant expressions is as follows:

Some examples of constant expressions follow.

datetime unit is one of the units that are used to specify an interval precision;
that is, YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, or
FRACTION.

n is a integer literal number.

USER

TODAY

CURRENT

SITENAME

UNITSn datetime
unit

Quoted string
p. 7-426

Literal Number
p. 7-422+

OL

DATETIME Field
Qualifier
p. 7-368

Literal DATETIME p. 7-416

Literal INTERVAL p. 7-419

+

DBSERVERNAME
7-376 IBM Informix Guide to SQL: Reference

Constant Expressions
Figure 7-77
Examples of constant expressions

DBSERVERNAME

TODAY

"His first name is"

CURRENT YEAR TO DAY

INTERVAL (4 10:05) DAY TO MINUTE

DATETIME (4 10:05) DAY TO MINUTE

5 UNITS YEAR

Quoted String as Expression

 Some examples of quoted strings as expressions follow.

Figure 7-78
Examples of quoted strings as expressions

SELECT "The first name is ", fname FROM customer

INSERT INTO manufact VALUES ("SPS", "SuperSport")

UPDATE cust_calls SET res_dtime = "1990-1-1 10:45"
WHERE customer_num = 120 AND call_code = "B"

USER Function

The USER function returns a string containing the login name of the current
user; that is, the person running the process.

The following statements show how you might use the USER function.

Figure 7-79
Examples of the USER function

INSERT INTO cust_calls VALUES
 (221,CURRENT,USER,"B","Decimal point off", NULL, NULL)

SELECT * FROM cust_calls WHERE user_id = USER

UPDATE cust_calls SET user_id = USER WHERE customer_num = 220
Syntax 7-377

Constant Expressions
The USER function does not change the case of a user id. If you use USER in
an expression and the present user is Robertm, the USER function returns
Robertm, not robertm. If you specify user as the default value for a column,
the column must be of type CHARACTER or VARCHAR and it must be at least
eight characters long.

In an ANSI-compliant database, if you do not use quotes around the owner
name, the name of the table owner is stored as uppercase letters. If you use
the USER keyword as part of a condition, you must be sure that the way the
user name is stored agrees with the values that are returned by the USER
function, with respect to case. ♦

SITENAME and DBSERVERNAME Functions

The SITENAME and DBSERVERNAME functions return the database server
name, as defined in the tbconfig file for the IBM Informix OnLine installation
on which the current database resides. The two function names are
synonymous. You can use the DBSERVERNAME function to determine the
location of a table, to put information into a table, or to extract information
from a table. You can insert DBSERVERNAME into a simple character field or
use it as a default value for a column. If you specify DBSERVERNAME as a
default value for a column, the column must be of type CHARACTER or
VARCHAR and must be at least 18 characters long.

In the following example, the first statement returns the name of the database
server on which the customer table resides. Since the query is not restricted
with a WHERE clause, it returns DBSERVERNAME for every row in the table.
If you add the DISTINCT keyword to the SELECT clause, the query returns
DBSERVERNAME only once. The second statement adds a row that contains
the current site name to a table. The third statement returns all the rows that
have the site name of the current system in site_col. The last statement
changes the company name in the customer table to the current system name.

Figure 7-80
Examples of DBSERVERNAME as an expression

SELECT DBSERVERNAME FROM customer

INSERT INTO host_tab VALUES ("1", DBSERVERNAME)

SELECT * FROM host_tab WHERE site_col = DBSERVERNAME

UPDATE customer SET company = DBSERVERNAME
 WHERE customer_num = 120

ANSI
7-378 IBM Informix Guide to SQL: Reference

Constant Expressions
Literal Number as Expression

Some examples of literal numbers as expressions follow.

Figure 7-81
Examples of literal numbers as expressions

INSERT INTO items VALUES (4, 35, 52, "HRO", 12, 4.00)

INSERT INTO acreage VALUES (4, 5.2e4)

SELECT unit_price + 5 FROM stock

SELECT -1 * balance FROM accounts

TODAY Function

Use the TODAY function to return the system date as a DATE type. If you
specify TODAY as a default value for a column, that column must be of type
DATE.

The following statements show how you might use the TODAY function in an
INSERT, UPDATE, or SELECT statement.

Figure 7-82
Examples of the TODAY function as an expression

UPDATE orders (order_date) SET order_date = TODAY
 WHERE order_num = 1005

INSERT INTO orders VALUES
(0, TODAY, 120, NULL, N, "1AUE217", NULL, NULL, NULL, NULL)

SELECT * FROM orders WHERE ship_date = TODAY

CURRENT Function

The CURRENT function returns a DATETIME value with the date and time of
day of the current instant.

CURRENT

DATETIME Field
Qualifier p. 7-368
Syntax 7-379

Constant Expressions
If you do not specify a datetime qualifier, the default qualifiers are YEAR TO
FRACTION(3). You can use the CURRENT function in any context in which
you can use a Literal DATETIME (page 7-416). If you specify CURRENT as the
default value for a column, that column must be of type DATETIME and the
qualifier of CURRENT must match the qualifier of the column. If you use the
CURRENT keyword in more than one place in a single statement, identical
values can be returned at each point of the call. You cannot rely on the
CURRENT function to provide distinct values each time it executes.

The value returned is taken from the system clock.

The CURRENT function might not execute in the physical order in which it
appears in a statement. You should not use the CURRENT function to mark
the start, end, or a specific point in the execution of a statement.

If your platform does not provide a system call that returns the current time
with sub-second precision, the CURRENT function returns a zero for the
FRACTION field.

In the following example, the first statement uses the CURRENT function in a
WHERE condition. The second statement uses the CURRENT function as the
input for the DAY function. The last query selects rows whose call_dtime
value is within a range from the beginning of 1990 to the current instant.

Figure 7-83
Using the CURRENT function as an expression

DELETE FROM cust_calls WHERE
res_dtime < CURRENT YEAR TO MINUTE

SELECT * FROM orders WHERE DAY(ord_date) < DAY(CURRENT)

SELECT * FROM cust_calls WHERE call_dtime
BETWEEN "1990-1-1 00:00:00" AND CURRENT
7-380 IBM Informix Guide to SQL: Reference

Constant Expressions
Literal DATETIME as an Expression

Some examples of literal DATETIME as an expression follow.

Figure 7-84
Using literal DATETIME as an expression

SELECT DATETIME (1991-12-6) YEAR TO DAY FROM customer

UPDATE cust_calls SET res_dtime = DATETIME (1990-07-07 10:40)
YEAR TO MINUTE

WHERE customer_num = 110
AND call_dtime = DATETIME (1990-07-07 10:24) YEAR TO MINUTE

SELECT * FROM cust_calls
WHERE call_dtime
= DATETIME (1995-12-25 00:00:00) YEAR TO SECOND

Literal INTERVAL as an Expression

Some examples of literal INTERVAL as an expression follow.

Figure 7-85
Using literal INTERVAL as an expression

INSERT INTO manufact VALUES ("CAT", "Catwalk Sports",
INTERVAL (16) DAY TO DAY)

SELECT lead_time + INTERVAL (5) DAY TO DAY FROM manufact

The second statement in the preceding example adds five days to each value
of lead_time selected from the manufact table.
Syntax 7-381

Constant Expressions
UNITS Keyword

The UNITS keyword enables you to display a simple interval or increase or
decrease a specific interval or datetime value. Use the following syntax with
the UNITS keyword:

If n is not an integer, it is rounded down to the nearest whole number when
it is used. The value of n must be appropriate for the datetime unit selected.
For example, adding one month to “2001-10-31 00:00” results in
November 31. Since November has only 30 days, the value of n is not appro-
priate, and an error will be returned.

In the following example, the first SELECT statement uses the UNITS keyword
to select all the manufacturer lead times, increased by five days. The second
SELECT statement finds all the calls that were placed more than 30 days ago.
If the expression in the WHERE clause returns a value greater than 99
(maximum number of days), the query fails. The last statement increases the
lead time for the ANZA manufacturer by two days.

Figure 7-86
Using the UNITS keyword as an expression

SELECT lead_time + 5 UNITS DAY FROM manufact

SELECT * FROM cust_calls
WHERE (TODAY - call_dtime) > 30 UNITS DAY

UPDATE manufact SET lead_time = 2 UNITS DAY + lead_time
WHERE manu_code = "ANZ"

datetime unit is one of the units that are used to specify an interval precision;
that is, YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, or
FRACTION (if the unit is YEAR or the expression is a year-
month interval; otherwise, it is a day-time interval).

n is a literal number comparable to the datetime unit that you
choose (two digits with DAY, for example).

UNITSn datetime
unit
7-382 IBM Informix Guide to SQL: Reference

Function Expressions
Function Expressions
A function expression takes an argument. The syntax for function expres-
sions is as follows:

MDY (), ,

EXTEND ()

, first TO last

DATE ()

LENGTH)

variable
name

I4GL

+

Quoted String
p. 7-426

ESQL

WEEKDAY

MONTH

DAY ()

YEAR

integer
expression

month

non-date
expression

datetime
expression

date/

integer
expression

day
integer

expression

year

datetime
expression

date/

HEX)integer
expression

(

ROUND ()

, digit

Expression
p. 7-370

, 0

TRUNC ()

, digit

Expression
p. 7-370

, 0

column
name

.Table Name
p. 7-434

(

Syntax 7-383

Function Expressions
date/datetime
expression

is an expression, as defined on page 7-370, that evaluates to a
DATE or DATETIME value.

day integer
expression

is an expression, as defined on page 7-370, that evaluates to an
integer between 1 and 28, 29, 30, or 31, as appropriate for the
month.

digit is an integer between +32 and -32, inclusive, that indicates the
digit to which you want to round the expression.

first is the large qualifier for the DATETIME value.

integer expres-
sion

is an expression, as defined on page 7-370, that can be con-
verted to an integer.

last is the small qualifier for the DATETIME value.

month integer
expression

is an expression, as defined on page 7-370, that evaluates to an
integer between 1 and 12, as appropriate for the month.

non-date
expression

is an expression, as defined on page 7-370, that evaluates to a
CHARACTER, DATETIME, or INTEGER value that can be con-
verted to a DATE data type.

variable name is a program or host variable, the length of which is to be eval-
uated.

year integer
expression

is an expression, as defined on page 7-370, that evaluates to a
four-digit integer between 1 and 9999.
7-384 IBM Informix Guide to SQL: Reference

Function Expressions
The function expressions are made up of the following three families of
functions.

Some examples of function expressions follow.

Figure 7-87
Examples of function expressions

EXTEND (call_dtime, YEAR TO SECOND)

MDY (12, 7, 1900 + cur_yr)

DATE (365/2)

LENGTH ("abc") + LENGTH(pvar)

HEX(customer_num)

HEX(LENGTH(123))

DAY, MONTH, WEEKDAY, and YEAR Functions

The syntax for these four functions is all the same, as shown here:

Time Functions Length Function Conversion Functions

DATE()

DAY()

EXTEND()

MDY()

MONTH()

WEEKDAY()

YEAR()

LENGTH() HEX()

ROUND()

TRUNC()

date/datetime
expression

is an expression, as defined on page 7-370, that evaluates to a
DATE or DATETIME value.

()datetime
expression

date/+

WEEKDAY

MONTH

DAY

YEAR
Syntax 7-385

Function Expressions
DAY Function

The DAY function returns an integer that represents the day of the month. For
example, the following WHERE clause uses the DAY function with the
CURRENT function to compare column values to the current day of the
month:

WHERE DAY(order_date) > DAY(CURRENT)

MONTH Function

The MONTH function returns an integer corresponding to the month portion
of its type DATE or DATETIME argument. For example, the following query
returns a number (1 through 12) to indicate the month the order was placed:

SELECT order_num, MONTH(order_date) FROM orders

WEEKDAY Function

The WEEKDAY function returns an integer that represents the day of the
week. Zero represents Sunday, one represents Monday, and so on. For
example, the following query lists all the orders that were paid on the same
day of the week as the current day:

SELECT * FROM orders
WHERE WEEKDAY(paid_date) = WEEKDAY(CURRENT)

YEAR Function

The YEAR function returns a four-digit integer that represents the year. The
following query lists orders in which the ship_date is earlier than the
beginning of the current year:

SELECT order_num, customer_num FROM orders
WHERE year(ship_date) < YEAR(TODAY)

Similarly, because a DATE value is a simple calendar date, you cannot add or
subtract a DATE value with an INTERVAL value whose last qualifier is smaller
than DAY. In this case, convert the DATE value to a DATETIME value.
7-386 IBM Informix Guide to SQL: Reference

Function Expressions
DATE Function

The DATE function returns a type DATE value corresponding to the character
expression with which you call it. The syntax for the DATE function follows:

The argument can be any expression that can be converted to a DATE value,
usually a CHAR, DATETIME, or INTEGER value. For example, the following
two WHERE clauses achieve the same end: converting a string to a date.

WHERE order_date < DATE("12/31/90")

WHERE order_date < DATE(365)

EXTEND Function

The EXTEND function adjusts the precision of a DATETIME or DATE value. Its
syntax is as follows:

The expression cannot be a quoted string representation of a DATE value.

If you do not specify first and last qualifiers, the default qualifiers are YEAR
TO FRACTION(3).

non-date
expression

is an expression, as defined on page 7-370, that evaluates to a
CHARACTER, DATETIME, or INTEGER value that can be con-
verted to a DATE data type.

date/datetime
expression

is an expression, as defined on page 7-370, that evaluates to a
DATE or DATETIME value.

first is a qualifier that specifies the first field in the result. It can be
any DATETIME qualifier, as defined on page 7-368, as long as
first is larger than last.

last is a qualifier that specifies the last field in the result.

+ DATE ()non-date
expression

EXTEND ()
, first TO last

+ datetime
expression

date/
Syntax 7-387

Function Expressions
If the expression contains fields not specified by the qualifiers, the unwanted
fields are discarded.

If the first qualifier specifies a larger (that is, more significant) field than what
exists in the expression, the new fields are filled in with values returned by
the CURRENT function. If the last qualifier specifies a smaller field (that is, less
significant) than what exists in the expression, the new fields are filled in with
constant values. A missing MONTH or DAY field is filled in with 1, and the
missing HOUR to FRACTION fields are filled in with 0.

In the following examples, the first EXTEND call evaluates to the call_dtime
column value of YEAR TO SECOND. The second example expands a literal
DATETIME so that an interval can be subtracted from it. You must use the
EXTEND function with a DATETIME value if you want to add it to or subtract
it from an INTERVAL value that does not have all the same qualifiers.

Figure 7-88
Examples of the EXTEND function

EXTEND (call_dtime, YEAR TO SECOND)

EXTEND (DATETIME (1989-8-1) YEAR TO DAY, YEAR TO MINUTE)
- INTERVAL (720) MINUTE (3) TO MINUTE

MDY Function

The MDY function returns a type DATE value with three expressions that
evaluate to integers representing the month, day of the month, and year. The
syntax for MDY is as follows:

day integer
expression

is an expression, as defined on page 7-370, that evaluates to an
integer between 1 and 28, 29, 30, or 31, as appropriate for the
month.

month integer
expression

is an expression, as defined on page 7-370, that evaluates to an
integer between 1 and 12, as appropriate for the month.

year integer
expression

is an expression, as defined on page 7-370, that evaluates to a
four-digit integer.

MDY (), ,integer
expression

month
integer

expression

day
integer

expression

year
+

7-388 IBM Informix Guide to SQL: Reference

Function Expressions
The first expression must evaluate to an integer representing the number of
the month (1 to 12).

The second expression must evaluate to an integer representing the number
of the day of the month (1 to 28, 29, 30, or 31, as appropriate for the month.)

The third expression must evaluate to a four-digit integer representing the
year. You cannot use a two-digit abbreviation for the third expression. The
following UPDATE statement sets the paid_date associated with the order
number 8052 equal to the first day of the present month.

UPDATE orders SET paid_date = MDY(MONTH(TODAY), 1, YEAR(TODAY))
WHERE po_num = "8052"

LENGTH Function

The LENGTH function returns the length of a character column, not including
any trailing spaces. With TEXT or BYTE columns, the LENGTH function
returns the full number of bytes in the column.

The LENGTH function allows only one argument. You can, however, combine
LENGTH values through an expression, as shown in the following example:

SELECT customer_num, LENGTH(fname) + LENGTH(lname)
LENGTH("How many bytes is this?")
FROM customer WHERE LENGTH(company) > 10

You can use the LENGTH function to return the length of a character
variable. ♦

column name is the name of a column.

variable name is a program variable or a host variable that contains a charac-
ter string.

LENGTH ()

variable

column

name

name
.

I4GL

+ Quoted String
p. 7-426

ESQL

Table Name
p. 7-434

I4GL

ESQL
Syntax 7-389

Function Expressions
HEX Function

The HEX function returns the hexadecimal encoding of an integer expression.

The following SELECT statement shows several uses of the HEX function:

SELECT HEX(customer_num), HEX(zipcode), HEX(ROWID),
HEX(LENGTH(fname)) FROM customer

The following example displays the data type and column length of the
columns of the orders table in hexadecimal format. For MONEY and
DECIMAL columns, you can then determine the precision and scale from the
second-lowest and lowest bits. For VARCHAR columns, you can determine
the minimum space and maximum space from the second-lowest and lowest
bits. (See “SYSCOLUMNS” on page 2-13 for more information about
encoded information.)

SELECT colname, HEX(coltype), HEX(collength)
FROM syscolumns C, systables T
WHERE C.tabid = T.tabid AND T.tabname = "orders"

The following example lists the names of all the tables in the current database
and their corresponding tblspace number in hexadecimal format. This
example is particularly useful because the two most significant bits in the
hexadecimal number constitute the dbspace number and are used to identify
the table in tbcheck output.

SELECT tabname, HEX(partnum) FROM systables

You can combine HEX values through an expression, as shown in the
following example:

SELECT HEX(order_num + 1) FROM orders

integer
expression

is an expression, as defined on page 7-370, that can be con-
verted to an integer.

HEX
integer

expression()
7-390 IBM Informix Guide to SQL: Reference

Function Expressions
ROUND Function

The ROUND function returns the rounded value of an expression.

The expression must be numeric or must be convertible to numeric.

If you omit the digit indication, the value is rounded to zero digits or to the
ones place. Positive digit values indicate rounding to the right of the decimal
point; negative digit values indicate rounding to the left of the decimal point.

SELECT order_num , ROUND(total_price) FROM items
WHERE ROUND(total_price) = 124.00

If you use a MONEY data type as the argument for the ROUND function and
you round to zero places, the value is displayed with .00. For example, the
following SELECT statement rounds an INTEGER value and a MONEY value.
It displays 125 and a rounded price in the form xxx.00 for each row in items.

SELECT ROUND(125.46), ROUND(total_price) FROM items

digit is an integer between +32 and -32, inclusive, that indicates the
digit to which you want to round the expression.

ROUND ()

, digit

Expression
p. 7-370

, 0

24536.8746expression:

-2 0 2

ROUND (24536.8746, -2) = 24500.00

ROUND (24536.8746, 0) = 24537.00

ROUND (24536.8746, 2) = 24536.87
Syntax 7-391

Function Expressions
TRUNC Function

The TRUNC function returns the truncated value of a numeric expression.

The expression must be numeric or of a form that can be converted to a
numeric expression. If you omit the digit indication, the value is truncated to
zero digits or to the ones place. Positive digit values indicate truncating to the
right of the decimal point; negative digit values indicate truncating to the left
of the decimal point.

If you use a MONEY data type as the argument for the TRUNC function and
you truncate to zero places, the .00 places are removed. For example, the
following SELECT statement truncates a MONEY value and an INTEGER
value. It displays 125 and a truncated price in the form xxx for each row in
items.

SELECT TRUNC(125.46), TRUNC(total_price) FROM items

digit is an integer between +32 and -32, inclusive, that indicates the
digit to which you want to truncate the expression.

TRUNC ()

, digit

Expression
p. 7-370

, 0

24536.8746expression:

-2 0 2

TRUNC (24536.8746, -2) =24500

TRUNC (24536.8746, 0) = 24536

TRUNC (24536.8746, 2) = 24536.87
7-392 IBM Informix Guide to SQL: Reference

Aggregate Expressions
Aggregate Expressions
An aggregate expression uses an aggregate function to summarize selected
database data.

The syntax of aggregate function expressions is as follows:

An aggregate function returns one value for a set of queried rows. Some
examples of aggregate functions in SELECT statements follow.

Figure 7-89
Examples of aggregate functions in SELECT statements

SELECT sum(total_price) FROM items WHERE order_num = 1013

SELECT COUNT(*) FROM orders WHERE order_num = 1001

SELECT MAX(LENGTH(fname) + LENGTH(lname)) FROM customer

()DISTINCT
column
name

()

COUNT (*)

. UNIQUE

SUM

MIN

MAX

AVG

COUNT

SUM

MIN

MAX

AVG

ALL

Expression
(Subset)
p. 7-394

Table
Name

p. 7-434

column name is the name of the column.

first is the large qualifier for the DATETIME value.

last is the small qualifier for the DATETIME value.
Syntax 7-393

Aggregate Expressions
Subset of Expressions Allowed in an Aggregate Expression

The argument of an aggregate function cannot itself contain an aggregate
function. For example, you cannot use MAX(AVG(order_num)). You cannot
use an aggregate function in a WHERE clause unless it is contained in a
subquery. You cannot use an aggregate function on a BYTE or TEXT column.
For the full syntax of an expression, see page 7-370.

Including or Excluding Duplicates in the Row Set

The DISTINCT keyword causes the function to be applied to only unique
values from the named column. The UNIQUE keyword is a synonym for the
DISTINCT keyword.

The ALL keyword is the opposite of the DISTINCT keyword. If you specify the
ALL keyword, all of the values selected from the named column or
expression, including any duplicate values, are used in the calculation.

COUNT(*) Keyword

The COUNT (*) keyword returns the number of rows that satisfy the WHERE
clause. The following query finds how many Hero products are stocked.

SELECT COUNT(*) FROM stock WHERE manu_code = "HRO"

If the SELECT statement contains a GROUP BY clause, the COUNT(*) keyword
reflects the number of values in each group. For example, the following
statement is grouped by the first name; the rows are selected if there is more
than one occurrence of the same name.

SELECT fname, COUNT(*) FROM customer
GROUP BY fname
WHERE COUNT(*) > 1

If the value of one or more rows is null, the COUNT(*) keyword includes the
null columns in the count unless the WHERE clause explicitly omits them.
7-394 IBM Informix Guide to SQL: Reference

Aggregate Expressions
AVG Keyword

The AVG keyword returns the average of all values in the specified column or
expression. You can apply the AVG keyword only to number columns. If you
use the DISTINCT keyword, the average (mean) is over only the distinct
values in the specified column or expression. The following query finds the
average price of a helmet:

SELECT AVG(unit_price) FROM stock WHERE stock_num = 110

Because all of the helmets have different unit prices, using the DISTINCT
keyword would have no effect in this query.

Nulls are ignored unless every value in the specified column is null. If every
column value is null, the AVG keyword returns a null for that column.

MAX Keyword

The MAX keyword returns the largest value in the specified column or
expression. Using the DISTINCT keyword does not change the results. The
following query finds the most expensive item that is in stock but has not
been ordered.

SELECT MAX(unit_price) FROM stock
WHERE NOT EXISTS (SELECT * FROM items

WHERE stock.stock_num = items.stock_num AND
stock.manu_code = items.manu_code)

Nulls are ignored unless every value in the specified column is null. If every
column value is null, the MAX keyword returns a null for that column.

MIN Keyword

The MIN keyword returns the lowest value in the column or expression.
Using the DISTINCT keyword does not change the results.

SELECT MIN(unit_price) FROM stock

Nulls are ignored unless every value in the specified column is null. If every
column value is null, the MIN keyword returns a null for that column.
Syntax 7-395

Aggregate Expressions
SUM Keyword

The SUM keyword returns the sum of all the values in the specified column
or expression. If you use the DISTINCT keyword, the sum is over only distinct
values in the column or expression.

SELECT SUM(total_price) FROM items WHERE order_num = 1013

Nulls are ignored unless every value in the specified column is null. If every
column value is null, the SUM keyword returns a null for that column.

You cannot use the SUM keyword with a character column.

COUNT Keyword

The COUNT keyword returns the number of different values in the column or
expression. If the COUNT function encounters nulls, it ignores them.

SELECT COUNT (DISTINCT item_num) FROM items

Nulls are ignored unless every value in the specified column is null. If every
column value is null, the COUNT keyword returns a zero for that column.

Summary of Aggregate Function Behavior

The following table summarizes the action of the aggregate functions. If a
query is constructed as follows:

SELECT a_number FROM testtable WHERE a_number < 10

such that it returns the following values:

a_number

2
2
2
3
3
4
(null)
7-396 IBM Informix Guide to SQL: Reference

Aggregate Expressions
then the following results occur for each of the functions listed:

For example, the following query returns the value 3:

SELECT AVG(DISTINCT a_number) FROM testtable WHERE a_number < 10

Error Checking with Aggregate Functions

Aggregate functions always return one row; if no rows are selected, the
function returns a null. You can use the COUNT (*) keyword to determine
whether any rows were selected and you can use an indicator variable to
determine whether any of the selected rows were empty. Fetching a row with
a cursor associated with an aggregate function always returns one row;
hence, 100 for end of data is never returned into the sqlcode variable for a
first fetch attempt. ♦

Function Results

COUNT(*) 7

AVG 2.67

AVG (DISTINCT) 3

MAX 4

MAX(DISTINCT) 4

MIN 2

MIN(DISTINCT) 2

SUM 16

SUM(DISTINCT) 9

COUNT(DISTINCT) 3

I4GL

ESQL
Syntax 7-397

Using Arithmetic Operators with Expressions
Using Arithmetic Operators with Expressions
You can combine expressions with arithmetic operators to make complex
expressions. You cannot combine expressions that use aggregate functions
with column expressions. The following examples use arithmetic operators.

Figure 7-90
Examples of arithmetic operators

quantity * total_price

price * 2 doubleprice

COUNT(*) + 2

If any value that participates in an arithmetic expression is null, the value of
the entire expression is null. For example, consider the following query:

SELECT order_num, ship_charge/ship_weight FROM orders
WHERE order_num = 1023

If either ship_charge or ship_weight is null, the value returned for the
expression ship_charge/ship_weight also is null. If the expression
ship_charge/ship_weight is used in a condition, its truth value is unknown.

If you combine a DATETIME value with one or more INTERVAL values, all the
fields of the INTERVAL value must be present in the DATETIME value; no
implicit EXTEND function is performed. In addition, you cannot use YEAR to
MONTH intervals with DAY to SECOND intervals.
7-398 IBM Informix Guide to SQL: Reference

Identifier
Identifier

Purpose
Use the Identifier segment in the following segments to specify the name of
a database object:

� Constraint Name

� Database Name

� Index Name

� Synonym Name

� Table Name

� View Name

� Procedure Name

Syntax

digit is an integer from 0 to 9.

letter is an uppercase or lowercase character from a to Z.

underscore is the underscore (_) character.

underscore

letter

letter

digit
Syntax 7-399

Usage
Usage
An identifier can contain up to 18 characters.

Do not declare as an identifier any reserved word of your application devel-
opment tool.

Tip: If you receive an error message that seems unrelated to the statement that caused
the error, you should check to determine whether the statement uses a reserved word
as an identifier.
7-400 IBM Informix Guide to SQL: Reference

Usage
The following list specifies all of the ANSI reserved words. If you use one of
these words as an identifier and set DBANSIWARN or specify the -ansi flag at
run time or compile time, you receive a warning.

all
and
any
as
asc
authorization
avg
begin
between
by
char
character
check
close
cobol
commit
continue
count
create
current
cursor
dec
decimal
declare
delete
desc
distinct
double
end
escape
exec
exists

fetch
float
for
found
from
go
goto
group
having
in
indicator
insert
int
integer
into
is
language
like
max
min
module
not
null
numeric
of
on
open
option
or
order
pascal
pli

precision
primary
procedure
privileges
public
real
rollback
schema
section
select
set
smallint
some
sql
sqlcode
sqlerror
sum
table
to
union
unique
update
user
values
view
whenever
where
with
work
Syntax 7-401

Potential Ambiguities and Syntax Errors
Potential Ambiguities and Syntax Errors
Although you now can use almost any word as an SQL identifier, syntactic
ambiguities can occur. An ambiguous statement might not produce the
desired results. This section outlines some of the potential pitfalls and their
workarounds.

Using Functions as Column Names
The first pair of examples shows a workaround for using a function as a
column name in a SELECT statement. This applies to the aggregate functions
(AVG, COUNT, MAX, MIN, SUM), the LENGTH function, the time functions
(DATE, DAY, MDY, MONTH, WEEKDAY, YEAR), and the datetime functions
(CURRENT and EXTEND).

This use of avg as a column name causes the following statement to fail
because the database server interprets avg as an aggregate function rather
than a column name:

SELECT avg FROM mytab -- fails

This workaround removes ambiguity by including a table name with the
column name:

SELECT mytab.avg FROM mytab

If you use the keyword TODAY, CURRENT, or USER as a column name,
ambiguity can occur, as shown in the following example:

CREATE TABLE mytab (user char(10),
CURRENT DATETIME HOUR TO SECOND,TODAY DATE)

INSERT INTO mytab VALUES("josh","11:30:30","1/22/89")

SELECT user,current,today FROM mytab

The database server interprets user, current, and today in the SELECT
statement as the SQL functions USER, CURRENT, and TODAY. Thus, instead of
returning josh, 11:30:30,1/22/89, the SELECT statement returns the current
user name, the current time, and the current date.
7-402 IBM Informix Guide to SQL: Reference

Using Functions as Column Names
If you want to select the actual columns of the table, you must write the
SELECT statement in one of these two ways:

SELECT mytab.user,mytab.current,mytab.today FROM mytab;

or

$SELECT * FROM mytab;

Using Keywords as Column Names

There are specific workarounds for using a keyword as a column name in a
SELECT statement or other SQL statement. In some cases, there might be more
than one suitable workaround.

Using ALL, DISTINCT, or UNIQUE as a Column Name

The first pair of examples shows a workaround for using the keyword ALL
(or DISTINCT or UNIQUE) in a SELECT statement.

This use of all as a column name causes the following statement to fail
because the database server interprets all as a keyword rather than as a
column name:

SELECT all FROM mytab -- fails

This example shows a workaround using the keyword ALL with the column
name all:

SELECT ALL all FROM mytab

The following set of examples shows two workarounds for using the
keywords UNIQUE or DISTINCT as a column name in a CREATE TABLE
statement.

This use of unique as a column name causes the following statement to fail
because the database server interprets unique as a keyword rather than as a
column name:

CREATE TABLE mytab (unique INTEGER) -- fails
Syntax 7-403

Using Functions as Column Names
The following workaround uses two SQL statements. The first statement
creates the column mycol and the second renames the column mycol to
unique:

CREATE TABLE mytab (mycol INTEGER)

RENAME COLUMN mytab.mycol TO unique

The following workaround also uses two SQL statements. The first statement
creates the column mycol and the second alters the table, adds the column
unique, and drops the column mycol:

CREATE TABLE mytab (mycol INTEGER)

ALTER TABLE mytab
ADD (unique integer)
DROP (mycol)

Using INTERVAL or DATETIME as a Column Name

The next set of examples shows two workarounds for using the keyword
INTERVAL (or DATETIME) as a column name in a SELECT statement.

This use of interval as a column name causes the following statement to fail
because the database server interprets interval as a keyword and expects it
to be followed by an INTERVAL qualifier:

SELECT interval FROM mytab -- fails

The following workaround removes ambiguity by specifying a table name
with the column name:

SELECT mytab.interval FROM mytab;

Another workaround includes an owner name with the table name:

SELECT josh.mytab.interval FROM josh.mytab;
7-404 IBM Informix Guide to SQL: Reference

Using Keywords as Table Names
Using rowid as a Column Name

Every table has a virtual column named rowid. To avoid ambiguity, you
cannot use rowid as a column name. The following actions cause an error:

� Creating a table or view with a column named rowid

� Altering a table by adding a column named rowid

� Renaming a column to rowid

The term rowid can, however, be used as a table name. For example:

CREATE TABLE rowid (column INTEGER,
date DATE, char CHAR(20))

Using Keywords as Table Names
The following examples show workarounds that involve owner naming
when the keyword STATISTICS or OUTER is used as a table name. This also
applies to the use of STATISTICS or OUTER as a view name or synonym.

This use of statistics as a table name causes the following statement to fail
because the database server interprets it as part of the UPDATE STATISTICS
syntax rather than as a table name in an UPDATE statement:

UPDATE STATISTICS SET mycol = 10

This example shows a workaround that specifies an owner name with the
table name, to avoid ambiguity:

UPDATE josh.statistics SET mycol = 10

This use of outer as a table name causes the following statement to fail
because the database server interprets outer as a keyword for performing an
outer join:

SELECT mycol FROM outer -- fails

This workaround uses owner naming to avoid ambiguity:

SELECT mycol FROM josh.outer
Syntax 7-405

Workarounds That Use the Keyword AS
Workarounds That Use the Keyword AS
In some cases, although a statement is not ambiguous and the syntax is
correct, the database server returns a syntax error. The preceding pages show
existing syntactic workarounds for a number of these situations. You can use
the keyword AS to provide a workaround for the exceptions.

You can use the keyword AS in front of column labels or table aliases. The AS
keyword is an Informix extension to SQL.

This is the syntax for using the AS keyword with a column label:

column-name AS display-label FROM table-name

This is the syntax for using the AS keyword with a table alias:

SELECT select-list FROM table-name AS table-alias

Using AS with Column Labels

The following examples of workarounds use the keyword AS with a column
label. The first pair shows how you can use the keyword UNITS (or YEAR,
MONTH, DAY, HOUR, MINUTE, SECOND, or FRACTION) as a column label.

This use of units as a column label causes the following statement to fail
because the database server interprets it as a DATETIME qualifier for the
column named mycol:

SELECT mycol units FROM mytab

This statement uses a workaround that includes the keyword AS:

$SELECT mycol AS units FROM mytab;

The following examples show how the keywords AS or FROM can be used as
a column label.

This use of as as a column label causes the statement to fail because the
database server interprets as as identifying from as a column label and thus
finds no required FROM clause:

SELECT mycol as from mytab -- fails

 This statement uses a workaround that repeats the keyword AS:

SELECT mycol AS as from mytab
7-406 IBM Informix Guide to SQL: Reference

Workarounds That Use the Keyword AS
This use of from as a column label causes the following statement to fail
because the database server expects a table name to follow the first from:

SELECT mycol from FROM mytab -- fails

This workaround uses the keyword AS to identify the first from as a column
label:

SELECT mycol AS from FROM mytab

Using AS with Table Aliases

The following examples of workarounds use the keyword AS with a table
alias. The first pair shows how to use the keyword ORDER (or FOR, GROUP,
HAVING, INTO, UNION, WITH, CREATE, GRANT, or WHERE) as a table alias.

This use of order as a table alias causes the following statement to fail because
the database server interprets order as part of an ORDER BY clause:

SELECT * FROM mytab order -- fails

This workaround uses the keyword AS to identify order as a table alias:

SELECT * FROM mytab AS order;

The next pair of examples shows how to use the keyword WITH as a table
alias.

This use of with as a table alias causes the following statement to fail because
the database server interprets the keyword as part of the WITH CHECK
OPTION syntax:

SELECT * FROM mytab with -- fails

This workaround uses the keyword AS to identify with as a table alias:

$SELECT * FROM mytab AS with;

The following pair of examples shows how to use the keyword CREATE (or
GRANT) as a table alias.

This use of create as a table alias causes the following statement to fail
because the database server interprets the keyword as part of the syntax to
create an entity such as a table, synonym, or view:

$SELECT * FROM mytab create -- fails
Syntax 7-407

Fetching Keywords as Cursor Names
This workaround uses the keyword AS to identify create as a table alias:

$SELECT * FROM mytab AS create;

Fetching Keywords as Cursor Names
In a few situations, there is no workaround for the syntactic ambiguity that
occurs when a keyword is used as an identifier in an SQL program.

In the following example, the FETCH statement generates a syntax error
because the preprocessor interprets the syntax as pertaining to a scroll cursor
and expects a cursor name to follow next. This occurs whenever the keyword
NEXT, PREVIOUS, PRIOR, FIRST, LAST, CURRENT, RELATIVE, or ABSOLUTE is
used as a cursor name.

$DECLARE next CURSOR FOR
SELECT customer_num, lname FROM customer;

$ OPEN next;

$FETCH next INTO $cnum, $lname;

Using Keywords as Procedure Variable Names
If you use any of the following keywords as identifiers for variables in a
procedure, you can create ambiguous syntax:

CURRENT OFF

DATETIME ON

GLOBAL PROCEDURE

INTERVAL SELECT

NULL
7-408 IBM Informix Guide to SQL: Reference

Using Keywords as Procedure Variable Names
Using CURRENT, DATETIME, INTERVAL, and NULL in INSERT

If you use the CURRENT, DATETIME, INTERVAL, or NULL keyword as the
name of a procedure and use it in an INSERT statement, the syntax of the
statement is confused. There is no workaround.

For example, if you define a variable called datetime, when you try to insert
the value in datetime into a column, you receive a syntax error. This is illus-
trated in the following example:

CREATE PROCEDURE problem()
.
.
.
DEFINE null INT;
LET null = 3;
INSERT INTO tab VALUES (null); -- error, inserts NULL, not 3

Using NULL and SELECT in a Condition

If you define a variable with the name null or select, using it in a condition that
uses the IN keyword is ambiguous. The following example shows three
conditions that cause problems: in an IF statement, in a WHERE clause of a
SELECT statement, and in a WHILE condition.

Figure 7-91
Ambiguous use of select and null as variable names

CREATE PROCEDURE problem()
.
.
.
DEINE x,y,select, null, INT;
DEFINE pfname CHAR[15];
LET x = 3; LET select = 300;
LET null = 1;
IF x IN (select, 10, 12) THEN LET y = 1; -- problem if

IF x IN (1, 2, 4) THEN
SELECT customer_num, fname INTO y, pfname FROM customer

WHERE customer IN (select , 301 , 302, 303); -- problem in

WHILE x IN (null, 2) -- problem while
.
.
.
END WHILE;
Syntax 7-409

Using Keywords as Procedure Variable Names
You can use the variable select in an IN list if you make sure it is not the first
element in the list. For example, the following example use a workaround to
correct the IF statement of Figure 7-91.

 IF x IN (10, select, 12) THEN LET y = 1; -- problem if

There is no workaround to using null as a variable name and attempting to
use it in an IN condition.

Using ON, OFF, or PROCEDURE with TRACE

If you define a procedure variable called on, off, or procedure, and you attempt
to use it in a TRACE statement, the value of the variable is not traced. Instead,
the TRACE ON, TRACE OFF, or TRACE PROCEDURE statements are executed.
You can trace the value of the variable by making the variable into a more
complex expression. Figure 7-92 shows the ambiguous syntax and the
workaround.

Figure 7-92
Ambiguous and clear uses of on, off, and procedure with TRACE

DEFINE on, off, procedure INT;

TRACE on; --ambiguous
TRACE 0+ on;--ok
TRACE off; --ambiguous
TRACE ""||off;--ok

TRACE procedure;--ambiguous
TRACE 0+procedure;--ok

Using GLOBAL as a Variable Name

If you attempt to define a variable with the name global, the define operation
fails. The syntax shown in Figure 7-92 conflicts with the syntax for defining
global variables. There is no workaround.

Figure 7-93
Ambiguous use of global

DEFINE global INT; -- fails;
7-410 IBM Informix Guide to SQL: Reference

Using EXECUTE, SELECT, or WITH as Cursor Names
Using EXECUTE, SELECT, or WITH as Cursor Names
Do not use an EXECUTE, SELECT, or WITH keyword as the name of a cursor.
If you try to use one of these keywords as the name of a cursor in a FOREACH
statement, the cursor name is interpreted as a keyword for the FOREACH
statement. There is no workaround.

For example, the following statements does not work:

DEFINE execute INT;
FOREACH execute FOR SELECT col1 -- error, looks like

-- FOREACH EXECUTE
PROCEDURE

 INTO var1 FROM tab1; --

SELECT Statements in WHILE and FOR Statements
If you use a SELECT statement in a WHILE or FOR loop, and if you need to
enclose it in parentheses, enclose the entire SELECT statement in a
BEGIN...END block. For example, the SELECT statement in the first WHILE
statement in the following example is interpreted as a call to the procedure
var1. The second WHILE statement is interpreted correctly.

DEFINE var1, var2 INT;
WHILE var2 = var1

(SELECT col1 INTO var3 FROM TAB -- error, seen as call var1()
UNION
SELECT co2 FROM tab2;

END WHILE

WHILE var2 = var1
BEGIN

(SELECT col1 INTO var3 FROM TAB -- ok syntax
UNION
SELECT co2 FROM tab2;

END
END WHILE
Syntax 7-411

The SET Keyword in the ON EXCEPTION Statement
The SET Keyword in the ON EXCEPTION Statement
If you use a statement that begins with the keyword SET inside the statement
ON EXCEPTION, you must enclose it in a BEGIN...END block. This includes the
following statements:

ON EXCEPTION IN (-107)
SET LOCK MODE TO WAIT; -- error, value expected, not "lock"

END EXCEPTION

ON EXCEPTION IN (-107)
BEGIN
SET LOCK MODE TO WAIT; -- ok
END

END EXCEPTION

References
In the IBM Informix Guide to SQL: Tutorial, see the discussion of owner naming.

SET CONSTRAINTS SET LOCK MODE

SET DEBUG FILE SET LOG

SET EXPLAIN SET OPTIMIZATION

SET ISOLATION
7-412 IBM Informix Guide to SQL: Reference

Index Name
Index Name

Purpose
Use the Index Name segment wherever you see a reference to an index name
in a syntax drawing. It appears in the following statements:

� ALTER INDEX

� CREATE INDEX

� DROP INDEX

Syntax

Usage
The actual name of the index is an SQL identifier.

If you are creating an index, the name must be unique within a database.

The owner.name is case sensitive. For more information, see the discussion of
case sensitivity in ANSI-compliant databases on page 7-436. ♦

database is the name of the database in which the index resides.

dbservername is the name of the IBM Informix OnLine database server that is
home to database. The @ sign is a literal character that you must
use to introduce the database server name.

owner is the user name of the owner of the index. If you are using an
ANSI-compliant database, you must use the owner. convention
for indexes that you do not own.

@ dbservername

owner.

database

OL

Identifier
p. 7-399

;

ANSI
Syntax 7-413

INTERVAL Field Qualifier
INTERVAL Field Qualifier

Purpose
Use the INTERVAL field qualifier to specify the units for an INTERVAL value.
The INTERVAL field qualifier is used in the Data Type segment.

Syntax

YEAR

MONTH

DAY

MINUTE

SECOND

FRACTION

TO YEAR

TO MONTH

TO DAY

TO HOUR

TO MINUTE

TO SECOND

TO FRACTION

HOUR

(precision)

(precision)

(precision)

(precision)

(y-precision)

(precision)

 (f-precision)

(2)

(4)

(2)

(2)

(2)

(2)

(3)
7-414 IBM Informix Guide to SQL: Reference

Usage
Usage
The following examples of an INTERVAL data type are both of type YEAR TO
MONTH. The first example can hold an interval of up to 999 years and 11
months, since it gives 3 as the precision of the year field. The second example
uses the default precision on the year field, so it can hold an interval of up to
9,999 years and 11 months.

YEAR (3) TO MONTH

YEAR TO MONTH

When you intend for a value to contain only one field, the first and last quali-
fiers are the same. For example, an interval of whole years is qualified as
YEAR TO YEAR or YEAR (5) TO YEAR, for an interval of up to 99,999 years.

The following examples show several forms of INTERVAL qualifiers.

Figure 7-94
Examples of INTERVAL qualifiers

YEAR(5) TO MONTH

DAY (5) TO FRACTION(2)

DAY TO DAY

FRACTION TO FRACTION (4)

References
In this manual, for information about using INTERVAL data in arithmetic and
relational operations, see “Range of Operations Using DATE, DATETIME,
and INTERVAL” on page 3-25.

f-precision is the maximum number of digits you can use in the fraction
field. The default is three; the maximum is five.

precision is the number of digits in the largest number of months, days,
hours, or minutes that the interval can hold. The default is two;
the maximum is nine.

y- precision is the number of digits in the largest number of years that the
interval can hold. The default is four; the maximum is nine.
Syntax 7-415

Literal DATETIME
Literal DATETIME

Purpose
Use a literal DATETIME segment as a DATETIME value. The literal DATETIME
segment is used in the following statements and segments:

� INSERT statement

� SELECT statement

� UPDATE statement

� Condition segment

� Expression segment
7-416 IBM Informix Guide to SQL: Reference

Syntax
Syntax

yyyy is the year in up to four digits. If you use two digits, 19 is
assumed as the first part of the year, as in 1993.

mo is the month in two digits.

dd is the day in up to two digits.

space is, literally, a space made by pressing the spacebar.

hh is the hour in up to two digits.

DATETIME ()

yyyy

-

mo

-

dd

space

hh

mi

ss

f

:

.

:

Numeric Date

DATETIME
Field Qualifier

p. 7-368

Numeric
Date
Syntax 7-417

Usage
Usage
Some examples of literal DATETIME values follow:

Figure 7-95
Examples of literal DATETIME values

DATETIME (89-3-6) YEAR TO DAY

DATETIME (09:55:30.825) HOUR TO FRACTION

DATETIME (92-5) YEAR TO MONTH

Here is an example of a literal DATETIME value used with the EXTEND
function:

EXTEND (DATETIME (1989-8-1) YEAR TO DAY, YEAR TO MINUTE)
- INTERVAL (720) MINUTE (3) TO MINUTE

mi is the minute in up to two digits.

ss is the second in up to two digits.

f is the fraction of a second in up to five digits, depending on the
precision given to the fractional portion in the INTERVAL qual-
ifier.
7-418 IBM Informix Guide to SQL: Reference

Literal INTERVAL
Literal INTERVAL

Purpose
 The literal INTERVAL segment is used in the following statements and
segments:

� INSERT statement

� UPDATE statement

� Condition segment

� Expression segment
Syntax 7-419

Syntax
Syntax

INTERVAL ()

yyyy

mo

dd

space

hh

mi

ss

f

:

.

:

INTERVAL
Field Qualifier

p. 7-414
Numeric Date

Numeric Date

-

yyyy is the number of years. The maximum number of digits
allowed is four, unless this is the first field and the precision is
specified differently by the INTERVAL field qualifier.

mo is the number of months. The maximum number of digits
allowed is two, unless this is the first field and the precision is
specified differently by the INTERVAL field qualifier.

dd is the number of days. The maximum number of digits
allowed is two, unless this is the first field and the precision is
specified differently by the INTERVAL field qualifier.

space is, literally, a space made by pressing the spacebar.
7-420 IBM Informix Guide to SQL: Reference

Usage
Usage
Some examples of literal INTERVAL values follow.

Figure 7-96
Examples of literal INTERVAL values

INTERVAL (3-6) YEAR TO MONTH
INTERVAL (09:55:30.825) HOUR TO FRACTION
INTERVAL (40 5) DAY TO HOUR

hh is the number of hours. The maximum number of digits
allowed is two, unless this is the first field and the precision is
specified differently by the INTERVAL field qualifier.

mi is the number of minutes. The maximum number of digits
allowed is two, unless this is the first field and the precision is
specified differently by the INTERVAL field qualifier.

ss is the number of seconds. The maximum number of digits
allowed is two, unless this is the first field and the precision is
specified differently by the INTERVAL field qualifier.

f is the fraction of a second in up to five digits, depending on the
precision given to the fractional portion in the INTERVAL field
qualifier.
Syntax 7-421

Literal Number
Literal Number

Purpose
A literal number is a constant and either an integer or noninteger (floating)
number. The Literal Number segment is used in the following statements and
segments:

� INSERT statement

� UPDATE statement

� Condition segment

� Expression segment

Syntax

Usage
Literal numbers do not contain embedded commas; you cannot use a comma
to indicate a decimal point. You can precede literal numbers with a plus or a
minus sign. Integers do not contain decimal points. Some examples of
integers follow:

10 -27 25567

digit

.

digit

Edigit.

-
+

digit

-

digit is an integer from 0 to 9.
7-422 IBM Informix Guide to SQL: Reference

Usage
Floating and decimal numbers contain a decimal point and/or exponential
notation. Some examples of floating and decimal numbers follow:

123.456 1.23456e2 123456.0e-3

When you use a literal number as a MONEY value, do not precede it with a
money symbol or include commas.
Syntax 7-423

Procedure Name
Procedure Name

Purpose
Use the Procedure Name segment wherever you see a reference to a
procedure name in a syntax drawing. It appears in the following statements:

� CREATE PROCEDURE

� DROP PROCEDURE

� EXECUTE PROCEDURE

Syntax

Usage
The actual name of the procedure is an SQL identifier.

If you are creating the procedure, the name of the procedure must be unique
within a database.

database is the name of the database in which the procedure resides.

dbservername is the name of the IBM Informix OnLine database server that is
home to database. The @ sign is a literal character that you must
use to introduce the database server name.

owner is the user name of the owner of the procedure. If you are using
an ANSI-compliant database, you must use the owner. conven-
tion for a procedure that you do not own.

@ dbservername

owner.

database

OL

Identifier
p. 7-399

;

7-424 IBM Informix Guide to SQL: Reference

Usage
If you are creating the procedure, the combination owner.name must be
unique within a database.

The owner.name is case sensitive. For more information, see the discussion of
case sensitivity in ANSI-compliant databases on page 7-436. ♦

Procedures and SQL Functions with the Same Names

If you create a procedure with the same name as an SQL function and then
explicitly define that name as a procedure in your procedure, any calls by that
name are to the procedure. That is, you cannot use the system function within
the statement block in which the procedure is defined.

As an example, the following procedure uses two length functions. The first
time the procedure calls the length function, it is the SQL function named
LENGTH. The second time the procedure calls the length function is within a
BEGIN...END block in which length has been defined as a procedure. The
second call to length actually uses the user-created procedure called length.

CREATE PROCEDURE test_len()
RETURNING INT, INT;

DEFINE c INT;
DEFINE d INT;
LET c = (SELECT length(fname) FROM customer

 WHERE customer_num = 101);

BEGIN
 DEFINE length PROCEDURE;
 LET d = length(5);
END

RETURN c, d;

END PROCEDURE;

ANSI
Syntax 7-425

Quoted String
Quoted String

Purpose
The Quoted String segment is used in the following statements and
segments:

� INSERT statement

� SELECT statement

� Condition segment

� Expression segment (in constant expressions)

Syntax

Usage
The constant must be written on a single line; that is, you cannot use
embedded new lines.

character is an ASCII character.

character

" "

character

'

"

" "
'

7-426 IBM Informix Guide to SQL: Reference

Using Quotes in Strings
Using Quotes in Strings
The single quote has no special significance in string constants delimited by
double quotes. Likewise, the double quote has no special significance in
strings delimited by single quotes. For example, the following strings are
valid:

"Nancy’s puppy jumped the fence"
'Billy told his kitten, "no!"'

You can include a double quote in a string by preceding the double quote
with another double quote, as shown in the following string:

"Enter ""y"" to select this row"

DATETIME and INTERVAL Values as Strings
You can enter DATETIME and INTERVAL data in the literal forms described in
the “Literal DATETIME” and “Literal INTERVAL” segments beginning on
pages 7-416 and 7-419, respectively, or you can enter them as quoted strings.
Valid literals that are entered as character strings are converted automatically
into DATETIME or INTERVAL values. The following INSERT statements use
quoted strings to enter INTERVAL and DATETIME data:

INSERT INTO cust_calls(call_dtime) VALUES ("1992-5-4 10:12:11")

INSERT INTO manufact(lead_time) VALUES ("14")

The format of the value in the quoted string must match exactly the format
specified by the qualifiers of the column. For the first case in the preceding
example, call_dtime must be defined with the qualifiers YEAR TO MINUTE
for the INSERT statement to be valid.

LIKE and MATCHES in a Condition
Quoted strings with the keyword LIKE or MATCHES in a condition can
include wildcard characters. See the “Condition” segment beginning on page
7-345 for a complete description of how to use wildcard characters.
Syntax 7-427

Inserting Values as Quoted Strings
Inserting Values as Quoted Strings
If you are inserting a value that is a quoted string, you must follow these
conventions:

� Enclose CHAR, VARCHAR, DATE, DATETIME, and INTERVAL values
in quotation marks.

� Set DATE values in the mm/dd/yyy format or in the format specified by
DBSET, if set.

� For all statements except PREPARE, the maximum length for a quoted
string is 256 bytes. The maximum length for a quoted string in a
PREPARE statement is 2048 bytes.

� Numbers with decimal values must contain a decimal point. You
cannot use a comma as a decimal indicator.

� You cannot precede MONEY data with a dollar sign or include
commas.

� You can include NULL as a placeholder only if the column accepts
null values.
7-428 IBM Informix Guide to SQL: Reference

Relational Operator
Relational Operator

Purpose
Use a relational operator to compare two expressions quantitatively. The
Relational Operator segment is used in the Condition segment.

Syntax
A relational operator takes the following form:

Usage
For DATE and DATETIME expressions, greater than means later in time.

For INTERVAL expressions, greater than means a longer span of time.

< means less than.

<= means less than or equal to.

> means greater than.

= means equal to.

>= means greater than or equal to.

<> means not equal to.

!= means not equal to.

<

<=

=

<>
>=

!=

>

Syntax 7-429

Usage
For character expressions, greater than means after in ASCII collating order,
where lowercase letters follow uppercase letters, and both follow numerals.
The following chart contains the seven-bit ASCII collating order.

Num Char Num Char Num Char

0 ^@ 43 + 86 V

1 ^A 44 , 87 W

2 ^B 45 - 88 X

3 ^C 46 . 89 Y

4 ^D 47 / 90 Z

5 ^E 48 0 91 [

6 ^F 49 1 92 \

7 ^G 50 2 93]

8 ^H 51 3 94 ^

9 ^I 52 4 95 _

10 ^J 53 5 96 `

11 ^K 54 6 97 a

12 ^L 55 7 98 b

13 ^M 56 8 99 c

14 ^N 57 9 100 d

15 ^O 58 : 101 e

16 ^P 59 ; 102 f

17 ^Q 60 < 103 g

18 ^R 61 = 104 h

19 ^S 62 > 105 i

20 ^T 63 ? 106 j

(1 of 2)
7-430 IBM Informix Guide to SQL: Reference

Usage
21 ^U 64 @ 107 k

22 ^V 65 A 108 l

23 ^W 66 B 109 m

24 ^X 67 C 110 n

25 ^Y 68 D 111 o

26 ^Z 69 E 112 p

27 esc 70 F 113 q

28 ^\ 71 G 114 r

29 ^] 72 H 115 s

30 ^^ 73 I 116 t

31 ^_ 74 J 117 u

32 75 K 118 v

33 ! 76 L 119 w

34 " 77 M 120 x

35 # 78 N 121 y

36 $ 79 O 122 z

37 % 80 P 123 {

38 & 81 Q 124 |

39 ' 82 R 125 }

40 (83 S 126 ~

41) 84 T 127 del

42 * 85 U

^X = CTRL-X

Num Char Num Char Num Char

(2 of 2)
Syntax 7-431

Synonym Name
Synonym Name

Purpose
Use the Synonym Name segment wherever you see a reference to a synonym
name in a syntax drawing. It appears in the following statements:

� CREATE AUDIT

� CREATE INDEX

� CREATE SYNONYM

� CREATE VIEW

� DELETE

� DROP AUDIT

� DROP SYNONYM

� DROP TABLE

� DROP VIEW

� INSERT

� LOCK TABLE

� RECOVER TABLE

� RENAME COLUMN

� REVOKE

� SELECT

� UNLOCK TABLE

� UPDATE

� UPDATE STATISTICS
7-432 IBM Informix Guide to SQL: Reference

Syntax
Syntax

Usage
The actual name of the synonym is an SQL identifier.

If you are creating the synonym, the name of the synonym must be unique
within a database.

If you are creating the synonym, the combination owner.name must be unique
within a database.

The owner.name is case sensitive. For more information, see the discussion of
case sensitivity in ANSI-compliant databases on page 7-436. ♦

database is the name of the database in which the synonym resides.

dbservername is the name of the IBM Informix OnLine database server that is
home to database. The @ sign is a literal character that you must
use to introduce the database server name.

owner is the user name of the owner of the synonym. If you are using
an ANSI-compliant database, you must use the owner. conven-
tion for a synonym that you do not own.

@ dbservername

owner.

database

OL

Identifier
p. 7-399

;

ANSI
Syntax 7-433

Table Name
Table Name

Purpose
Use the Table Name segment in the following statements to specify the name
of a table:

� ALTER TABLE

� CREATE AUDIT

� CREATE INDEX

� CREATE SYNONYM

� CREATE TABLE

� DELETE

� DROP AUDIT

� DROP TABLE

� GRANT

� INSERT

� LOCK TABLE

� RECOVER TABLE

� RENAME COLUMN

� REVOKE

� SELECT

� UNLOCK TABLE

� UPDATE

� UPDATE STATISTICS
7-434 IBM Informix Guide to SQL: Reference

Syntax
Syntax

Usage
The following example shows a table specification:

empinfo@personnel:emp_names

If you are creating or renaming a table, you must make sure that the name of
the table is unique within a database.

If you are creating or renaming a table, you must make sure that the combi-
nation of owner and name is unique within a database.

In an ANSI-compliant database, the table name must include owner. unless
you are the owner. For system catalog tables, the owner is informix. ♦

@ dbservername

owner.

database :

+

Identifier
p. 7-399

OL

database is the name of the database in which the table resides.

dbservername is the name of the IBM Informix OnLine database server that is
home to database. The @ sign is a literal character that you must
use to introduce the database server name.

owner is the user name of the owner of the table. If you are using an
ANSI-compliant database, you must use the owner. convention
for tables that you do not own.

ANSI
Syntax 7-435

Case Sensitivity in ANSI-Compliant Databases
Case Sensitivity in ANSI-Compliant Databases
The database server shifts the owner name to uppercase letters before the
statement is executed, unless the owner name is enclosed in quotes. Put
quotes around the owner portion of a name if you want the owner to be read
exactly as written. For example, the name cathl in the first statement that
follows is upshifted to CATHL before it is used, while the name nancy in the
second statement is not upshifted:

SELECT * FROM cathl.customer

SELECT * FROM "nancy".customer

There is no problem if you create a table with an implicit owner in uppercase
letters and the owner’s real login name is also in uppercase letters. For
example, suppose that you are the user BROWN and you create a view with
the following statement:

CREATE VIEW newcust AS
SELECT fname, lname FROM customer WHERE state = "NJ"

You, BROWN, can run the following SELECT statements on the view:

SELECT * FROM brown.newcust

SELECT * FROM newcust

SELECT * FROM systables WHERE tabname = newcust
AND owner = USER

In the first query in the preceding example, the database server automatically
upshifts brown before the SELECT statement is executed. In the second query,
the database server returns the owner name BROWN already upshifted. In
the third query, USER returns the login name as it is stored—in this case, in
uppercase letters.

If you are the user nancy and you use the following statement, the resulting
view has the name NANCY.njcust:

CREATE VIEW nancy.njcust AS
SELECT fname, lname FROM customer WHERE state = "NJ"

If you are nancy and you use the following statement, the resulting view has
the name nancy.njcust:

CREATE VIEW "nancy".njcust AS
SELECT fname, lname FROM customer WHERE state = "NJ"

ANSI
7-436 IBM Informix Guide to SQL: Reference

References
The following SELECT statement fails because it tries to match the name
NANCY.njcust to the actual owner and table name of nancy.njcust:

SELECT * FROM nancy.njcust
♦

References
In the IBM Informix Guide to SQL: Tutorial, see the discussion of owner naming.
Syntax 7-437

View Name
View Name

Purpose
Use the View Name segment in the following statements to specify the name
of a view:

� CREATE SYNONYM

� CREATE VIEW

� DELETE

� DROP VIEW

� GRANT

� INSERT

� REVOKE

� SELECT

� UPDATE

Syntax

@ dbservername

owner.

database :

OL
+

Identifier
p. 7-399

database is the name of the database in which the view resides.

dbservername is the name of the IBM Informix OnLine database server that is
home to database. The @ sign is a literal character that you must
use to introduce the database server name.

owner is the user name of the owner of the view. If you are using an
ANSI-compliant database, you must use the owner. convention
for views that you do not own.
7-438 IBM Informix Guide to SQL: Reference

Usage
Usage
The use of the prefix owner. is optional; however, if you use it, the database
server does check owner for accuracy. If you are creating a view, the name of
the view must be unique among all the tables, synonyms, and views that
already exist in the database.

If you are creating a view, the owner.view-name must be unique among all the
tables, synonyms, and views that already exist in the database.

The owner.name is case sensitive. For more information, see the discussion of
case sensitivity in ANSI-compliant databases on page 7-436. ♦

References
In the IBM Informix Guide to SQL: Tutorial, see the discussions of views and
security.

ANSI
Syntax 7-439

8
Chapter
Stored Procedures and SPL
In This Chapter . 8-5

Introduction to Stored Procedures and SPL 8-5
What You Can Do with Stored Procedures 8-6
Relationship Between SQL and a Stored Procedure 8-6

Creating and Using Stored Procedures 8-7
Creating a Procedure Using DB-Access 8-7
Creating a Procedure Using an Embedded-Language Product . . 8-8
Commenting and Documenting a Procedure 8-8
Diagnosing Compile-Time Errors 8-9

Finding Syntax Errors in a Procedure Using DB-Access . . . 8-9
Finding Syntax Errors in a Procedure Using an

Embedded-Language Product 8-9
Looking at Compile-Time Warnings 8-10
Generating the Text or Documentation. 8-11

Looking at the Procedure Text 8-11
Looking at the Procedure Documentation 8-11

Executing a Procedure 8-12
Debugging a Procedure 8-14
Re-creating a Procedure 8-16

Privileges on Stored Procedures 8-16
Privileges at Creation. 8-16
Privileges at Execution 8-17

Privileges and Owner-Privileged Procedures 8-17
Privileges and DBA-Privileged Procedures 8-18
Privileges and Nested Procedures 8-18

Revoking Privileges 8-19

8-2 IBM
Variables and Expressions 8-19
Variables . 8-19

Format of Variables 8-19
Global and Local Variables 8-20
Defining Variables 8-20
Data Types for Variables 8-20
Scope of Variables. 8-21
Variable/Keyword Ambiguity 8-22

Expressions . 8-23
Assigning Values to Variables 8-25

Program Flow Control 8-26
Branching . 8-26
Looping . 8-27
Function Handling. 8-28

Calling Procedures Within a Procedure 8-28
Running an Operating System Command from

Within a Procedure 8-28
Recursively Calling a Procedure. 8-29

Passing Information into and out of a Procedure 8-29
Returning Results 8-29

Specifying Return Values 8-29
Returning the Value 8-30
Returning More Than One Set of Values from a Procedure. . . 8-30

Exception Handling. 8-32
Trapping an Error and Recovering 8-32
Scope of Control of an ON EXCEPTION Statement 8-33
User-Generated Exceptions 8-34

Simulating SQL Errors 8-34
Using RAISE EXCEPTION to Exit Nested Code 8-35

SPL Statement Syntax 8-36
CALL . 8-37
CONTINUE . 8-40
DEFINE . 8-42
EXIT . 8-50
FOR . 8-52
FOREACH . 8-56
IF. 8-60
 Informix Guide to SQL: Reference

LET . 8-64
ON EXCEPTION 8-67
RAISE EXCEPTION 8-73
RETURN . 8-75
SYSTEM . 8-78
TRACE . 8-80
WHILE . 8-84
Stored Procedures and SPL 8-3

8-4 IBM
 Informix Guide to SQL: Reference

In This Chapter
Stored procedures are effective tools that you can use to control SQL activity.
This chapter provides instruction on how to write stored procedures using
SQL and the Informix Stored Procedure Language (SPL). To help you learn
how to write them, examples of working stored procedures are provided.

The syntax for each of the SPL statements is provided at the end of the
chapter. Accompanying the syntax for each statement are usage notes and
examples pertinent to that statement.

Introduction to Stored Procedures and SPL
To SQL, a stored procedure is a user-defined function. Anyone who has
Resource privilege on a database can create a stored procedure. Once the
stored procedure is created, it is stored in an executable format in the
database as an object of the database. You can use stored procedures to
perform any function you can perform in SQL, as well as expand what you
can accomplish with SQL alone.

You write a stored procedure using SQL and SPL statements. SPL statements
only can be used inside CREATE PROCEDURE and CREATE PROCEDURE
FROM statements. These statements are available with DB-Access and the
embedded-language products.
Stored Procedures and SPL 8-5

What You Can Do with Stored Procedures
What You Can Do with Stored Procedures
You can accomplish a wide range of objectives with stored procedures,
including improving database performance, simplifying the writing of appli-
cations, and limiting or monitoring access to data.

Since a stored procedure is stored in an executable format, you can use it to
execute frequently repeated tasks to improve performance. Executing a
stored procedure rather than straight SQL code allows you to bypass repeated
parsing, validity checking, and query optimization.

Since a stored procedure is an object in the database, it is available to every
application running on the database. Several applications can use the same
stored procedure, so development time for applications is reduced.

Since you can write a stored procedure to be run with DBA privilege by a user
who does not have DBA privilege, you can limit and control access to data in
the database. Alternatively, a stored procedure can monitor what users access
certain tables or data.

Relationship Between SQL and a Stored Procedure
You can use stored procedures to supply values to data manipulation state-
ments of SQL. For example, these values can be inserted into a table or used
as part of a condition in a query or an UPDATE statement, and so on.

Alternatively, you can use stored procedures to hide SQL statements. Imple-
menting stored procedures can simplify tasks for a database user. Rather than
having all users learn how to use SQL, one experienced SQL user can write a
stored procedure to encapsulate an SQL activity and let others know that the
procedure is stored in the database and that they can execute it.
8-6 IBM Informix Guide to SQL: Reference

Creating and Using Stored Procedures
Creating and Using Stored Procedures
To write a stored procedure, put the SQL statements that you want to be run
as part of the procedure inside the statement block in a CREATE PROCEDURE
statement. Use the SPL statements to control the flow of operation within the
procedure. These additional statements include IF, FOR, and others, and are
described at the end of this chapter. The CREATE PROCEDURE and CREATE
PROCEDURE FROM statements are described in Chapter 7, “Syntax.”

Creating a Procedure Using DB-Access
To create a stored procedure using DB-Access, issue the CREATE PROCEDURE
statement, including all of the statements that are part of the procedure in the
statement block. For example, to create a procedure that reads a customer
address, you can use a statement such as the one in Figure 8-1.

Figure 8-1
Procedure that reads from the customer table

CREATE PROCEDURE read_address (lastname CHAR(15)) -- one argument
RETURNING CHAR(15), CHAR(15), CHAR(20), CHAR(15),CHAR(2), CHAR(5); -- 6

items

DEFINE p_lname,p_fname, p_city CHAR(15); --define each procedure
variable

DEFINE p_add CHAR(20);
DEFINE p_state CHAR(2);
DEFINE p_zip CHAR(5);

SELECT fname, address1, city, state, zipcode
INTO p_fname, p_add, p_city, p_state, p_zip
FROM customer
WHERE lname = lastname;

RETURN p_fname, lastname, p_add, p_city, p_state, p_zip; --6 items
END PROCEDURE

DOCUMENT "This procedure takes the last name of a customer as", --brief
description

"its only argument. It returns the full name and address of",
"the customer."

WITH LISTING IN "/acctng/test/listfile" -- compile-time warnings go here
; -- end of the procedure read_address
Stored Procedures and SPL 8-7

Creating a Procedure Using an Embedded-Language Product
Creating a Procedure Using an Embedded-Language
Product
To create a stored procedure using an embedded-language product, put the
text of the CREATE PROCEDURE statement in a file. Use the CREATE
PROCEDURE FROM statement and refer to that file to compile the procedure.
For example, to create a procedure to read a customer name, you can use a
statement such as the one in Figure 8-1 and store it in a file. If the file is named
read_add_source, the following statement compiles the read_address
procedure:

CREATE PROCEDURE FROM "read_add_source";

Figure 8-2 shows how the previous SQL statement looks in an ESQL/C
program.

Figure 8-2
SQL statement that compiles and stores the read_address procedure in an ESQL/C program
/* This program creates whatever procedure is in *
 * the file "read_add_source".
 */
#include <stdio.h>
$include sqlca;
$include sqlda;
$include datetime;
/* Program to create a procedure from the pwd */

main()
{
$ database play;
$create procedure from "read_add_source";
}

Commenting and Documenting a Procedure
The read_address procedure in Figure 8-1 includes comments and a
DOCUMENT clause. The comments are incorporated into the text of the
procedure. Any characters following a double hyphen (--) are considered to
be a comment. The double hyphen can be used at the beginning or middle of
a line.

To include a separate summary of the procedure, use the DOCUMENT clause.
You can extract the data in the DOCUMENT clause by querying the
sysprocbody system catalog table. See the section “Looking at the Procedure
Documentation” later in this chapter for more information about reading the
DOCUMENT clause.
8-8 IBM Informix Guide to SQL: Reference

Diagnosing Compile-Time Errors
Diagnosing Compile-Time Errors
When you issue a CREATE PROCEDURE or CREATE PROCEDURE FROM
statement, the statement fails if a syntax error is in the body of the procedure.
The database server stops processing the text of the procedure and returns
the location of the error.

Finding Syntax Errors in a Procedure Using DB-Access

If a procedure created using DB-Access has a syntax error, when you choose
the Modify option of the QUERY-LANGUAGE Menu, the cursor is situated on
the offending syntax.

Finding Syntax Errors in a Procedure Using an Embedded-Language
Product

If a procedure created using an embedded-language product has a syntax
error, the CREATE PROCEDURE statement fails. The database server sets the
SQLCODE field of the SQLCA to a negative number and sets the fifth element
of the SQLERRD array to the character offset into the file. The particular fields
of the SQLCA for each product are shown in the following table.

Figure 8-3 shows how to trap for a syntax error when you are creating a
procedure. It also shows how to display the offset into the file where the error
occurred.

ESQL/C ESQL/COBOL

sqlca.sqlcode SQLCODE SQLCODE OF SQLCA

sqlca.sqlerrd[4] SQLERRD[5] OF SQLCA
Stored Procedures and SPL 8-9

Looking at Compile-Time Warnings
Figure 8-3
Checking for failure when creating a procedure using ESQL/C

#include <stdio.h>
$include sqlca;
$include sqlda;
$include datetime;
/* Program to create a procedure from procfile in pwd */

main()
{
long char_num;

$ database play;
$create procedure from "procfile";
if (sqlca.sqlcode != 0)
 {

 printf("\nSqlca.sqlcode = %ld\n", sqlca.sqlcode);
 char_num = sqlca.sqlerrd[4];
 printf("\nError in creating read_address. Check character position
%ld\n",
 char_num);

In Figure 8-3, if the CREATE PROCEDURE FROM statement fails, the program
displays a message in addition to the character position at which the syntax
error was detected.

Looking at Compile-Time Warnings
If the database server detects a potential problem but the procedure is syntac-
tically correct, a warning is placed in the listing file. You can use this listing
to check for potential problems with a procedure before you execute it.

To obtain the listing of compile-time warnings for your procedure, use the
WITH LISTING IN clause in your CREATE PROCEDURE statement, as shown in
the following example.

CREATE PROCEDURE read_address (lastname CHAR(15)) -- one argument
RETURNING CHAR(15), CHAR(15), CHAR(20), CHAR(15), CHAR(2), CHAR(5); -- 6

items
.
.
.
WITH LISTING IN "/acctng/test/listfile" -- compile-time warnings go here

; -- end of the procedure read_address
8-10 IBM Informix Guide to SQL: Reference

Generating the Text or Documentation
If you are using IBM Informix STAR or IBM Informix NET, the listing file is
created on the machine on which the database resides. If you provide an
absolute pathname and filename for the file, the file is created where you
specify. If you provide a relative pathname for the listing file, the file is
created in your home directory on that machine. (If you do not have a home
directory, the file is created in the root directory.)

After you create the procedure, you can view the file specified in the WITH
LISTING IN clause to see the warnings it contains.

Generating the Text or Documentation
Once you create the procedure, it is stored in the sysprocbody system catalog
table. The sysprocbody system catalog table contains the executable
procedure, as well as the text of the original CREATE PROCEDURE statement
and the documentation text.

Looking at the Procedure Text

To generate the text of the procedure, select the data column from the
sysprocbody system catalog table. The following SELECT statement reads the
read_address procedure text.

SELECT data FROM informix.sysprocbody
WHERE datakey = "T" -- find text lines
AND
procid = (SELECT procid FROM informix.sysprocedure

WHERE informix.sysprocedure.procname = "read_address")

Looking at the Procedure Documentation

If you want to view only the documenting text of the procedure, you can use
the following SELECT statement to read the documentation string. The
documentation lines are those in the DOCUMENT clause of the CREATE
PROCEDURE statement.

SELECT data FROM informix.sysprocbody
WHERE datakey = "D" -- find documentation lines
AND
procid = (SELECT procid FROM informix.sysprocedures

WHERE informix.sysprocedure.procname = "read_address")
Stored Procedures and SPL 8-11

Executing a Procedure
Executing a Procedure
There are three ways to execute a procedure. You can use the SQL statement
EXECUTE PROCEDURE or either the LET or CALL SPL statement.

You can execute a procedure with the EXECUTE PROCEDURE statement. To
run the read_address procedure to see the full name and address of a
customer named “Putnum,” use the following statement:

EXECUTE PROCEDURE read_address ("Putnum");

Since the read_address procedure returns values, if you are executing a
procedure from an embedded-language program or from another procedure,
you must use an INTO clause with host variables to receive the data. For
example, executing the read_address procedure in an ESQL/C program is
accomplished with the code segment shown in Figure 8-4.

Figure 8-4
Executing a procedure using ESQL/C

#include <stdio.h>
$include sqlca;
$include sqlda;
$include datetime;
/* Program to execute a procedure in the database named "play" */

main()
{
$ char lname[16], fname[16], address[21];
$ char city[16], state[3], zip[6];

$ database play;
$EXECUTE PROCEDURE read_address ("Putnum")

INTO $lname, $fname, $address, $city, $state, $zip;
if (sqlca.sqlcode != 0)

 printf("\nFailure on execute");
}

If you are executing a procedure within another procedure, you can use the
CALL or LET statement to run the procedure. To use the CALL statement with
the read_address procedure, you can use the code shown in Figure 8-5.
8-12 IBM Informix Guide to SQL: Reference

Executing a Procedure
Figure 8-5
Calling a procedure inside another procedure with the CALL statement

CREATE PROCEDURE address_list ()

DEFINE p_lname, p_fname, p_city CHAR(15);
DEFINE p_add CHAR(20);
DEFINE p_state CHAR(2);
DEFINE p_zip CHAR(5);
.
.
.
CALL read_address ("Putnum") RETURNING p_fname, p_lname,

p_add, p_city, p_state, p_zip;
.
.
.
-- use the returned data some way

END PROCEDURE;

Figure 8-6 provides an example of using the LET statement to assign values
to procedural variables through a procedure call.

Figure 8-6
Assigning values from a procedure call with a LET statement

CREATE PROCEDURE address_list ()

DEFINE p_lname, p_fname, p_city CHAR(15);
DEFINE p_add CHAR(20);
DEFINE p_state CHAR(2);
DEFINE p_zip CHAR(5);
.
.
.
LET p_fname, p_lname,p_add, p_city, p_state, p_zip = read_address

("Putnum");
.
.
.
-- use the returned data some way

END PROCEDURE;
Stored Procedures and SPL 8-13

Debugging a Procedure
Debugging a Procedure
Once you successfully create and run a procedure, you can encounter logical
errors. If logical errors are in the procedure, use the TRACE statement to help
you find the errors. You can trace the values of the following procedural
entities:

� Variables

� Procedure arguments

� Return values

� SQL error codes

� ISAM error codes

To generate a listing of traced values, first use the SQL statement SET DEBUG
FILE to name the file that is to contain the traced output. When you create
your procedure, include the TRACE statement in one of its forms.

There are three ways to specify the form of TRACE output:

Figure 8-7 shows how you can use the TRACE statement with a version of the
read_address procedure. Several of the SPL statements shown in this
example have not been discussed, but the entire example demonstrates how
the TRACE statement can help you monitor execution of the procedure.

TRACE ON traces all statements except SQL statements. The contents of
variables are printed before being used. Procedure calls and
returned values are traced as well.

TRACE
PROCEDURE

traces only the procedure calls and returned values.

TRACE expres-
sion

prints a literal or an expression. If necessary, the value of the
expression is calculated before being sent to the file.
8-14 IBM Informix Guide to SQL: Reference

Debugging a Procedure
Figure 8-7
Using the TRACE statement to monitor execution of a procedure

CREATE PROCEDURE read_many (lastname CHAR(15))
RETURNING CHAR(15), CHAR(15), CHAR(20), CHAR(15),CHAR(2), CHAR(5);

DEFINE p_lname,p_fname, p_city CHAR(15);
DEFINE p_add CHAR(20);
DEFINE p_state CHAR(2);
DEFINE p_zip CHAR(5);
DEFINE lcount, i INT;

LET lcount = 1;

TRACE ON; -- Every expression will be traced from here on
TRACE "Foreach starts"; -- A trace statement with a

literal
FOREACH
SELECT fname, lname, address1, city, state, zipcode

 INTO p_fname, p_lname, p_add, p_city, p_state, p_zip
 FROM customer
 WHERE lname = lastname

RETURN p_fname, p_lname, p_add, p_city, p_state, p_zip WITH RESUME;
LET lcount = lcount + 1; -- count of returned addresses
END FOREACH;

TRACE "Loop starts"; -- Another literal
FOR i IN (1 TO 5)

 BEGIN
 RETURN i , i+1, i*i, i/i, i-1,i with resume;
 END

END FOR;

END PROCEDURE

;

Each time you execute the traced procedure, entries are added to the file you
specified using the SET DEBUG FILE statement. To see the debug entries, view
the output file using any text editor.

The following list contains some of the output generated by the procedure in
Figure 8-7. Next to each traced statement is an explanation of its contents.

TRACE ON echoed TRACE ON statement.

TRACE Foreach starts traced expression, in this case, the literal
string Foreach starts.

start select cursor notification that a cursor is opened to handle
a FOREACH loop.

select cursor iteration notification of the start of each iteration of the
select cursor.
Stored Procedures and SPL 8-15

Re-creating a Procedure
Re-creating a Procedure
If a procedure exists in a database, you must drop it explicitly using the DROP
PROCEDURE statement before you can create another procedure with the
same name. If you debug your procedure and attempt to use the CREATE
PROCEDURE statement with the same procedure name again, the attempt
fails unless you first drop the existing procedure from the database.

Privileges on Stored Procedures
There are two types of procedures: DBA-privileged and owner-privileged.
The creator of the procedure determines the type of procedure it is; the
procedure type affects the privileges of the user executing the procedure.

A procedure resides in the database in which it is created. Since it is a
database object, a user requires certain privileges to create and execute a
procedure. With DBA-privileged procedures, you can use the GRANT SQL
statement to give another user EXECUTE privilege on the procedure.

With owner-privileged procedures, you also must use the GRANT statement
to give users privileges on objects referenced by the procedure (if those
objects are not owned by the owner of the procedure and if the procedure
owner does not have privileges with the WITH GRANT OPTION statement).

Privileges at Creation
As with a table or a view, you must have Resource privilege on the database
to create a procedure. The existence of other database objects (tables, views,
and so on) is not checked when the procedure is created.

By default, when an owner-privileged procedure is created, PUBLIC has
Execute privilege. When a DBA-procedure is created, only the owner and
other users that have DBA status have Execute privilege by default.

expression:(+lcount, 1) the encountered expression, (lcount+1)
evaluates to 2.

let lcount = 2 each LET statement is echoed with the value.
8-16 IBM Informix Guide to SQL: Reference

Privileges at Execution
In an ANSI-compliant database, only the owner and other users that have
DBA status have Execute privilege by default on both DBA- and owner-
privileged procedures.

Privileges at Execution
The owner of a procedure, a user with DBA status, or a user with Execute
privilege can execute the procedure. The database server checks that the user
executing the procedure has the correct privileges on the underlying objects
at execution.

Any user who executes a procedure is automatically granted Resource
privilege on the database for the duration of the procedure.

Privileges and Owner-Privileged Procedures

When an owner-privileged procedure is executed, the existence of referenced
objects is checked. In addition, privileges on referenced objects are checked
when the procedure is executed.

Any user executing a procedure must have the appropriate privileges
granted to them by the owner of the procedure. If you execute a procedure
that references only objects that you own, there cannot be any privilege
conflicts. If you do not own the referenced objects and you execute a
procedure that contains SELECT statements and CREATE TABLE statements,
you must have Select privilege to run the procedure without generating
errors. Alternatively, the owner of the procedure must have the appropriate
privileges with the WITH GRANT OPTION statement. In Figure 8-7, the owner
of the procedure must have the Select privilege with the WITH GRANT option.
When you use the GRANT statement to give another user Execute privilege
on a procedure that you own, you implicitly grant all appropriate privileges
on objects that you own and that are referenced in the procedure.
Stored Procedures and SPL 8-17

Privileges at Execution
Unqualified objects created in the course of the procedure are owned by the
owner of the procedure, not the user running the procedure. For example, the
following lines in an owner-privileged stored procedure create two tables. If
this procedure is owned by tony and a user marty runs the procedure, the
first table, gargantuan, is owned by tony. The second table, tiny, is owned by
libby.

CREATE PROCEDURE tryit()
.
.
.
CREATE TABLE gargantuan (col1 INT, col2 INT, col3 INT);
CREATE TABLE libby.tiny (col1 INT, col2 INT, col3 INT);

END PROCEDURE

Privileges and DBA-Privileged Procedures

When a DBA-privileged procedure is executed, the user executing the
procedure assumes the privileges of a DBA for the duration of the procedure.
A DBA-privileged procedure acts as if the current user is first granted DBA
privilege, then executes each statement of the procedure manually, and
finally has DBA privilege revoked.

Objects created in the course of running a DBA procedure are owned by the
user running the procedure, unless the data definition statement in the
procedure explicitly names the owner to be someone else.

Only a DBA or a user with DBA privilege can create a DBA-privileged
procedure.

Privileges and Nested Procedures

DBA-privileged status is not inherited by a called procedure. If a DBA-
privileged procedure executes an owner-privileged procedure, the owner-
privileged procedure does not run as a DBA procedure. If an owner-
privileged procedure calls a DBA-privileged procedure, the statements
within the DBA-privileged procedure execute as they would within any DBA-
privileged procedure.
8-18 IBM Informix Guide to SQL: Reference

Revoking Privileges
Revoking Privileges
The owner of a procedure can revoke Execute privilege from a user. If a user
loses Execute privilege on a procedure, the Execute privilege also is revoked
from all users who were granted Execute privilege by that user.

Variables and Expressions
This section discusses how to define and use variables in SPL. The differences
between SPL and SQL expressions also is covered here.

Variables
You can use variables in a stored procedure in several ways. A variable can
be used in a database query or other SQL statement wherever a constant is
expected. You can use a variable with SPL statements to assign and calculate
values, keep track of the number of rows returned from a query, and execute
a loop, as well as handle other tasks.

The value of a variable is held in memory; the variable is not a database
object. Hence, rolling back a transaction does not restore values of procedural
variables.

Format of Variables

A variable follows the rules of an SQL identifier. (See page 7-399 for the syntax
and notes for an identifier.) Once a variable is defined, you can use it as
appropriate anywhere in the procedure.

If you are using an embedded-language product, you do not have to set off
the variable with a special symbol (unlike host variables in an embedded-
language product).
Stored Procedures and SPL 8-19

Variables
Global and Local Variables

You can define a variable to be either local or global. A variable is local by
default. The differences between the two types are outlined as follows:

Defining Variables

You define variables using the DEFINE statement. If you list a variable in the
argument list of a procedure, the variable is defined implicitly and you do not
need to define it formally with the DEFINE statement. You must assign a
value, which may be null, to a variable before you can use it.

Data Types for Variables

You can define a variable as any of the data types available for columns in a
database table except SERIAL. The following example shows several cases of
defined procedural variables:

DEFINE x INT;
DEFINE name CHAR(15);
DEFINE this_day DATETIME YEAR TO DAY ;

Local A local variable is available only within the procedure in
which it is defined. Local variables do not allow a default value
to be assigned at compile time.

Global A global variable is available to other procedures run by the
same user session in the same database. The values of global
variables are stored in memory. The global environment is the
memory used by all the procedures run within a given session
on a given database server, such as all procedures run by an
embedded-language program or in a DB-Access session. The
values of the variables are lost when the session ends.

Global variables require a default value to be assigned at com-
pile time.

The first definition of a global variable puts the variable into
the global environment. Subsequent definitions of the same
variable, in different procedures, simply bind the variable to
the global environment.
8-20 IBM Informix Guide to SQL: Reference

Variables
If you define a variable for TEXT or BYTE data, the variable does not actually
contain the data; instead, it serves as a pointer to the data. However, you use
this procedural variable as you would use any other procedural variable.
When you define a TEXT or BYTE variable, you must use the word REFER-
ENCES, which emphasizes that these variables do not contain the data, but
simply reference the data. The following example shows the definition of a
TEXT and a BYTE variable:

DEFINE ttt REFERENCES TEXT;
DEFINE bbb REFERENCES BYTE;

Scope of Variables

A variable is valid within the statement block in which it is defined. It is valid
within statement blocks nested within that statement block as well, unless it
is masked by a redefinition of a variable with the same name.

In the beginning of the procedure in Figure 8-8, the integer variables x, y, and
z are defined and initialized. The BEGIN and END statements mark a nested
statement block in which the integer variables x and q are defined, as well as
the CHAR variable z. Within the nested block, the redefined variable x masks
the original variable x. After the END statement, which marks the end of the
nested block, the original value of x is again accessible.

Figure 8-8
Masking of variables with nested statement blocks

CREATE PROCEDURE scope()
DEFINE x,y,z INT;
LET x = 5; LET y = 10;
LET z = x + y; --z is 15
BEGIN

DEFINE x, q INT; DEFINE z CHAR(5);
LET x = 100;
LET q = x + y; -- q = 110
LET z = "silly"; -- z receives a character value

END
LET y = x; -- y is now 5
LET x = z; -- z is now 15, not "silly"

END PROCEDURE
Stored Procedures and SPL 8-21

Variables
Variable/Keyword Ambiguity

If you define a variable as a keyword, ambiguities can occur. The following
rules for identifiers help you avoid ambiguities for variables, procedure
names, and system function names.

� Defined variables take the highest precedence.

� Procedures defined as such in a DEFINE statement take precedence
over SQL functions.

� SQL functions take precedence over procedures that exist but are not
identified as procedures (using the DEFINE statement).

In some cases, you must change the name of your variable. For example, you
cannot define a variable with the name count or max, because these are the
names of aggregate functions. The keywords that can be used ambiguously
are listed in “Identifier” on page 7-399.

Variables and Column Names

If you use the same identifier for a procedural variable as for a column name,
the database server assumes that an instance of the identifier is a variable.
Qualify the column name with the table name to use the identifier as a
column name. In the following example, the procedure variable lname is the
same as the column name. In the following SELECT statement,
customer.lname is a column name and lname is a variable name:

CREATE PROCEDURE table_test()

DEFINE lname CHAR(15);
LET lname = "Miller";

SELECT customer.lname FROM customer INTO lname
WHERE customer_num = 502.

.

.

.

8-22 IBM Informix Guide to SQL: Reference

Expressions
Variables and SQL Functions

If you use the same identifier for a procedural variable as for an SQL function,
the database server assumes that an instance of the identifier is a variable and
disallows the use of the SQL function. You cannot use the SQL function within
the block of code in which the variable is defined. The following example
shows a block within a procedure in which a variable called user is defined.
This definition disallows the use of the USER function while in the
BEGIN...END block.

CREATE PROCEDURE user_test()
DEFINE name CHAR(10);
DEFINE name2 CHAR(10);
LET name = user; -- the SQL function

BEGIN
DEFINE user CHAR(15); -- disables user function
LET user = "Miller";
LET name = user; -- assigns "Miller" to variable name

END
.
.
.
LET name2 = user; -- SQL function again

Procedure Names and SQL Functions

For information about ambiguities between procedure names and SQL
function names, see “Procedure Name” on page 7-424.

Expressions
You can use any SQL expression in a stored procedure except for an aggregate
expression. The complete syntax and notes for SQL expressions are described
on page 7-370.

In addition to being able to use SQL expressions, you can use procedure
variables and values returned by procedures as expressions or as parts of
expressions.
Stored Procedures and SPL 8-23

Expressions
Some examples of typical SPL expressions are listed in the following example:

var1
var1 + var2 + 5
read_address("Miller")
read_address(lastname = "Miller")
get_duedate(acct_num) + 10 UNITS DAY
fname || ""|| lname
"(415)" || get_phonenum(cust_name)

called variable is the name of one of the arguments expected by the called pro-
cedure.

procedure
variable name

is the name of a valid variable defined in the procedure

+
-
*

procedure
variable
name

SPL Expression

Expression
Segment
p. 7-370

/ ()SPL Expression

Procedure
Name

p. 7-424
called-
variable

,

()

=

SPL
 Expression

| |
8-24 IBM Informix Guide to SQL: Reference

Expressions
Assigning Values to Variables

There are four ways to assign a value to a procedure variable:

� Using a LET statement

� Using a SELECT...INTO statement

� Using a CALL statement with a procedure that has a RETURNING
clause

� Using an EXECUTE PROCEDURE...INTO statement

Use the LET statement to assign a value to one or more variables. The
following example illustrates several forms of the LET statement:

LET a = b + a;
LET a, b = c, d;
LET a, b = (SELECT fname, lname FROM customer

WHERE customer_num = 101);
LET a, b = read_name(101);

Use the SELECT statement to assign a value directly from the database to a
variable. The statement in the following example accomplishes the same task
as the third LET statement in the previous example:

SELECT fname, lname into a, b FROM customer
WHERE customer_num = 101

Use the CALL or EXECUTE PROCEDURE statements to assign values returned
by a procedure to one or more procedural variables. Both statements in the
following example return the full address from the procedure read_address
into the specified procedural variables:

EXECUTE PROCEDURE read_address("Smith")
INTO p_fname, p_lname, p_add, p_city, p_state, p_zip;

CALL read_address("Smith")
RETURNING p_fname, p_lname, p_add, p_city, p_state, p_zip;
Stored Procedures and SPL 8-25

Program Flow Control
Program Flow Control
SPL contains several statements that enable you to control the flow of your
stored procedure and to make decisions based on data obtained at run time.
These program-flow-control statements are described briefly in this section
of the chapter. Their syntax and complete descriptions are provided in “SPL
Statement Syntax” on page 8-36.

Branching
Use an IF statement to form a logic branch in a stored procedure. An IF
statement first evaluates a condition and, if the condition is true, the
statement block contained in the THEN potion of the statement is executed. If
the condition is not true, execution falls through to the next statement, unless
an ELSE clause or ELIF (else if) clause is included in the IF statement.
Figure 8-9 shows an example of an IF statement.

Figure 8-9
Using an IF statement

CREATE PROCEDURE str_compare (str1 CHAR(20), str2 CHAR(20))
RETURNING INT;
DEFINE result INT;

IF str1 > str2 THEN
result = 1;

ELIF str2 > str1 THEN
result = -1;

ELSE
result = 0;

END IF
RETURN result;

END PROCEDURE -- str_compare
8-26 IBM Informix Guide to SQL: Reference

Looping
Looping
There are three methods of looping in SPL, accomplished with one of the
following statements:

There are four ways to leave a loop, accomplished with one of the following
statements:

See “SPL Statement Syntax” on page 8-36 for more information concerning
the syntax and use of these statements.

FOR initiates a controlled loop. Termination is guaranteed.

FOREACH allows you to select and manipulate more than one row from
the database. It declares and opens a cursor implicitly.

WHILE initiates a loop. Termination is not guaranteed.

CONTINUE skips the remaining statements in the present, identified loop
and starts the next iteration of that loop.

EXIT exits the present, identified loop. Execution resumes at the first
statement after the loop.

RETURN exits the procedure. If a return value is specified, that value is
returned upon exit.

RAISE EXCEP-
TION

exits the loop if the exception is not trapped (caught) in the
body of the loop.
Stored Procedures and SPL 8-27

Function Handling
Function Handling
You can call procedures, as well as run operating system commands, from
within a procedure.

Calling Procedures Within a Procedure

Use a CALL statement or the SQL statement EXECUTE PROCEDURE to execute
a procedure from a procedure. Figure 8-10 shows a call to the read_name
procedure using a CALL statement.

Figure 8-10
Calling a procedure with a CALL statement

CREATE PROCEDURE call_test()
RETURNING CHAR(15), CHAR(15);

DEFINE fname, lname CHAR(15);
CALL read_name("Putnum") RETURNING fname, lname;

IF fname = "Eileen" THEN RETURN "Jessica", lname;
ELSE RETURN fname, lname;
END IF

END PROCEDURE

Running an Operating System Command from Within a Procedure

Use the SYSTEM statement to execute a system call from a procedure.
Figure 8-11 shows a call to the echo command.

Figure 8-11
Making a system call from a procedure with a SYSTEM statement

CREATE DBA PROCEDURE delete_customer(cnum INT)

DEFINE username CHAR(8);

DELETE FROM customer
WHERE customer_num = cnum;

IF username = "acctclrk" THEN
SYSTEM "echo 'Delete from customer by acctclrk' >> /mis/records/updates"

;
END IF
END PROCEDURE -- delete_customer
8-28 IBM Informix Guide to SQL: Reference

Passing Information into and out of a Procedure
Recursively Calling a Procedure

You can call a procedure from itself. There are no restrictions on calling a
procedure recursively.

Passing Information into and out of a Procedure
When you create a procedure, you determine whether it expects information
to be passed to it by specifying an argument list. For each piece of infor-
mation that the procedure expects, you specify one argument and the data
type of that argument.

For example, if a procedure needs to have a single piece of integer infor-
mation passed to it, you can provide a procedure heading as follows:

CREATE PROCEDURE safe_delete(cnum INT)

Returning Results
A procedure that returns one or more values must contain two lines of code
to accomplish the transfer of information. You must state the data types that
are going to be returned, and you must return the values explicitly.

Specifying Return Values

Immediately after specifying the name and input parameters of your
procedure, you must include a RETURNING clause with the data type of each
value you expect to be returned. The following example shows the header of
a procedure (name, parameters, and RETURNING clause) that expects one
integer as input and returns one integer and one 10-byte character value:

CREATE PROCEDURE get_call(cnum INT)
RETURNING INT, CHAR(10);
Stored Procedures and SPL 8-29

Returning Results
Returning the Value

Once you use the RETURNING clause to indicate the type of values that are to
be returned, you can use the RETURN statement at any point in your
procedure to return the same number and data types as listed in the
RETURNING clause. The following example shows how you can return infor-
mation from the get_call procedure:

CREATE PROCEDURE get_call(cnum INT)
RETURNING INT, CHAR(10);
DEFINE ncalls INT, o_name CHAR(10);
.
.
.
RETURN ncalls, o_name;
.
.
.

END PROCEDURE

Returning More Than One Set of Values from a Procedure

If your procedure performs a select that can return more than one row from
the database or if you return values from inside a loop, you must use the
WITH RESUME keywords in the RETURN statement. Using a RETURN...WITH
RESUME statement causes the value or values to be returned to the calling
program or procedure. After the calling program receives the values,
execution returns to the statement immediately following the
RETURN...WITH RESUME statement.

Figure 8-12 is an example of a cursory procedure. It returns values from a
FOREACH loop and a FOR loop. This procedure is called a cursory procedure
because it contains a FOREACH loop.
8-30 IBM Informix Guide to SQL: Reference

Returning Results
Figure 8-12
Procedure that returns values from a FOREACH loop and a FOR loop

CREATE PROCEDURE read_many (lastname CHAR(15))
RETURNING CHAR(15), CHAR(15), CHAR(20), CHAR(15),CHAR(2),
CHAR(5);

DEFINE p_lname,p_fname, p_city CHAR(15);
DEFINE p_add CHAR(20);
DEFINE p_state CHAR(2);
DEFINE p_zip CHAR(5);
DEFINE lcount INT ;
DEFINE i INT ;

LET lcount = 0;
TRACE ON;
CREATE VIEW myview AS SELECT * FROM customer;
TRACE "Foreach starts";
FOREACH
SELECT fname, lname, address1, city, state, zipcode

 INTO p_fname, p_lname, p_add, p_city, p_state, p_zip
 FROM customer
 WHERE lname = lastname

RETURN p_fname, p_lname, p_add, p_city, p_state, p_zip WITH
RESUME;

LET lcount = lcount +1;
END FOREACH;

FOR i IN (1 TO 5)
 BEGIN

RETURN "a", "b", "c", "d", "e" WITH RESUME;
 END

END FOR;
END PROCEDURE

When you execute this procedure, it returns the name and address for each
person with the specified last name. It also returns a sequence of letters. The
calling procedure or program must be expecting multiple returned values
and it must use a cursor or a FOREACH statement to handle the multiple
returned values.
Stored Procedures and SPL 8-31

Exception Handling
Exception Handling
You can trap any exception (or error) returned by the database server to your
procedure, or raised by your procedure, by using the ON EXCEPTION
statement. The RAISE EXCEPTION statement enables you to generate an
exception within your procedure.

Trapping an Error and Recovering
The ON EXCEPTION statement provides a mechanism to trap any error.

To trap an error, enclose a group of statements in a statement block and
precede the statement block with an ON EXCEPTION statement. If an error
occurs in the block that follows the ON EXCEPTION statement, recovery
action can be taken.

Figure 8-13 shows an example of an ON EXCEPTION statement within a
BEGIN...END block.

Figure 8-13
An ON EXCEPTION statement within a BEGIN...END block

BEGIN
DEFINE c INT;
ON EXCEPTION IN

(
-206, -- table does not exist
-217 -- column does not exist
) SET err_num

IF err_num = -206 THEN
CREATE TABLE t (c INT);
iNSERT INTO t VALUES (10);
-- continue after the insert statement

ELSE
ALTER TABLE t ADD(d INT);
LET c = (SELECT d FROM t);
-- continue after the select statement.

END IF
END EXCEPTION WITH RESUME

INSERT INTO t VALUES (10); -- will fail if t does not exist

LET c = (SELECT d FROM t); -- will fail if d does not exist
END
8-32 IBM Informix Guide to SQL: Reference

Scope of Control of an ON EXCEPTION Statement
When an error occurs, the SPL interpreter searches for the innermost ON
EXCEPTION declaration that traps the error. Note that the first action after
trapping the error is to reset the error. When execution of the error action
code is complete, and if the ON EXCEPTION declaration that was raised
included the WITH RESUME keywords, execution resumes automatically
with the statement following the statement that generated the error. If the ON
EXCEPTION declaration did not include the WITH RESUME keywords,
execution exits the current block completely.

Scope of Control of an ON EXCEPTION Statement
An ON EXCEPTION statement is valid for the statement block that follows the
ON EXCEPTION statement, all of the statement blocks nested within that
following statement block, and all of the statement blocks that follow the ON
EXCEPTION statement. It is not valid in the statement block that contains the
ON EXCEPTION statement.

The pseudocode in Figure 8-14 shows where the exception is valid within the
procedure. That is, if error 201 occurs in any of the indicated blocks, the
action labeled a201 occurs.

Figure 8-14
Pseudocode showing the ON EXCEPTION statement is valid within a procedure

CREATE PROCEDURE scope()
DEFINE i INT;
.
.
.
BEGIN -- begin statement block A
.
.
.

ON EXCEPTION IN (201)
-- do action a201
END EXCEPTION
BEGIN -- statement block aa

-- do action, a201 valid here
END
BEGIN -- statement block bb

-- do action, a201 valid here
END
WHILE i < 10

-- do something, a201 is valid here
END WHILE
Stored Procedures and SPL 8-33

User-Generated Exceptions
END
BEGIN -- begin statement block B

-- do something
-- a201 is NOT valid here

END
END PROCEDURE

User-Generated Exceptions
You can generate your own error using the RAISE EXCEPTION statement, as
shown in the following pseudocode example. In this example, the ON
EXCEPTION statement uses two variables, esql and eisam, to hold the error
numbers returned by the database server. If an error occurs and the SQL error
number is -206, the action defined in the IF clause is taken. If any other SQL
error is caught, it is passed out of this BEGIN...END block to the block that
contains this block.

BEGIN
ON EXCEPTION SET esql, eisam -- trap all errors

IF esql = -206 THEN -- table not found
-- recover somehow

ELSE
RAISE exception esql, eisam ; -- pass the error up

END IF
END EXCEPTION

-- do something
END

Simulating SQL Errors

You can generate errors to simulate SQL errors, as shown in the following
example. Here, if the user is pault, then the stored procedure acts as if that
user has no update privileges, even if he really does have that privilege.

BEGIN
IF user = "pault" THEN

RAISE EXCEPTION -273; -- deny Paul update privilege
END IF

END
8-34 IBM Informix Guide to SQL: Reference

User-Generated Exceptions
Using RAISE EXCEPTION to Exit Nested Code

You can use the RAISE EXCEPTION statement to break out of a deeply nested
block, as shown in Figure 8-15. If the innermost condition is true (if aa is
negative), then the exception is raised and execution jumps to the code
following the END of the block. In this case, execution jumps to the TRACE
statement.

Figure 8-15
Breaking out of nested loop with a RAISE EXCEPTION statement

BEGIN
ON EXCEPTION IN (1)
END EXCEPTION WITH RESUME -- do nothing significant (cont)

BEGIN
FOR i IN (1 TO 1000)

FOREACH select ..INTO aa FROM t
IF aa < 0 THEN

RAISE EXCEPTION 1 ; -- emergency exit
END IF

END FOREACH
END FOR

RETURN 1;
END

--do something; -- emergency exit to
 -- this statement.
TRACE "Negative value returned"
RETURN -10;

END

Remember that a BEGIN...END block is a single statement. When an error
occurs somewhere inside a block and the trap is outside the block, when
execution resumes, the rest of the block is skipped and execution resumes at
the next statement.

Unless there is a trap for this error nested somewhere in the block, the error
condition is passed back to the block that contains the call and on back to any
blocks that contain the block. If there is no ON EXCEPTION statement that is
set to handle the error, execution of the procedure stops, creating an error for
the program or procedure that is executing the procedure.
Stored Procedures and SPL 8-35

SPL Statement Syntax
SPL Statement Syntax
The rest of this chapter describes the statements in SPL. The syntax and usage
for each statement are listed, as well as examples. For a description of the
symbols used in the syntax diagrams, see “Syntax Conventions” on page 12
of the Introduction.
8-36 IBM Informix Guide to SQL: Reference

CALL
CALL

Purpose
Use the CALL statement to execute a procedure from within a stored
procedure.

 Syntax

Usage
The CALL statement invokes a procedure called procedure name. The CALL
statement is identical in behavior to the EXECUTE PROCEDURE statement,
except it can be used only from within a stored procedure.

=

CALL
Procedure

Name
p. 7-424

;()

,

SPL
Expressio

p. 8-23

SELECT
Statement
(Subset)
p. 8-38

parameter
name

Argument

Argument

RETURNING
procedure
variable

,

parameter
name

is the name of the parameter as defined by its CREATE PROCE-
DURE statement.

procedure
variable

is the name of a variable as defined by its CREATE PROCEDURE
statement.
Stored Procedures and SPL 8-37

Specifying Arguments
Specifying Arguments
If more arguments are in a CALL statement than are expected by the called
procedure, an error is returned.

If fewer arguments are specified by a CALL statement than are expected by
the called procedure, the arguments are said to be missing. Missing
arguments are initialized to their corresponding default values, if default
values were specified. (See CREATE PROCEDURE on page 7-58.) This initial-
ization occurs before the first executable statement in the body of the
procedure.

If arguments are missing and do not have default values, they are initialized
to the value of UNDEFINED. An attempt to use any variable that has the value
of UNDEFINED results in an error.

Procedure arguments are bound to procedure parameters by name or
position, but not both. That is, you can use the parameter name = syntax for
none or all of the arguments specified in one CALL statement.

For example, both of the following procedure calls are valid for a procedure
that expects character arguments t, n, and d, in that order:

CALL add_col (t="customer", d ="integer", n = "newint");
CALL add_col("customer","newint","integer");

Subset of SELECT Allowed in a Procedure Argument
You can use any SELECT statement as the argument for a procedure, as long
as it returns exactly one value of the proper type and length. (See the
discussion of SELECT statements that begins on page 7-258 for more
information.)
8-38 IBM Informix Guide to SQL: Reference

Receiving Input from the Called Procedure
Receiving Input from the Called Procedure
The RETURNING clause specifies the procedure variables that receive the
returned values from a procedure call. If the RETURNING clause is omitted,
the called procedure must not return any values.

The following example shows two procedure calls, one that expects no values
to be returned (no_args) and one that expects three values to be returned
(yes_args). Three integer variables have been defined to receive the returned
values from yes_args.

CREATE PROCEDURE not_much()
DEFINE i, j, k INT;
CALL no_args (10,20);
CALL yes_args (5) RETURNING i, j, k;

END PROCEDURE

References
In this manual, see the EXECUTE PROCEDURE statement.
Stored Procedures and SPL 8-39

CONTINUE
CONTINUE

Purpose
Use the CONTINUE statement to start the next iteration of the innermost loop
of the identified type.

Syntax

Usage
When a CONTINUE statement is encountered, the rest of the statements in the
innermost loop of the indicated type are skipped. Execution continues at the
top of the loop with the next iteration. For example, in the following
procedure, the values 3 through 15 are inserted into the table testtable. The
values 3 through 9 and 13 through 15 also are returned in the process. The
value 11 is not returned because the CONTINUE FOR statement is reached and
causes the RETURN i WITH RESUME statement to be skipped.

CREATE PROCEDURE loop_skip()
RETURNING INT;
DEFINE i INT;
.
.
.
FOR i IN (3 TO 15 STEP 2)
INSERT INTO testtable values(i, null, null);

IF i = 11
CONTINUE FOR;

END IF;
RETURN i WITH RESUME;

END FOR;

END PROCEDURE;

CONTINUE

FOREACH

WHILE

FOR ;
8-40 IBM Informix Guide to SQL: Reference

Usage
The CONTINUE statement generates errors if it cannot find the identified
loop.
Stored Procedures and SPL 8-41

DEFINE
DEFINE

Purpose
Use the DEFINE statement to declare variables that are used in the procedure
and assign them data types.

Syntax

DEFINE GLOBAL SQL Data Type
(Subset)
p. 8-43

Default
Value

DEFAULT

,

variable
name

DEFAULT
NULLREFERENCES

REFERENCES

SQL Data Type
(Subset)
p. 8-43

 BYTE

 TEXT

PROCEDURE

Table Name
p. 7-434 column.LIKE

 BYTE

 TEXT

;

,

variable
name

OL

OL

Synonym
Name

p. 7-432

View Name
p. 7-438

column is the name of a column in the table.

variable name is the name of the procedure variable being defined.
8-42 IBM Informix Guide to SQL: Reference

Usage
Usage
The DEFINE statement is not an executable statement. The DEFINE statement
must appear after the procedure header and before any other statements. A
variable can be used anywhere within the statement block in which it is
defined; that is, the scope of a defined variable is the statement block in which
it was defined.

SQL Data Type Subset
The SQL data type subset includes all of the SQL data types except SERIAL,
TEXT, and BYTE.

Literal Number
p. 7-422

Quoted String
p. 7-426

Literal Interval
p. 7-419

Literal Datetime
p. 7-416

CURRENT
p. 7-379

Default
Value

 TODAY

 USER

DATETIME
Field

Qualifier
p. 7-368

 SITENAME

 NULL

 DBSERVERNAME

OL
Stored Procedures and SPL 8-43

Defining TEXT and BYTE Variables
Defining TEXT and BYTE Variables
You can use TEXT and BYTE variables by using the REFERENCES keyword.
TEXT and BYTE variables do not contain the actual data but are simply
pointers to the data. The REFERENCES keyword is a reminder that the
procedure variable is just a pointer. You use the procedure variables for TEXT
and BYTE data types exactly as you would any other variable.

Redeclaration or Redefinition
If you define the same variable twice within the same statement block, you
receive an error. A variable can be redefined within a nested block, in which
case it temporarily hides the outer declaration. The following example
produces an error:

CREATE PROCEDURE example1()
DEFINE n INT; DEFINE j INT;
DEFINE n CHAR (1); -- redefinition produces an error
.
.
.

The following redeclaration is allowed. Within the nested statement block, n
is a character variable. Outside the block, n is an integer variable.

CREATE PROCEDURE example2()
DEFINE n INT; DEFINE j INT;
.
.
.
BEGIN
DEFINE n CHAR (1); -- character n masks integer variable
locally
.
.
.

END
8-44 IBM Informix Guide to SQL: Reference

Declaring GLOBAL Variables
Declaring GLOBAL Variables
The GLOBAL modifier indicates that the list of variables that follows the
keyword GLOBAL are available to other procedures. The types of these
variables must match the types of variables in the global environment. The
global environment is the memory used by all of the procedures run within
a given session (a DB-Access session or an embedded-language program
session). The values of global variables are stored in memory.

Global variables are shared between procedures running in the current
session. Since global variables are not saved in the database, the global
variables are lost when the current session is closed.

Global variables are not shared across procedures running in remote
database servers. Global procedure variables are not shared between the
database server and any application development tools.

The first declaration of a global variable establishes the variable in the global
environment; subsequent global declarations simply bind the variable to the
global environment, establishing the value of the variable at that point.
Consider the following example of two procedures, proc1 and proc2, which
have both defined the global variable gl_out as follows:

CREATE PROCEDURE proc1()
.
.
.
DEFINE GLOBAL gl_out INT DEFAULT 13;
.
.
.
LET gl_out = gl_out + 1;
END PROCEDURE;

CREATE PROCEDURE proc2()
.
.
.
DEFINE GLOBAL gl_out INT DEFAULT 23;
DEFINE tmp INT;
.
.
.
LET tmp = gl_out
.
.
.

END PROCEDURE;
Stored Procedures and SPL 8-45

Declaring GLOBAL Variables
If proc1 is called first, gl_out is set to 13 and then incremented to 14. If proc2
is then called, it sees that the value of gl_out is already defined, so the default
value of 23 is not applied. Then, proc2 assigns the existing value of 14 to tmp.
If proc2 had been called first, gl_out would have been set to 23, and 23 would
have been assigned to tmp. Later calls to proc1 would not apply the default
of 13.

Providing Default Values

You can provide a literal value or a null value as the default for a global
variable. You also can use a call to an SQL function to provide the default
value. The following procedure uses the SITENAME function to provide a
default value. It also defines a global BYTE variable.

CREATE PROCEDURE gl_def()
DEFINE GLOBAL gl_site CHAR(18) DEFAULT SITENAME;
DEFINE GLOBAL gl_byte REFERENCES BYTE DEFAULT NULL;
.
.
.

END PROCEDURE

SITENAME or DBSERVERNAME

If you use the value returned by SITENAME or DBSERVERNAME as the
default, the variable must be a CHAR or VARCHAR value of at least 18
characters.

USER

If you use USER as the default, the variable must be a CHAR or VARCHAR
value of at least 8 characters.
8-46 IBM Informix Guide to SQL: Reference

Declaring Local Variables
CURRENT

If you use CURRENT as the default, the variable must be a DATETIME value.
If your variable has been qualified with the keywords YEAR TO FRACTION,
you can use CURRENT without qualifiers. If your variable uses another set of
qualifiers, you must provide the same qualifiers when you use CURRENT as
the default value. For example, the following DEFINE statement defines a
DATETIME variable with qualifiers and uses CURRENT with matching
qualifiers.

DEFINE GLOBAL d_var DATETIME YEAR TO MONTH
DEFAULT CURRENT YEAR TO MONTH;

TODAY

If you use TODAY as the default, the variable must be a DATE value.

TEXT and BYTE

The only default value possible for a TEXT or BYTE variable is null. For
example, the following procedure defines a global variable call l_blob of type
TEXT:

CREATE PROCEDURE use_text()
DEFINE i INT;
DEFINE GLOBAL l_blob REFERENCES TEXT DEFAULT NULL;

END PROCEDURE

Declaring Local Variables
Nonglobal (local) variables do not allow defaults. The following example
shows typical definitions of local variables.

CREATE PROCEDURE def_ex()
DEFINE i INT;
DEFINE word CHAR(15);
DEFINE b_day DATE;
DEFINE c_name LIKE customer.fname;
DEFINE b_text REFERENCES TEXT ;

END PROCEDURE
Stored Procedures and SPL 8-47

Declaring Local Variables
Declaring Variables LIKE Columns

If you use the LIKE clause, variable name is defined as the same type as the type
of the column in table. The types of variables defined like database columns
are resolved at run time; therefore, column and table need not exist at compile
time.

Declaring Variables as the PROCEDURE Type

The PROCEDURE type indicates that in the current scope, variable name is a
user-defined procedure call and not an SQL function or a system function call.
For example, the following statement defines length as a procedure, not the
SQL LENGTH function. This disables the SQL LENGTH function within the
scope of the statement block. You would use such a definition if you had
created a procedure with the name length prior to defining and using it in
another procedure, as follows:

DEFINE length PROCEDURE;
.
.
.
LET x = length (a,b,c)

If you create a procedure named like an aggregate function (SUM, MAX, MIN,
AVG, COUNT) or one named extend, you must qualify the procedure name
with the owner name.

Declaring Variables for BYTE and TEXT Data

The keyword REFERENCES indicates that variable name is not a BYTE or TEXT
value, but rather, a pointer to the BYTE or TEXT value. You use the variable as
though it holds the data itself.

The following example defines a local BYTE variable:

CREATE PROCEDURE use_blob()
DEFINE i INT;
DEFINE l_blob REFERENCES BYTE;

END PROCEDURE --use_blob
8-48 IBM Informix Guide to SQL: Reference

Declaring Local Variables
If you pass a variable of type TEXT or BYTE to a procedure, the data is passed
to the database server and stored in the root dbspace. You do not need to
know the location or name of the file that holds the data; only the name of the
BYTE or TEXT variable as it is defined in the procedure is needed for BYTE or
TEXT manipulation.
Stored Procedures and SPL 8-49

EXIT
EXIT

Purpose
Use the EXIT statement to stop the execution of a FOR, FOREACH, or WHILE
loop.

Syntax

Usage
The EXIT statement causes the innermost loop of the indicated type (WHILE,
FOR, or FOREACH) to terminate. Execution resumes at the first statement
outside of the loop.

If the EXIT statement cannot find the identified loop, it fails.

Used outside of all loops, the EXIT statement generates errors.

In the following example, an EXIT FOR statement is used. In the FOR loop,
when j becomes 6, the IF condition i = 5 in the WHILE loop is true. Execution
of the FOR loop stops, and execution continues at the next statement outside
of the FOR loop, in this case, the END PROCEDURE statement. Thus, in this
example, the procedure finishes when j equals 6.

CREATE PROCEDURE ex_cont_ex()
DEFINE i,s,j, INT;

FOR j = 1 TO 20
IF j > 10 THEN

CONTINUE FOR;
END IF

LET i,s = j,0;
WHILE i > 0

LET i = i -1;

;EXIT

FOREACH

WHILE

FOR
8-50 IBM Informix Guide to SQL: Reference

Usage
IF i = 5 THEN
EXIT FOR;

END IF
END WHILE

END FOR
END PROCEDURE
Stored Procedures and SPL 8-51

FOR
FOR

Purpose
Use the FOR statement to initiate a controlled (definite) loop in cases where
you want to guarantee termination of the loop. The FOR statement uses
expressions or range operators to establish a finite number of iterations for a
loop.

Syntax

)

,

FOR
variable
name left

expression
TO right

expression
IN (

Statement
Block

p. 7-63
END
FOR

,

expression

;

increment
expression

left
expression

TO right
expression

=

increment
expression

STEP

STEP

expression is a numeric or character value. The data type of expression
must match the data type of the variable name. You can use the
output of a SELECT statement as an expression.

increment is a positive or negative amount by which variable name

expression is to be incremented. The increment expression cannot evalu-
ate to zero.
8-52 IBM Informix Guide to SQL: Reference

Usage
Usage
All expressions are computed before the execution of the FOR statement
begins. If one or more of the expressions are variables and their values are
changed during the loop, the change has no effect on the iterations of the
loop.

The FOR loop terminates when variable name takes on the values of each
element in the expression list or range in succession or when an EXIT FOR
statement is encountered.

An error is generated if an assignment within the body of the FOR statement
attempts to modify the value of variable name.

Using the TO Keyword to Define a Range

The TO keyword implies a range operator; the range is defined by left
expression and right expression, and the number of increments is set implicitly
with the STEP increment expression option. If you use the TO keyword, the
variable must be an INT or SMALLINT data type. The following example
shows two equivalent FOR statements. Both use the TO keyword to define a
range. The first statement uses the IN keyword, while the second statement
uses an equal sign (=). Both statements cause the loop to execute five times.

FOR index_var IN (12 to 21 STEP 2)
-- statement block

END FOR

FOR index_var = 12 TO 21 STEP 2
-- statement block

END FOR

left expression is the starting expression of a range. The left expression must
match the data type of the variable name.

right
expression

is the ending expression in the range.

variable name is a variable that is already defined and valid within this state-
ment block.
Stored Procedures and SPL 8-53

Usage
If you omit the STEP option, increment expression is given the value of -1 if right
expression is less than left expression, or +1 if right expression is more than left
expression. If the increment expression is specified, it must be negative if right
expression is less than left expression, or positive if right expression is more than
left expression. The two statements in the following example are equivalent. In
the first statement, the STEP increment is explicit. In the second statement, the
STEP increment is implicitly 1.

FOR index IN (12 to 21 STEP 1)
-- statement block

END FOR

FOR index = 12 TO 21
-- statement block

END FOR

The value of variable name is initialized to the value of left expression. In subse-
quent iterations, increment expression is added to the value of variable name
and checked to determine whether the value of variable name still is between
left expression and right expression. If so, then the next iteration occurs;
otherwise, the loop is exited or, if there is another range specified, the variable
takes on the value of the first element in the next range.

Specifying Two or More Ranges in a Single FOR Statement

The following example shows a statement that traverses a loop forward and
backward using different increment values for each direction:

FOR index_var IN (15 to 21 STEP 2, 21 to 15 STEP -3)
-- statement body

END FOR

Using an Expression List as the Range

The value of variable name is initialized to the value of the first expression
specified. In subsequent iterations, variable name takes on the value of the next
expression. When the last expression in the list is used, the loop stops.

The expressions in the IN list are not limited to numeric values, as long as no
range operators are used in the IN list. The following example uses a
character expression list:

FOR c IN ("hello", (SELECT name FROM t), "world", v1, v2)
INSERT INTO t VALUES (c);
END FOR
8-54 IBM Informix Guide to SQL: Reference

Usage
The following FOR statement shows the use of a numeric expression list:

FOR index IN (15,16,17,18,19,20,21)
-- statement block

END FOR

Mixing Range and Expression Lists in the Same FOR Statement

If variable name is an INT or SMALLINT value, you can mix ranges and
expression lists in the same FOR statement. The following example shows a
mixture using an integer variable. Values in the expression list include the
value returned from a SELECT statement, a sum of an integer variable and a
constant, the values returned from a procedure named p_get_int, and integer
constants.

CREATE PROCEDURE for_ex ()
DEFINE i, j INT;
LET j = 10;
FOR i IN (1 TO 20, (SELECT c1 FROM tab WHERE id = 1),
j+20 to j-20, p_get_int(99),98,90 to 80 step -2)

INSERT INTO tab VALUES (i);
END FOR

END PROCEDURE
Stored Procedures and SPL 8-55

FOREACH
FOREACH

Purpose
Use a FOREACH loop to select and manipulate more than one row.

Syntax

,

FOREACH SELECT...INTO
Statement

p. 8-58

Statement
Block

p. 7-63

END
FOREACH

;
cursor
name FOR

WITH HOLD

WITH HOLD

EXECUTE
PROCEDURE

Procedure
Name

p. 7-424
()

variable
nameINTO

SPL
Expression

(Subset)
p. 8-59

,

variable
name =

cursor name is an identifier that you supply as a name for the SELECT...
INTO statement.

variable name is the name of a procedure variable.
8-56 IBM Informix Guide to SQL: Reference

Usage
Usage
A FOREACH loop is the procedural equivalent of using a cursor. When a
FOREACH statement is executed, the database server takes the following
actions:

1. A cursor is declared and opened implicitly.

2. The first row is obtained from the query contained within the
FOREACH loop, or the first set of values is obtained from the called
procedure.

3. Each variable in the variable list is assigned the value of the corre-
sponding value from the active set created by the SELECT statement
or the called procedure.

4. The statement block is executed.

5. The next row is fetched from the SELECT statement or called
procedure on each iteration; step 3 is repeated.

6. The loop terminates when no more rows are found that satisfy the
SELECT statement or called procedure. The implicit cursor is closed
when the loop terminates.

Since the statement block can contain additional FOREACH statements,
cursors can be nested. There is no limit to the number of cursors that can be
nested.

A procedure that returns more than one row or set of values is called a cursory
procedure.

The following procedure illustrates the three types of FOREACH statements:
with a SELECT...INTO clause, with an explicitly named cursor, and with a
procedure call.
Stored Procedures and SPL 8-57

Using a SELECT...INTO Statement
CREATE PROCEDURE foreach_ex()
DEFINE i, j INT;

FOREACH SELECT c1 INTO i FROM tab order by 1
INSERT INTO tab2 VALUES (i);

END FOREACH

FOREACH cur1 FOR SELECT c2, c3 INTO i, j FROM tab
IF j > 100 THEN

DELETE FROM tab WHERE CURRENT OF cur1;
CONTINUE FOREACH;

END IF
UPDATE tab SET c2 = c2 + 10 WHERE CURRENT OF cur1;

END FOREACH

FOREACH EXECUTE PROCEDURE bar(10,20) INTO i
INSERT INTO tab2 VALUES (i);

END FOREACH
END PROCEDURE -- foreach_ex

A select cursor is closed when any of the following situations occur:

� No further rows are returned by the cursor.

� The cursor is a select cursor without a HOLD specification and a
transaction is completed using COMMIT or ROLLBACK statements.

� An EXIT statement is executed that transfers control out of the
FOREACH statement.

� An exception occurs that is not trapped inside the body of the
FOREACH statement. (See the ON EXCEPTION statement on
page 8-67.)

� A cursor in the calling procedure that is executing this cursory
procedure (within a FOREACH loop) is closed for any reason.

Using a SELECT...INTO Statement
The SELECT statement in the FOREACH statement must include the INTO
clause. It also can include UNION and ORDER BY clauses. It cannot use the
INTO TEMP clause. The syntax of a SELECT statement is shown on page 7-258.

The type and count of each variable in the variable list must match each value
returned by the SELECT...INTO statement.
8-58 IBM Informix Guide to SQL: Reference

Calling a Procedure in the FOREACH Loop
Hold Cursors

Using the WITH HOLD keywords specifies that the cursor should remain
open when a transaction is closed (committed or rolled back).

Updating or Deleting Rows Identified by Cursor Name.

To update or delete the current row of cursor name, use the WHERE CURRENT
OF cursor name clause.

Calling a Procedure in the FOREACH Loop
The called procedure can return zero or more rows.

The type and count of each variable in the variable list must match each value
returned by the called procedure.

Subset of Expressions Allowed in the Procedure Parameters

You can use any SPL expression as a procedure parameter. If you use a
subquery or procedure call, the subquery or procedure must return a single
value of the appropriate type and size. For the full syntax of an SPL
expression, see page 8-23.
Stored Procedures and SPL 8-59

IF
IF

Purpose
Use an IF statement to create a branch within a procedure.

Syntax

Usage
The condition stated in the IF clause is evaluated. If the result is true, then the
statements following the THEN keyword are executed. If the result is false
and there is an ELIF clause, the statements following the ELIF clause are
executed. If there is no ELIF clause, or if the condition in the ELIF clause is not
true, the statements following the ELIF keywords are executed.

In the following example, the procedure uses an IF statement with both an
ELIF clause and an ELSE clause. The IF statement compares two strings and
displays a 1 to indicate that the first string comes before the second string
alphabetically, or a -1 if the first string comes after the second string alpha-
betically. If the strings are the same, a zero is returned.

;

IF Condition
p. 7-345

THEN

ELIF Condition
p. 7-345 THEN IF Statement

List
p. 8-62

IF Statement
List

p. 8-62

END IF

IF Statement
List

p. 8-62

ELSE
8-60 IBM Informix Guide to SQL: Reference

Usage
CREATE PROCEDURE str_compare (str1 CHAR(20), str2 CHAR(20))
RETURNING INT;
DEFINE result INT;

IF str1 > str2 then
result =1;

ELIF str2 > str1 THEN
result = -1;

ELSE
result = 0;

END IF
RETURN result;

END PROCEDURE -- str_compare

The ELIF Clause

Use the ELIF clause to specify one or more additional conditions to evaluate.

If you specify an ELIF clause and the IF condition is false, the ELIF condition
is evaluated. If the ELIF condition is true, the statements following the ELIF
clause are executed.

The ELSE Clause

The ELSE clause is executed if no true previous condition is in the IF clause or
any of the ELIF clauses.

Conditions in an IF Statement

Conditions in an IF statement are evaluated in the same way as conditions in
a WHILE statement.

If any expression contained within the condition evaluates to null, then the
condition automatically becomes not true. In particular:

1. Let the expression x evaluate to null. Then x is not true by definition.
Furthermore, not (x) is also not true.

2. The only operator that can yield true for x is the IS NULL operator.
That is, x IS NULL is true and x IS NOT NULL is not true.

If an expression within the condition has an UNKNOWN value (due to the
use of an uninitialized variable), it is an immediate error. The statement
terminates and an exception is raised.
Stored Procedures and SPL 8-61

Usage
IF Statement List

Statement
Block

p. 7-63

 BEGIN END

CONTINUE
Statement

p. 8-40

IF
Statement

p. 8-60

EXIT
Statement

p. 8-50

FOR
Statement

p. 8-52

FOREACH
Statement

p. 8-56

LET
Statement

p. 8-64

RAISE EXCEPTION
Statement

p. 8-73

RETURN
Statement

p. 8-75

TRACE
Statement

p. 8-80

WHILE
Statement

p. 8-84

SYSTEM
Statement

p. 8-78

CALL
Statement

p. 8-37

SQL Statement
8-62 IBM Informix Guide to SQL: Reference

Usage
Subset of SQL Statements Allowed in an IF Statement

You can use any SQL statement in the statement block except for those in the
following list:

� CHECK TABLE

� CLOSE DATABASE

� CREATE DATABASE

� CREATE PROCEDURE

� DATABASE

� INFO

� LOAD

� OUTPUT

� REPAIR TABLE

� ROLLFORWARD DATABASE

� START DATABASE

� UNLOAD

You can use a SELECT statement only if you use the INTO TEMP clause to put
the results of the SELECT statement into a temporary table.
Stored Procedures and SPL 8-63

LET
LET

Purpose
Use the LET statement to assign values to variables. You also can use the LET
statement to call a procedure within a procedure and assign the returned
values to variables.

Syntax

Usage
If you assign a value to a single variable, it is called a simple assignment; if you
assign values to two or more variables, it is called a compound assignment.

At run time, the value of the SPL expression is computed first. The resulting
value is converted to the type of variable name, if possible, and the assignment
takes place. If conversion is not possible, an error is generated and the value
of variable name is undefined.

,

,

variable
nameLET = Procedure

Name
p. 7-424

,

(
SPL

 Expression
p. 8-23

;)

SPL
 Expression

p. 8-23

called
variable =

,

called variable is a procedure variable of the called procedure.

variable name is a procedure variable.
8-64 IBM Informix Guide to SQL: Reference

Usage
A compound assignment assigns multiple expressions to multiple variables.
The count and type of expressions in the expression list must match the count
and type of the corresponding variables in the variable list.

The following example shows several LET statements that assign values to
procedure variables:

LET a = c + d ;
LET a,b = c,d ;
LET expire_dt = end_dt + 7 UNITS DAY;
LET name = "Brunhilda";
LET sname = DBSERVERNAME;
LET this_day = TODAY;

You cannot use multiple values to operate on other values. For example, the
following statement is not legal:

LET a,b = (c,d) + (10,15); -- ILLEGAL EXPRESSION

Using a SELECT Statement in a LET Statement

Using a SELECT statement in a LET statement is equivalent to using a
SELECT...INTO procedure-variable statement in a procedure. You can use a
SELECT statement to assign values to one or more variables on the left-hand
side of the = operator. The following examples use a SELECT statement in a
LET statement:

LET a,b = (SELECT c1,c2 FROM t WHERE id = 1);
LET a,b,c = (SELECT c1,c2 FROM t WHERE id = 1), 15;

You cannot use a SELECT statement to make multiple values operate on other
values. For example, the following code is not legal:

LET a,b = (SELECT c1,c2 FROM t) + (10,15); -- ILLEGAL CODE

Because a LET statement is equivalent to a SELECT...INTO statement, the
following two statements in this procedure have the same results: a=c and
b=d:

CREATE PROCEDURE proof()
DEFINE a, b, c, d INT;
LET a,b = (SELECT c1,c2 FROM t WHERE id = 1);
SELECT c1, c2 INTO c, d FROM t WHERE id = 1

END PROCEDURE

If the SELECT statement returns more than one row, the SELECT statement
must be enclosed in a FOREACH loop.
Stored Procedures and SPL 8-65

Usage
Calling a Procedure in a LET Statement

You can call a procedure in a LET statement and assign the returned values to
variables. If the LET statement includes a procedure call, it invokes the named
procedure. You must specify all of the necessary arguments to the procedure
in the LET statement, unless the procedure has default values for its
arguments.

If you use the variable name = syntax for one of the parameters in the called
procedure, you must use it for all of the parameters.

The variable name receives the returned value from a procedure call. A
procedure can return more than one value into a list of variable names. A
procedure that returns more than one row must be enclosed in a FOREACH
loop.

The following example shows two valid LET statements that contain
procedure calls. The third LET statement is not legal, because it tries to have
the output of two procedures added and then assigned to two variables, a
and b. This LET statement can be split easily into two legal LET statements:

LET a, b, c = proc1(name = "grok", age = 17);
LET a, b, c = 7, proc ('orange', 'green');
LET a, b = proc1() + proc2(); -- ILLEGAL CODE
8-66 IBM Informix Guide to SQL: Reference

ON EXCEPTION
ON EXCEPTION

Purpose
Use the ON EXCEPTION statement to specify the actions that are taken for a
particular error or a set of errors.

Syntax

,
ON EXCEPTION

Statement
Block

p. 7-63
END EXCEPTION

error
number

IN)(

SET
SQL
error

variable

;

error
data

variable

WITH RESUME

,

ISAM
error

variable

,

error data
variable

is a literal string or a variable that contains a string returned by
an SQL error.

error number is an SQL error number, or an error number created by a RAISE
EXCEPTION statement, that is to be trapped.

ISAM error
variable

is an integer variable that receives the ISAM error number of
the exception raised.

SQL error
variable

is an integer variable that receives the SQL error number of the
exception raised.
Stored Procedures and SPL 8-67

Usage
Usage
The ON EXCEPTION statement, together with the RAISE EXCEPTION
statement, provides an error-trapping and recovery mechanism for SPL. The
ON EXCEPTION statement defines a list of errors that are to be trapped as the
procedure executes and specifies the action (within the statement block) to
take when the trap is triggered. If the IN clause is omitted, all errors are
trapped.

You can use more than one ON EXCEPTION statement within a given
statement block.

The scope of an ON EXCEPTION statement is the statement block that follows
the ON EXCEPTION statement, all of the statement blocks nested within that
following statement block, and all of the statement blocks that follow the ON
EXCEPTION statement.

The exceptions trapped can be either system- or user-defined.

When an exception is trapped, the error status is cleared.

If you specify a variable to receive an ISAM error and there is no accompa-
nying ISAM error, a zero is returned to the variable. If you specify a variable
to receive the returned error text and there is none, an empty string is put into
the variable.
8-68 IBM Informix Guide to SQL: Reference

Usage
Placement of the ON EXCEPTION Statement

The ON EXCEPTION statement is a declarative statement, not an executable
statement. For this reason, you must use the ON EXCEPTION statement before
any executable statement and after any DEFINE statement in a procedure.

The following example shows the correct placement of an ON EXCEPTION
statement. The ON EXCEPTION statement is used after the DEFINE statement
and before the body of the procedure. This procedure inserts a set of values
into a table. If the table does not exist, it is created and the values are inserted.
The procedure also returns the total number of rows in the table after the
insert takes place.

CREATE PROCEDURE add_salesperson(last CHAR(15),
 first CHAR(15))

RETURNING INT;
DEFINE x INT;
ON EXCEPTION IN (-206) -- If no table was found, create one

CREATE TABLE emp_list
 (lname CHAR(15),fname CHAR(15), tele CHAR(12);

INSERT INTO emp_list VALUES -- and insert values
 (last, first, "800-555-1234");

END EXCEPTION WITH RESUME
INSERT INTO emp_list VALUES (last, first, "800-555-1234")
LET x = SELECT count(*) FROM emp_list;
RETURN x;

END PROCEDURE;

When an error occurs, the database server searches for the last declaration of
the ON EXCEPTION statement that traps the particular error code. This can be
an ON EXCEPTION statement that has the error number in the IN clause, or an
ON EXCEPTION statement without an IN clause. If no pertinent ON
EXCEPTION statement is found, the error code is passed back to the caller
(procedure, application, or interactive user), and execution aborts.
Stored Procedures and SPL 8-69

Using the IN Clause to Trap Specific Exceptions
The following example uses two ON EXCEPTION statements with the same
error number so that error number 691 can be trapped in two different levels
of nesting:

CREATE PROCEDURE delete_cust (cnum INT)
ON EXCEPTION IN (-691) -- children exist

BEGIN -- Begin-end is necessary so that other DELETEs
 -- don't get caught in here.
ON EXCEPTION IN (-691)

DELETE FROM another_child WHERE num = cnum;
DELETE FROM orders WHERE customer_num = cnum;

END EXCEPTION -- for 691

DELETE FROM orders WHERE customer_num = cnum;
END

 DELETE FROM cust_calls WHERE customer_num = cnum;
 DELETE FROM customer WHERE customer_num = cnum;
 END EXCEPTION
 DELETE FROM customer WHERE customer_num = cnum;
END PROCEDURE

Using the IN Clause to Trap Specific Exceptions
A trap is triggered if either the SQL error code or the ISAM error code matches
an exception code in the list of error numbers. The search through the list
begins from the left and stops with the first match.

You can use a combination of an ON EXCEPTION statement without an IN
clause and one or more ON EXCEPTION statements with an IN clause to set
up a default trapping situation. For example, the sequence of statements in
the following example has a net effect of saying, “Test for an error. If it is error
-210, -211, or -212, take action A. If it is error -300, take action B. If it is any
other error, take action C.”
8-70 IBM Informix Guide to SQL: Reference

Receiving Error Information in the SET Clause
CREATE PROCEDURE ex_test ()
.
.
.
ON EXCEPTION
SET error_num
-- action C
END EXCEPTION

ON EXCEPTION IN (-300)
-- action B
END EXCEPTION
ON EXCEPTION IN (-210, -211, -212)
SET error_num
-- action A
END EXCEPTION
.
.
.

Receiving Error Information in the SET Clause
If you use the SET clause, when an exception occurs, the SQL error number
and (optionally) the ISAM code are inserted into the variables specified in the
SET clause. If you provided an error data variable, any error text returned by
the database server is put into the error data variable. Error text includes such
information as the offending table or column name.

Forcing Continuation of the Procedure with the WITH
RESUME Keywords
The example on page 8-69 uses the WITH RESUME keywords to indicate that
after the statement block in the ON EXCEPTION statement is executed,
execution is to continue at the LET x = SELECT COUNT(*) FROM emp_list

statement, which is the line following the line that raised the error. For this
procedure, this means that the count of salespeople names occurs even if the
error occurred.
Stored Procedures and SPL 8-71

Forcing Continuation of the Procedure with the WITH RESUME Keywords
Continuation of Procedure Execution After an Exception Occurs

If you do not include the WITH RESUME keywords in your ON EXCEPTION
statement, after an exception is raised the next statement executed depends
on the placement of the ON EXCEPTION statement, as follows:

� If the ON EXCEPTION statement is inside a statement block with a
BEGIN and an END keyword, then execution resumes with the first
statement (if any) after that BEGIN...END block. That is, it resumes
after the scope of the ON EXCEPTION statement.

� If the ON EXCEPTION statement is inside a loop (FOR, WHILE,
FOREACH), then the rest of the loop is skipped and execution
resumes with the next iteration of the loop.

� If the ON EXCEPTION statement is not contained within any
statement or block but only in the procedure itself, then the
procedure terminates by executing a RETURN statement with no
arguments. That is, the procedure returns a successful status and no
values.

Errors Within the ON EXCEPTION Statement Block

To prevent an infinite loop, if an error occurs during execution of the
statement block of an error trap, the search for another trap does not include
the current trap.
8-72 IBM Informix Guide to SQL: Reference

RAISE EXCEPTION
RAISE EXCEPTION

Purpose
Use the RAISE EXCEPTION statement to simulate the generation of an error.

Syntax

Usage
The RAISE EXCEPTION statement is used to simulate an error. The generated
error can be trapped by an ON EXCEPTION statement.

If the ISAM error expression is omitted, the ISAM error code is set to zero when
the exception is raised. (If you want to use the error text field but not specify
the ISAM error number portion, you can ISAM error be zero.) For example, the
following statement raises the error number 99999 and returns the stated
text:

RAISE EXCEPTION -99999, 0, "You broke the rules";

The exceptions raised can be either system- or user-generated.

RAISE EXCEPTION ;SQL
error

ISAM
error,

error
text,

error text is a quoted string or variable that contains a string to be
returned by the SQL error.

ISAM error is an SPL expression that evaluates to an integer value that is a
valid ISAM error number.

SQL error is an SPL expression that evaluates to an integer value that is a
valid SQL error number.
Stored Procedures and SPL 8-73

Usage
In the following example, if the value of a is negative, exception 99999 is
raised. An ON EXCEPTION statement that traps for an exception of 99999
should be somewhere in the code.

FOREACH SELECT c1 INTO a FROM t
IF a < 0 THEN
RAISE EXCEPTION 99999-- emergency exit
END IF
END FOREACH

See the ON EXCEPTION statement for more information about scope and
compatibility of exceptions.
8-74 IBM Informix Guide to SQL: Reference

RETURN
RETURN

Purpose
Use the RETURN statement to designate the values that are returned by the
procedure to the calling module.

Syntax

Usage
The RETURN statement returns zero or more values to the calling process.

All the RETURN statements in the procedure must be consistent with the
RETURNING clause of the CREATE PROCEDURE statement that defined the
procedure. The number and type of values in the RETURN statement, if any,
must match in number and type the types listed in the RETURNING clause of
the CREATE PROCEDURE statement. You can choose to return no values even
if you specified one or more values in the RETURNING clause. If you use a
RETURN statement without any expressions but the calling procedure or
program expects one or more return values, it is equivalent to returning the
expected number of null values to the calling program.

,
RETURN

SPL
 Expression

p. 8-23
WITH RESUME

;

Stored Procedures and SPL 8-75

The WITH RESUME Keywords
In the following example, the procedure includes two acceptable RETURN
statements. A program that calls this procedure should check if no values are
returned and act accordingly.

CREATE PROCEDURE two_returns (stockno INT)
RETURNING CHAR (15);
DEFINE des CHAR(15);
ON EXCEPTION (-272) -- if user doesn’t have select privs...

RETURN; -- return no values.
END EXCEPTION;
SELECT DISTINCT descript INTO des FROM stock

WHERE stocknum = stockno;
ßRETURN des;

END PROCEDURE

A RETURN statement without any expressions exits, returning no value.

The WITH RESUME Keywords
If you use the WITH RESUME keywords after the RETURN statement executes,
the next invocation of this procedure (upon the next FETCH or FOREACH
statement) starts from the statement following the RETURN statement. If a
procedure executes a RETURN WITH RESUME statement, it must be called
from a FOREACH loop in the calling procedure or program.

If a procedure executes a RETURN WITH RESUME statement, it can be called
with a FETCH statement in an application written in an embedded
language. ♦

The following example shows a cursory procedure that can be called by
another procedure. After the RETURN i WITH RESUME statement returns each
value to the calling procedure, the next time sequence is called, the next line
of sequence is executed. If backwards equals 0, no value is returned to the
calling procedure and execution of sequence stops.

ESQL
8-76 IBM Informix Guide to SQL: Reference

The WITH RESUME Keywords
CREATE PROCEDURE sequence (limit INT, backwards INT)
RETURNING INT;
DEFINE i INT;

FOR i IN (1 TO limit)
RETURN i WITH RESUME;

END FOR

IF backwards = 0 THEN
RETURN;

END IF

FOR i IN (limit TO 1)
RETURN i WITH RESUME;

END IF
END PROCEDURE -- sequence
Stored Procedures and SPL 8-77

SYSTEM
SYSTEM

Purpose
Use the SYSTEM statement to make an operating system command run from
within a procedure.

Syntax

Usage
If the supplied expression is not a character expression, expression is converted
to a character expression before the operating system command is made. The
complete character expression is passed to the operating system and
executed as an operating system command.

The operating system command specified by the SYSTEM statement cannot
run in the background. The database server waits for the operating system to
complete execution of the command before continuing to the next procedure
statement.

Your procedure cannot use a value or values returned by the command.

If the operating system command fails, that is, if the operating system returns
a non-zero status for the command, an exception is raised containing the
returned operating system status as the ISAM error code and an appropriate
SQL error code.

character
expression

is any expression that is a user-executable operating system
command.

character
variable

is a variable that contains a valid operating system command.

character expression"SYSTEM ;"

character variable
8-78 IBM Informix Guide to SQL: Reference

Usage
In both DBA-privileged and owner-privileged procedures that contain
SYSTEM statements, the operating system command is run with the permis-
sions of the user executing the procedure.

The following example shows the use of a SYSTEM statement:

CREATE PROCEDURE sensitive_update()
.
.
.
LET mailcall = "mail headhoncho < alert"
-- code that evaluates if operator tries to execute a
certain
-- command, then send email to system administrator
SYSTEM mailcall
.
.
.

END PROCEDURE -- sensitive_update

As with other statements, you can use a double pipe symbol (||) to concat-
enate expressions together with a SYSTEM statement, as follows:

CREATE PROCEDURE sensitive_update2()
.
.
.
-- code that evaluates if operator tries to execute a
certain
-- command, then send email to system administrator
SYSTEM "mail -s violation" ||user1 || " " ||

 user2 || " < violation_file"
.
.
.

END PROCEDURE
Stored Procedures and SPL 8-79

TRACE
TRACE

Purpose
Use the TRACE statement to control the generation of debugging output.

Syntax

Usage
Using the TRACE statement generates output that is sent to the file specified
by the SET DEBUG FILE statement.

Tracing prints out the current values of all the following items:

� Variables

� Procedure arguments

� Return values

� SQL error codes

� ISAM error codes

The output of each executed TRACE statement is on a separate line.

If you use the TRACE statement without first specifying a DEBUG file to
contain the output, an error is generated.

TRACE ON

OFF

PROCEDURE

SPL
Expression

p. 8-23

;

8-80 IBM Informix Guide to SQL: Reference

Usage
The trace state is inherited by called procedures. That is, a called procedure
assumes the same trace state (ON, OFF, or PROCEDURE) as the calling
procedure. The called procedure can set its own trace state, but that state is
not passed back to the calling procedure.

The trace state is not inherited by a procedure that is executed in a remote
database server. ♦

TRACE ON

If you specify the keyword ON, all statements are traced. The values of
variables (in expressions or otherwise) are printed before they are used.
Turning tracing ON implies tracing both procedure calls and statements in
the body of the procedure.

TRACE OFF

If you specify the keyword OFF, all tracing is turned off.

TRACE PROCEDURE

If you specify the keyword PROCEDURE, only the procedure calls and return
values are traced, not the body of the procedure.

Printing Expressions

You can use the TRACE statement with a quoted string or an expression to
display values or comments in the output file. If the expression is not a literal
expression, the expression is evaluated before being written to the output file.

You can use the TRACE statement with an expression even if you used a
TRACE OFF statement earlier in a procedure. However, you must have estab-
lished a trace-output file using the SET DEBUG statement.

STAR

INET
Stored Procedures and SPL 8-81

Usage
The following example uses the TRACE statement with an expression:

CREATE PROCEDURE tracing ()
DEFINE i INT;

BEGIN
ON EXCEPTION IN (1)
END EXCEPTION; -- do nothing
TRACE OFF;
SET DEBUG FILE TO "/tmp/foo.trace";
TRACE "Forloop starts";
FOR i IN (1 TO 1000)

BEGIN
TRACE "FOREACH starts";
FOREACH SELECT...INTO a FROM t

IF <some condition> THEN
RAISE EXCEPTION 1 -- emergency exit

END IF
END FOREACH

-- return some value
END

END FOR

-- do something
END;
END PROCEUDRE

The following example shows additional TRACE statements:

CREATE PROCEDURE testproc()
DEFINE i INT;

TRACE OFF;
SET DEBUG FILE TO "/tmp/test.trace";
TRACE 'Entering foo';

TRACE PROCEDURE;
LET i = testtoo();

TRACE ON;
LET i = i + 1;

TRACE OFF;
TRACE 'i+1 = ' || i+1;
TRACE 'Exiting testproc';

SET DEBUG FILE TO "/tmp/test2.trace";

END PROCEDURE;
8-82 IBM Informix Guide to SQL: Reference

Looking at the Traced Output
Looking at the Traced Output
To see the traced output, use an editor or utility to display or read the
contents of the file.
Stored Procedures and SPL 8-83

WHILE
WHILE

Purpose
Use the WHILE statement to establish an indefinite loop within a procedure.

Syntax

Usage
The condition is evaluated once at the beginning of the loop. Subsequently,
the condition is evaluated at the beginning of each iteration. The statement
block is executed as long as the condition remains true. The loop terminates
when the condition evaluates to not true.

If any expression contained within the condition evaluates to NULL, the
condition automatically becomes not true unless you are explicitly testing for
the IS NULL condition.

If an expression within the condition has an UNKNOWN value because it
references uninitialized procedure variables, it is an immediate error. In this
case, the loop terminates and an exception is raised.

CREATE PROCEDURE simp_while()
DEFINE i INT;
DEFINE pf_name CHAR(15);
WHILE EXISTS (SELECT fname INTO pf_name FROM customer

 WHERE customer_num > 400)
DELETE FROM customer WHERE id_2 = 2;

END WHILE

LET i = 1;
WHILE i < 10

INSERT INTO tab_2 VALUES (i);
LET i = i +1;

END WHILE;
END PROCEDURE;

WHILE Condition
p. 7-345

Statement
Block

p. 7-63
END WHILE

;

8-84 IBM Informix Guide to SQL: Reference

A
Appendix
Notices
IBM may not offer the products, services, or features discussed
in this document in all countries. Consult your local IBM repre-
sentative for information on the products and services currently
available in your area. Any reference to an IBM product,
program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does
not infringe any IBM intellectual property right may be used
instead. However, it is the user’s responsibility to evaluate and
verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering
subject matter described in this document. The furnishing of this
document does not give you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information,
contact the IBM Intellectual Property Department in your
country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not
apply to you.

This information could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein; these
changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and condi-
tions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equiv-
alent agreement between us.
A-2 IBM Informix Guide to SQL: Reference

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environ-
ments may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measure-
ments will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for
their specific environment.

Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to
change or withdrawal without notice, and represent goals and objectives
only.

All IBM prices shown are IBM’s suggested retail prices, are current and are
subject to change without notice. Dealer prices may vary.

This information contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names
and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language,
which illustrate programming techniques on various operating platforms.
You may copy, modify, and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested
under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for
the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.
Notices A-3

Trademarks
Each copy or any portion of these sample programs or any derivative work,
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs. © Copyright IBM Corp. (enter the
year or years). All rights reserved.

If you are viewing this information softcopy, the photographs and color illus-
trations may not appear.

Trademarks
AIX; DB2; DB2 Universal Database; Distributed Relational Database
Architecture; NUMA-Q; OS/2, OS/390, and OS/400; IBM Informix;
C-ISAM; Foundation.2000TM; IBM Informix 4GL; IBM Informix

DataBlade Module; Client SDKTM; CloudscapeTM; CloudsyncTM;
IBM Informix Connect; IBM Informix Driver for JDBC; Dynamic
ConnectTM; IBM Informix Dynamic Scalable ArchitectureTM (DSA);
IBM Informix Dynamic ServerTM; IBM Informix Enterprise Gateway
Manager (Enterprise Gateway Manager); IBM Informix Extended Parallel
ServerTM; i.Financial ServicesTM; J/FoundationTM; MaxConnectTM; Object
TranslatorTM; Red Brick Decision ServerTM; IBM Informix SE;
IBM Informix SQL; InformiXMLTM; RedBack; SystemBuilderTM; U2TM;
UniData; UniVerse; wintegrate are trademarks or registered trademarks
of International Business Machines Corporation.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other
countries.

Windows, Windows NT, and Excel are either registered trademarks or trade-
marks of Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through X/Open Company Limited.

Other company, product, and service names used in this publication may be
trademarks or service marks of others.
A-4 IBM Informix Guide to SQL: Reference

Glossary
Glossary
abort To interrupt an active process before completion. The status of
data may not be the same as it was before the process began.

access method A procedure used to retrieve rows from or insert rows into a stor-
age location. In the SET EXPLAIN statement, access method refers
to the type of table access in a query, for example, SEQUENTIAL
SCAN as opposed to INDEX PATH.

access mode The status of an open file that determines read and write access
to that file.

access privileges The types of activities that a database user has permission to per-
form in a specific database, table, or column. Informix database
servers maintain their own set of database access privileges that
are independent of the operating system access privileges for
system files.

active set The collection of rows satisfying a query associated with a cur-
sor.

aggregate
functions

The functions that return a single value based on the values of
columns in one or more rows of a table. Examples are the total
number, sum, average, maximum, or minimum of an expression
in a query or report. Aggregate functions sometimes are referred
to as ‘‘set functions’’ or ‘‘math functions.’’

alias A temporary alternative name for a table in a query. Usually
used in complex subqueries and required for self-joins. In a
form-specification file or any SQL query, alias refers to a single-
word alternative name used in place of a more complex table
name (for example, owner.table name).

ANSI Acronym for the American National Standards Institute. ANSI sets standards
for the computer industry, including standards for SQL languages.

ANSI-compliant Refers to a database that conforms to certain ANSI performance standards.
Informix databases can be created either as ANSI-compliant or not ANSI-com-
pliant. An ANSI-compliant database enforces certain ANSI requirements that
are not enforced in databases that are not ANSI-compliant, such as implicit
transactions, required owner-naming, and no buffered logging (when using
IBM Informix OnLine).

application
development tool

Refers to software such as IBM Informix SQL, IBM Informix 4GL, and
IBM Informix ESQL that a developer can use to create and maintain a data-
base. The software allows a user to send instructions and data to and receive
information from the database server. An application development tool
sometimes is referred to as the ‘‘front end.’’

application
productivity tools

Tools, such as forms and reports, used to write applications.

application
program

A file or logically related set of files that perform one or more database man-
agement tasks.

application tool
process

A process that provides the user interface and communicates with either a
database server or an IBM Informix NET product.

archiving Refers to copying all the data and indexes of a database onto a new medium,
usually a tape or a different physical device from the one that stores the data-
base.

argument A value passed to a function, routine, or command.

array A set of items of the same type. Individual members of the array are referred
to as elements and are usually distinguished by an integer argument that gives
the position of the element in the array. Informix arrays can have up to three
dimensions.

ASCII Acronym for the American Standards Committee for Information Inter-
change. Often used to describe an ordered set of printable and non-printable
characters used in computers and telecommunication.

attribute The qualifier for the method of displaying or verifying data in fields of a
screen form.

audit trail A history of all changes to a table in IBM Informix SE database servers.
2 IBM Informix Guide to SQL: Reference

audit trail log A file containing a history of all changes to a table. Starting from an archived
database, an audit trail log can reconstruct all subsequent changes to the table
in IBM Informix SE database servers.

B+ tree A method of organizing an index for efficient retrieval of records.

backup To make a duplicate of a computer file on another device or tape to preserve
existing work, in case of a computer failure or other mishap.

before-image The image of a row, page, or other item before any changes are made to it.

blob descriptor The 56-byte pointer that is stored in a blob column position in a row that
includes blob data. The descriptor points to the first segment of the dbspace
or blobspace blobpage where the blob data is stored.

blobs An acronym for Binary Large Objects, blobs are data objects that effectively
have no maximum size (theoretically as large as 231 bytes).

blobpage The unit of disk allocation within a blobspace in IBM Informix OnLine. The
System Administrator determines the size of a blobpage; the size can vary
from blobspace to blobspace.

blobspace A logical collection of chunks used to store TEXT and BYTE data in
IBM Informix OnLine.

Boolean A variable or an expression that can take on the logical values TRUE (1),
FALSE (0), or UNKNOWN (if null values are involved).

breakpoint A named object, specified by a debugger, that the programmer can associate
with a statement, program block, variable, or logical condition. When a
breakpoint is reached, program execution is suspended, allowing the pro-
grammer to examine the current value of program variables or the execution
stack and to optionally execute debugger commands at that point. A break-
point must be enabled to take effect. See debugger.

buffer A portion of computer memory where a program temporarily stores data.
Data typically is read into or written out from buffers to disk.

buffered log Holds transactions in a memory buffer until the buffer is full, regardless of
when the transaction is committed or rolled back. IBM Informix OnLine pro-
vides this option to speed operations by reducing the number of disk writes.

byte A unit of storage, approximately corresponding to one character. A kilobyte
is 1024 bytes. A megabyte is 106 bytes. (When BYTE appears in uppercase let-
ters, it refers to the Informix data type.)
Glossary 3

capability Codes used in a termcap file or terminfo directory that specify terminal func-
tions, such as the size of the screen or whether to clear the screen.

Cartesian
product

The set that results when you pair each and every member of one set with
each and every member of another set. A Cartesian product results from a
multiple-table query when you do not specify the joining conditions among
tables. See join.

case sensitivity The condition of distinguishing between upper- and lowercase letters. Care
should be taken in running IBM Informix programs; certain commands and
their options are case sensitive, that is, they react differently to the same let-
ters presented in uppercase and lowercase letters.

check constraint A condition that must be met before data can be assigned to a table column
during an INSERT or UPDATE statement. Check constraints are defined using
search conditions.

checkpoint A point in time during IBM Informix OnLine operation when the pages on
disk are synchronized with the pages in the shared-memory buffer pool.
Checkpoints are marked by a special record written into the logical log.

chunk A large continuous section of disk space for IBM Informix OnLine. A chunk
can correspond to a UNIX disk partition. A specified set of chunks defines a
dbspace or blobspace.

client A computer on a network that uses the resources of a file server or database
server.

client/server
architecture

Hardware and software design that allows the user interface and database
server to reside on separate nodes or platforms on a network.

client/server
processing

A function that allows an application to run on multiple computers across a
network using the processing power of the computers involved.

close a cursor To drop the association between the active set of rows resulting from a query
and a cursor.

close a database To relinquish the ‘‘current’’ status of a database. Only one current database
can exist at a time.

close a file To release the association between a file and a program.

cluster an index To rearrange the physical data of a table according to a specific index.
4 IBM Informix Guide to SQL: Reference

column A data element containing a particular type of information that occurs in
every row of the table. Column also can refer to a position on the screen or in
a window.

command file A system file containing one or more statements or commands, such as SQL
statements or a sequence of programming code.

comment Information in a program file, report specification, or screen form that is not
processed by the computer but that documents the program. You use special
characters, such as a pound sign (#), curly braces ({ }), or an asterisk (*) to
identify comments.

COMMIT WORK To terminate a transaction by accepting all changes to the database since the
beginning of the transaction.

COMMITTED
READ

A level of process isolation available through IBM Informix OnLine in which
a user can view only rows that are currently committed at the moment of the
query request; that is, a user cannot view rows that were changed as a part of
a currently uncommitted transaction. It is the default level of isolation under
IBM Informix OnLine for databases that are not ANSI-compliant. See process
isolation.

compile To translate a file containing instructions (in a higher level language) into a
file containing the corresponding machine-level instructions.

compile-time
errors

Errors that occur at the time the program source code is converted to execut-
able form. See run-time errors.

composite index An index constructed on two or more columns of a table. The ordering
imposed by the composite index varies least frequently on the first named
column and most frequently on the last named column.

composite join A join between two tables based on the relationship among two or more col-
umns in each table.

concatenate To form the character string that results when a second string is appended to
the end of a first string.

concatenation
operator

A symbolic notation composed of two pipe symbols (||) used in expressions
to indicate the joining of two strings.

concurrency The ability of two or more processes to access the same database
simultaneously.
Glossary 5

configuration file A file that IBM Informix OnLine uses on initialization that contains configura-
tion data.The configuration file is specified as follows:
$INFORMIXDIR/etc/$TBCONFIG.

constant A non-varying data element or value.

constraint Places restrictions on what kinds of data can be inserted or updated in tables.
See also check constraint, primary key constraint, referential constraint, and unique
constraint.

control character A character whose occurrence in a particular context initiates, modifies, or
stops a control function (an operation to control a device, for example, in
moving a cursor or in reading data). In a program, you can define actions that
use the CTRL key in conjunction with another key to execute some program-
ming action (for example, entering CTRL-W to obtain on-line help in
IBM Informix products). A control character is sometimes referred to as a
‘‘control key.’’ See printable character.

corrupted
database

A database whose tables or indexes contain incomplete or invalid data.

corrupted index An index that does not correspond exactly to its table.

cursor An identifier associated with a group of rows. Conceptually, the pointer to
the current row. You can use cursors for SELECT statements (associating the
cursor with the rows returned by a query) or INSERT statements (associating
the cursor with a buffer to insert multiple rows as a group). A select cursor is
declared for sequential only (regular cursor) or non-sequential (scroll cursor)
retrieval of row information. In addition, you can declare a select cursor for
update (initiating locking control for updated and deleted rows) or withhold
(completing a transaction will not close the cursor). In ESQL/C and
ESQL/COBOL, a cursor can be dynamic, meaning that it can be an identifier
or a character/string variable. The term cursor also refers to the position indi-
cator on a video terminal.

CURSOR
STABILITY

A level of process isolation available through IBM Informix OnLine in which
the database server must secure a shared lock on a fetched row before the row
can be viewed. The database server retains the lock until it receives a request
to fetch a new row. See process isolation.

current row The most recently retrieved row of the active set of a query.
6 IBM Informix Guide to SQL: Reference

data integrity The process of ensuring that data corruption does not occur when multiple
users simultaneously try to alter the same data. Locking and transaction pro-
cessing are used to control data integrity.

data type A descriptor assigned to each column in a table or program variable indicat-
ing the type of data the column or program variable is intended to hold.
Informix data types include SMALLINT, INTEGER, SERIAL, SMALLFLOAT,
FLOAT, DECIMAL, MONEY, DATE, DATETIME, INTERVAL, CHAR, VARCHAR,
TEXT, and BYTE.

database A collection of information (contained in tables) that is useful to a particular
organization or used for a specific purpose.

Database
Administrator
(DBA)

The individuals responsible for the contents and use of a database.

database
application

A program that applies database management techniques to implement spe-
cific data manipulation and reporting tasks.

database
dictionary

The collection of tables used by database management programs to keep
track of the structure of the database. Information about the database is main-
tained in the database dictionary, which is sometimes referred to as the ‘‘data
dictionary’’ or ‘‘system catalog.’’

database server
process

The portion of the database management system that actually manipulates
the database files. This is the process that receives SQL statements from the
database application, parses them, optimizes the approach to the data,
retrieves the data from the database, and returns the data to the application.
The database server is sometimes referred to as the ‘‘back end’’ or ‘‘database
engine.’’

database
management
system (DBMS)

All the components necessary to create and maintain a database, including
the application development tools and the database server.

DBA-privileged Refers to having the privileges generally associated with a DBA, even if not
used by someone who actually has DBA privileges

DB-Monitor An interface that presents a series of screens through which a System Admin-
istrator can monitor and modify an IBM Informix OnLine database server.

DBA Acronym for Database Administrator.
Glossary 7

dbspace A logical collection of chunks that represents a region of disk space in
IBM Informix OnLine. In some ways, the dbspace corresponds to a directory
in the UNIX file system. For example, you can create a table in a particular
dbspace.

deadlock A situation in which two or more processes cannot proceed because each is
waiting for a lock held by the other (or another) process. IBM Informix OnLine
monitors and prevents potential deadlock situations by sending an error
message to the process whose request for a lock would result in a deadlock.
In distributed queries across multiple systems, IBM Informix STAR controls
deadlocks. See multisite deadlock.

debug file A file that receives output used for debugging purposes.

debugger A software product to analyze programs and to detect and locate errors in
program logic. The IBM Informix 4GL Interactive Debugger is a 4GL source
language debugger that supports a wide variety of programming tools, such
as tracing program logic and stopping execution at preset points. See break-
point and tracepoint.

declarative
statement

The programming language statements that describe or define objects, for
example, defining a program variable. See procedural statement.

default How a program acts if the user does not explicitly specify an action.

default value A value inserted into a column when an explicit value is not specified.
Default values can be assigned to columns using the ALTER TABLE and CRE-
ATE TABLE statements.

delimiter A boundary on an input field or the terminator for a column or row. In a form
specification, the field delimiters are square brackets ([]) and determine the
size of the field. Some files and prepared objects require semicolon (;) delim-
iters between statements.

descriptor A quoted string or embedded variable name that identifies an allocated sys-
tem descriptor area or an sqlda structure. It is used for dynamic SQL state-
ment management by IBM Informix 4GL and the IBM Informix embedded-
language products. See identifier.
8 IBM Informix Guide to SQL: Reference

DIRTY READ A level of process isolation that does not account for locks and does allow
viewing of any existing rows, even rows that currently can be altered from
inside an uncommitted transaction. DIRTY READ is the lowest level of isola-
tion (no isolation at all). It is the level at which IBM Informix SE normally
operates and it is an optional level under IBM Informix OnLine. See process
isolation.

disk
configuration

The spatial organization of a disk.

disk I/O The process of transferring data between memory and disk.

display field Used in a screen form to indicate where data is to be displayed on the screen.
A display field usually is associated with a column in a table.

display label A temporary name for a column or expression in a query.

distributed
option

The ability to access data in multiple databases. The databases can be on the
same hardware or on a computer network. (IBM Informix OnLine can per-
form multiple-database queries. IBM Informix STAR can query databases on
more than one OnLine database server.)

dominant table See outer join.

DOS engine Portion of IBM Informix database products for the DOS environment that
handle the execution of SQL statements. See also database server.

dynamic
statements

SQL statements that are created at the time the program is executed, rather
than when the program is written. The PREPARE statement in IBM Informix
4GL and the IBM Informix embedded-language products is used to create
dynamic statements.

embedded SQL SQL statements placed within a host language. Informix supports embedded
SQL in C and COBOL.

environment
variable

A variable with an assigned value that is maintained by the operating system
and made available to all programs.

error message A message displayed on the screen or written to a file to describe either the
failure of an action or an illegal specification. Each error is identified by a
(usually negative) designated number.

error log A file that receives error information whenever a program runs.

error trapping Code within a program that anticipates and reacts to run-time errors.
Glossary 9

escape key The key (usually marked ESC) used to terminate one mode and start another
in most UNIX and DOS systems. On many terminals the key is the default
Accept key (used to indicate when you are finished entering text in a query,
add, update, or delete action) for PERFORM and IBM Informix 4GL screen
forms.

exception Refers to an error returned by the database server or a state initiated by a
stored procedure statement.

exclusive access The user has sole access to the information. Other users are prevented from
using the database or table.

exclusive lock A lock on an object (row, page, table, or database) held by a single process
that prevents other processes from acquiring a lock of any kind on the same
object.

executable file A binary file containing compiled code that can be run as a program. May
also refer to a UNIX shell script or a DOS batch file.

execute To carry out a program or a set of instructions.

expression Anything from a simple numeric or alphabetic constant to a more complex
series of column values, functions, quoted strings, operators, and keywords.
A Boolean expression contains a logical operator (>, <, =, !=, IS NULL, and so
on) and evaluates as TRUE, FALSE, or UNKNOWN. An arithmetic expression
contains the operators (+, -, ×, /, and so on) and evaluates as a number.

extent A continuous segment of disk space allocated to a tblspace in IBM Informix
OnLine. The programmer can specify both the initial extent size for a table
and the size of all subsequent extents allocated to the table.

external table A database table that is not in the current database.

fast recovery An automatic, fault-tolerant feature that IBM Informix OnLine implements
any time the operating mode changes from off-line to quiescent mode. The
aim of fast recovery is to return OnLine to a state of physical and logical con-
sistency with minimal loss of work in the event of a system failure.

fault tolerance See high availability.

file A collection of related information stored together on the system, such as the
words in a letter or report, a computer program, or a listing of data.

filename
extension

The part of a filename following the period. For example, DB-Access appends
the extension .sql to command files.
10 IBM Informix Guide to SQL: Reference

file server Network node that manages a set of disks and provides storage services to
computers on the network.

fixchar A character data type, available in IBM Informix ESQL/C programs, in which
the character string is fixed in length, padded with blanks if necessary, and
not null-terminated.

flag A command-line option, usually indicated by a minus (-) sign in UNIX sys-
tems. For example, in DB-Access the -e flag echoes input to the screen.

floating-point
number

A number with fixed precision (total number of digits) and undefined scale
(number of digits to the right of the decimal point). The decimal point
‘‘floats’’ as appropriate to represent an assigned value.

footer See page trailer.

forced residency An option that forces UNIX to keep IBM Informix OnLine shared-memory
segments resident in memory, preventing UNIX from swapping out these
segments to disk. (This option is not available in all UNIX systems.)

foreign key A column, or set of columns, that references a unique or primary key in a
table. For every entry in a foreign-key column, there must exist a matching
entry in the unique or primary column, if all foreign-key columns contain
non-null values.

form
specification

A system file containing instructions describing how a form looks and per-
forms. You must compile a form specification before you can use it.

function See program block.

global variable A variable whose value you can access from any module or function in a pro-
gram. See variable and scope of reference.

header See page header.

help message On-line text displayed automatically or at the request of the user to assist the
user in interactive programs. Such messages are stored in help files.

hierarchy A tree-like data structure in which some groups of data are subordinate to
others such that (1) only one group (called root) exists at the highest level and
(2) each group except root is related to only one group on a higher level.

high availability The ability of a system to resist failure and loss of data. High availability
includes features such as fast recovery and mirroring. It is sometimes
referred to as ‘‘fault tolerance.’’
Glossary 11

highlight An inverse-video rectangular area that marks your place on the screen. A
highlight often indicates the current option on a menu or the current charac-
ter in an editing session. If a terminal cannot display highlighting, the current
option often appears in angle brackets, while the current character is under-
lined.

home page The page that contains the first byte of the data row. Even if a data row out-
grows its original storage location, the home page does not change. The home
page contains a forward pointer to the new location of the data row. See
remainder page.

home server The first database server that the current database accesses in a distributed
query across a network of IBM Informix STAR systems.

host variable A C or COBOL program variable that is referenced in a statement. A host vari-
able is identified by the dollar sign ($) or colon (:) that precedes it.

identifier A sequence of letters, digits, and underscores (_) that represents the name of
a database, table, column, screen form, program variable, cursor, function,
index, window, menu, synonym, alias, view, prepared object, constraint,
report, or procedure name.

incremental
archiving

A three-level system of archiving in IBM Informix OnLine that allows you the
option to archive only those parts of the data that have changed since the last
archive.

index A file containing pointers to rows of data. Indexes can speed ordering of rows
and optimize the performance of database queries.

infocmp A UNIX program that you can use to view or decompile files in a terminfo
directory, or that you can use to compare compiled terminfo entries with
entries in a termcap file.

initialize The act of assigning a starting value.

input Information received from an external source (for example, from the key-
board, a file, or another program) and processed by a program.

installation Loading software from some magnetic medium (tape, cartridge, floppy disk)
onto the computer and preparing it for use.

interactive Programs that accept input from the user, process the input, and then pro-
duce output on the screen, in a file, or on a printer.

interpreter A program that reads, decodes, and executes statements one at a time.
12 IBM Informix Guide to SQL: Reference

interrupt A signal from a user or another process that can stop the current process tem-
porarily or permanently. See signal.

ISAM Acronym for Indexed Sequential Access Method. An access method is a way
of retrieving pieces of information (rows) from a larger set of information
(table). An indexed sequential access method allows you to find information
in a specific order or to find specific pieces of information quickly through an
index.

join The process of combining information from two or more tables based on
some common domain of information. Rows from one table are paired with
rows from another table when information in the corresponding rows match
on the joining criterion. For example, if a customer_number column exists in
both customer and orders tables, you can construct a query that pairs each
customer row with all the associated orders rows based on the common
customer_number. See Cartesian product and outer join.

kernel The part of the UNIX operating system that controls processes and the alloca-
tion of resources.

key The pieces of information used to locate a row of data. A key defines the
pieces of information you want to search for, as well as the order in which
you want to process information in a table. For example, you can index the
last_name column in a customer table to find specific customers or to process
the customers in alphabetical or reverse alphabetical order, according to last
name.

keyword A word that has meaning to a program. For example, the word SELECT is a
keyword in SQL relating to database queries.

latch Used by IBM Informix OnLine to coordinate user processes as they attempt to
modify entries in shared memory.

level of isolation See process isolation.

library A collection of precompiled functions or routines designed to perform tasks
common to a particular kind of application. Your product can include library
functions or routines that you can call from your programs.

link The process of combining separately compiled program modules into an exe-
cutable program.
Glossary 13

literal A character constant. In the format string of a PICTURE attribute, for example,
any characters except A, #, and X are literals because they are displayed
exactly as they appear in the format string.

local variable A variable that has meaning only in the module in which it is defined. See
variable and scope of reference.

lock mode An option that sets whether a user who requests a lock on an already locked
object is to (1) not wait for the lock and instead receive an error, (2) wait until
the object is released to receive the lock, or (3) wait a certain amount of time
before receiving an error (an option available only with IBM Informix
OnLine). In IBM Informix OnLine, the lock mode also can refer to the standard
unit of locking (either page or row) chosen by the programmer.

locking The process of temporarily limiting access to an object (database, table, page,
or row) to prevent conflicting interactions among concurrent processes.
Locks can be in either exclusive mode, which restricts both read and write
access to only one user, or share mode, which allows read-only access to other
users. In addition, there are update locks that begin in share mode but are
upgraded to exclusive mode when a row is actually changed.

locking
granularity

The size of an object that is locked. The size may be a database, table, page,
or row.

logical log An allocation of disk space that contains records of all changes that were per-
formed on a database during the period the log was active. The logical log is
used to roll back transactions, recover from system failures, and restore data-
bases from archives. This log is also referred to as a ‘‘transaction log.’’

login The process of identifying oneself to a computer.

macro A name given to a set of instructions that the computer executes whenever
the name is referenced.

mantissa The significant digits in a floating point number, usually expressed as a num-
ber between zero and one.

menu A screen display that allows you to choose the commands that you want the
computer to perform.

message log The UNIX file that IBM Informix OnLine keeps to record significant events,
such as checkpoints, filling of log files, recovery data, and errors.
14 IBM Informix Guide to SQL: Reference

mirroring Storing the same data on two chunks simultaneously. If one chunk fails, the
data is still usable on the other chunk in the mirrored pair. This option is
available with IBM Informix OnLine.

module The part of a program that resides in a single system file. Each file represents
one module. Entire programs can reside in a single module, or they can be
contained in several modules, each performing a specific function or pur-
pose.

module variable A variable whose value you can reference from any program block within the
same module but not from other modules. See variable and scope of reference.

monochrome A term that describes a monitor that can display only one color.

multisite
deadlock

A deadlock that occurs between processes due to a distributed query across
multiple IBM Informix STAR systems.

null value A value representing ‘‘unknown’’ or ‘‘not applicable.’’ (A null is not the same
as a value of zero or blank.)

offset A term used in IBM Informix OnLine to specify the physical position of a
chunk on a disk. The offset is the number of kilobytes indented into the
named device (which is the specified disk partition) before starting the
chunk. The maximum allowed value of an offset is 2 Terabytes.

open The process of making a resource available, such as preparing a file for access,
activating a cursor, or initiating a window.

operating mode Refers to IBM Informix OnLine states of operation. The five operating modes
include off-line, quiescent, on-line, shutdown, and recovery.

outer join An asymmetric joining of a dominant and a subservient table in a query,
whereby joining restrictions apply only to the subservient or ‘‘outer’’ table.
Rows in the dominant table are retrieved without considering the join, but
rows from the outer table are included only if they also satisfy the join condi-
tions. Any dominant-table rows that do not have a matching row from the
outer table receive a row of nulls in place of an outer-table row.

output The result that the computer produces in response to such things as a query
or a request for a report.

owner-privileged Refers to having the privileges held by the owner of the object, rather than
those associated with the user.
Glossary 15

pad To fill empty places at the beginning or end of a line, string, or field, usually
with a space or a blank.

page The basic unit of disk and memory storage used by IBM Informix OnLine. The
size is fixed for a port, and the customer cannot tune it.

page header The items that are printed at the top of each page of a report (for example, the
title and date). A ‘‘running header’’ appears at the top of each page of a
report.

page trailer The items that are printed at the bottom of each page of a report (for example,
the page number). A page trailer is also referred to as a ‘‘footer.’’ A ‘‘running
footer’’ appears at the bottom of each page of a report.

parameter A variable that is given a constant value for a specified application. In a sub-
routine, a parameter commonly uses an argument value passed to that rou-
tine.

pattern An identifiable or repeatable series of characters or symbols.

permission On some operating systems, refers to the right to have access to files and
directories.

phantom row A row of a table that initially is modified or inserted during a transaction but
subsequently is rolled back. Another process can see a phantom row if the
isolation level is DIRTY READ. No other isolation level allows a changed but
uncommitted row to be seen.

physical log An allocation of disk space in IBM Informix OnLine that contains the before-
images of all pages changed since the last checkpoint.

pointer A number that specifies the address in memory of the data or variable of
interest.

pop Removes a value from a stack in memory. See stack and push.

precision The total number of significant digits in a real number, both to the right and
left of the decimal point. For example, the number 1437.2305 has a precision
of 8. See scale.

prepared
statement

An SQL statement that translates a character string created at run time into a
request of the database. This feature allows you to form your request while
the program is executing without having to modify and recompile the pro-
gram.
16 IBM Informix Guide to SQL: Reference

preprocessor A program that takes high-level programs and produces code that a standard
language compiler, such as C or Micro Focus COBOL/2, can compile.

primary key The information from a column or set of columns that uniquely identifies
each row in a table. The primary key sometimes is called a ‘‘unique key.’’

primary key
constraint

Specifies that each entry in a column or set of columns contains a non-null
unique value.

printable
character

A character that can be displayed on a terminal or printer. Includes A-Z, a-z,
0-9, and punctuation. See control character.

privilege The right to use or change the contents of a database.

procedural
statements

The programming language statements that specify actions, for example,
looping and branching if a condition is met. See declarative statement.

procedure See program block.

process See database server process.

process isolation The level of process independence among multiple users when they attempt
to access common data, specifically relating to the locking strategy for read-
only SQL requests. The various levels of isolation are distinguished primarily
by the length of time that shared locks are (or can be) acquired and held.
IBM Informix SE sets a level of no isolation (referred to as a DIRTY READ),
which cannot be changed. IBM Informix OnLine allows the programmer to
choose from four levels of isolation. See DIRTY READ, COMMITTED READ,
CURSOR STABILITY, and REPEATABLE READ.

program block A named collection of statements that performs a particular task; a unit of
program code. In 4GL, it refers to a MAIN, FUNCTION, REPORT, or GLOBALS
section. A program block is sometimes referred to as a ‘‘function,’’ ‘‘proce-
dure,’’ ‘‘division,’’ or ‘‘routine’’ (although these terms in some languages
have subtle but distinct differences in meaning).

program control Actions that the computer takes, as opposed to actions that the user takes.

projection Taking a vertical subset from the columns of a single table that retains the
unique rows. Projection is implemented through the select list in the SELECT
clause of a SELECT statement and returns some of the columns and all of the
rows in a table. See selection and join.

promotable lock A lock that can be changed from a shared lock to an exclusive lock. See update
lock.
Glossary 17

protocol A set of rules that govern communication between computers. These rules
govern format, timing, sequencing, and error control.

push Refers to placing a value onto a stack in memory. See stack and pop.

query A request to the database to retrieve data that meets certain criteria.

raw device A UNIX disk partition that is defined as a character-special device and that is
not mounted.

record See row.

recover a
database

To restore a database to a former condition after a system failure or other
destructive event. The recovery restores the database as it existed immedi-
ately before the crash. This is sometimes referred to as ‘‘a data restore.’’

referential
constraint

Defines the relationship between columns within a table or between tables. It
has a one-to-many relationship between the referenced columns and refer-
encing columns. The referenced column must be part of a primary key or a
unique constraint. The referencing columns can contain null values, but
every non-null value in the referencing column must match a value in the ref-
erenced column if all columns are non-null. Referencing columns also are
known as foreign keys.

relation See table.

relational
database

A database that uses a table structure to store data. Relationships among
tables are specified logically at the time of user access into the database; they
are not built into the data structures themselves (unlike some other database
systems).

remainder page An additional page filled with data from a single row. IBM Informix OnLine
uses remainder pages when the data for a row cannot fit in the initial page.
Remainder pages are added and filled as needed. The original page entry
contains pointers to the remainder pages. See home page.

REPEATABLE
READ

A level of process isolation available through IBM Informix OnLine that
ensures all data read during a transaction is not modified by another process.
Transactions under REPEATABLE READ also are known as serializable transac-
tions. REPEATABLE READ is the default level of isolation under IBM Informix
OnLine for ANSI-compliant databases. See process isolation.

report
specification

A file or program segment that contains the description of a report. The
report is described in a report-writing language.
18 IBM Informix Guide to SQL: Reference

report writer A program, such as ACE, that allows the user to describe the appearance of a
report using a report-writing language. The report writer then can compile
this report specification into an executable report.

reserved word A word in a statement or command that you cannot use in any other context
of the language or program without receiving a warning or error message.

restore a
database

See recover a database.

roll back The process that reverses an action or series of actions upon a database. The
database is returned to the condition that existed before the statements were
executed. See transaction.

roll forward The process that brings a database up to date. This process usually takes
place when a database is recovered after a system crash or other failure.
In IBM Informix SE, an archive copy of the database is restored to the disk,
and the database is rolled forward to a point just before the failure. In
IBM Informix OnLine, an archive copy of the database is restored to the disk,
and the logical log records are rolled forward to a point just before the
failure.

root dbspace The initial dbspace for an IBM Informix OnLine system. In addition to any
data, the root dbspace contains all system management tables.

routine See program block.

row A group of related items of information about a single entity in a database
table. In a table of customer information, for example, a row contains infor-
mation about a single customer. A row sometimes is referred to as a ‘‘record’’
or ‘‘tuple.’’ (In a screen form, row can refer to a line of the screen.)

run-time errors Refers to errors that occur during program execution. See compile-time errors.

run-time
environment

The hardware and operating system services available at the time a program
runs.

scale The number of digits to the right of the decimal place in DECIMAL notation.
The number 1437.2350 has a scale of 4 (four digits to the right of the decimal
point). See precision.

schema A listing of the structure of a database or a table. The schema for a table lists
the names of the columns, their data types and (where applicable) lengths,
indexing, and other information about the structure of the table.
Glossary 19

scope of
reference

The portion of a program in which an identifier applies and can be accessed.
There are three possible scope sizes: local (an identifier applies only within a
single program block), modular (the identifier applies throughout a single
module), and global (an identifier applies throughout the entire program).
Identifiers must be declared before you can reference them. For example, a
module identifier cannot be referenced prior to the statement within the
module that declares it.

screen form A data-entry form that is displayed on the screen of a terminal. The user
enters data into the blanks on the form.

selection Refers to taking the horizontal subset of rows of a single table that satisfies a
particular condition. Selection is implemented through the WHERE clause of
a SELECT statement and returns some of the rows and all of the columns in a
table. See projection and join.

self-join A join between a table and itself. A self-join occurs when a table is used two
or more times in a SELECT statement (with different aliases) and joined to
itself.

semaphore A UNIX communication device that signals a user process to wake.

serializable
transactions

See REPEATABLE READ.

server name The unique name that the Database Administrator assigns to an IBM Informix
OnLine system at the time of initialization. The database server name is used
to identify external tables and databases.

server number A unique number between 0 and 255 that the Database Administrator
assigns to an IBM Informix OnLine database server at the time of initializa-
tion. If more than one IBM Informix OnLine database server is installed on the
same machine, each database server must have a unique number.

shared lock A lock that more than one process can acquire on the same object. Shared
locks allow for greater concurrency with multiple users; if two users have
locks on a row, a third user cannot change the contents of that row until both
users (not just the first) release the lock. Shared-locking strategies are used in
all levels of process isolation except DIRTY READ.

shared memory Allows multiple processes to access a common data space in memory. Com-
mon data does not have to be reread from disk for each process, reducing
disk I/O and improving performance.
20 IBM Informix Guide to SQL: Reference

signal A special character or set of characters used as a means of communication
between two processes. For example, signals are sent when a user or a pro-
gram wishes to interrupt or suspend the execution of a process. See interrupt.

singleton select A SELECT statement that returns a single row.

source file A file containing instructions (in ASCII text) that is used as the source for gen-
erating compiled programs.

SPL An acronym for Stored Procedure Language.

SQL Acronym for Structured Query Language. A database query language devel-
oped by IBM and standardized by ANSI. IBM Informix relational database
management products are based on an extended implementation of ANSI-
standard SQL.

SQLCA Acronym for SQL Communications Area. It is a data structure that stores
information about the most recently executed SQL statement. The result code
returned by the database server to the SQLCA is used for error handling by
IBM Informix 4GL and the IBM Informix embedded-language products.

sqlda Acronym for SQL Descriptor Area. It is a structure that contains an array of
data descriptors that hold descriptive information about values used by
dynamic SQL statements. It can be used by ESQL/C. See descriptor.

sqlexecd The IBM Informix NET process that receives requests from clients and spawns
a database server process to access the data.

stack An area of memory reserved for the temporary storage of data elements used
by a program. (There can be more than one stack.) The stack usually holds
data that is of immediate use to the program, such as the arguments passed
to a function. Items are removed from the stack in the reverse order from
which they were inserted. See push and pop.

stack operator Operators that allow programs to manipulate values that are on the stack.

statement A line, or set of lines, of program code that describes a single action (for
example, a SELECT statement or an UPDATE statement).

statement block Refers to a section of a program, usually beginning and terminating with spe-
cial symbols such as “begin” and “end.” A statement block is the smallest
unit of scope of reference for program variables.
Glossary 21

statement
identifier

An embedded variable name or SQL statement identifier that represents a
data structure defined in a PREPARE statement. It is used for dynamic SQL
statement management by IBM Informix 4GL and the IBM Informix embed-
ded language products.

status variable A program variable that indicates the status of some aspect of program exe-
cution. Status variables often store error numbers or act as flags to indicate
that an error has occurred.

stored procedure Refers to a function used along with SQL statements in an Informix program.
Stored procedures are written using SQL and SPL statements. The procedure
is stored in the database in executable form.

Stored Procedure
Language

A language developed by Informix for use in stored procedures.

string A set of characters (generally alphanumeric) that is manipulated as a single
unit. A string might consist of a word (such as ‘‘Smith’’), a set of digits repre-
senting a number (such as ‘‘19543’’), or any other collection of characters.
Strings generally are surrounded by single or double quotes. Also a character
data type, available in IBM Informix ESQL/C programs, in which the charac-
ter string is stripped of trailing blanks and is null-terminated.

subquery A query that is embedded as part of another SQL statement. For example, an
INSERT statement can contain a subquery in which a SELECT statement sup-
plies the inserted values in place of a VALUES clause; an UPDATE statement
can contain a subquery in which a SELECT statement supplies the updating
values; or a SELECT statement can contain a subquery in which a second
SELECT statement supplies the qualifying conditions of a WHERE clause for
the first SELECT statement. (Parentheses always delimit a subquery, unless
you are referring to a CREATE VIEW statement or UNIONS.)

subservient table See outer join.

synonym A name assigned to a table and used in place of the original name for that
table. A synonym does not replace the original table name; instead, it acts as
an alias for the table.

system call A call to a function provided by the operating system.

system catalog Database tables that contain information about the database itself, such as the
names of tables or columns in the database, the number of rows in a table,
information about indexes and database privileges, and so forth.
22 IBM Informix Guide to SQL: Reference

system
descriptor area

A descriptor used in SQL that contains descriptive information about
database columns or host variables used in dynamic SQL statements. A sys-
tem descriptor area can be used in ESQL/C, and ESQL/COBOL.

table A rectangular array of data in which each row describes a single entity and
each column contains the values for each category of description. For exam-
ple, a table can contain the names and addresses of customers. Each row cor-
responds to a different customer and the columns correspond to the name
and address items. A table sometimes is referred to as a relation.

tblspace The logical collection of extents assigned to a table in IBM Informix OnLine.

TCP/IP Transmission Control Protocol/Internet Protocol. A popular network proto-
col used in DOS, UNIX, and other environments.

temporary An attribute of any file, index, or table that is deleted when program execu-
tion terminates or an on-line session ends.

termcap An ASCII file that contains the names and capabilities of common terminals.

terminfo A hierarchical directory structure that contains compiled files of terminal
capabilities.

tic A UNIX program that compiles terminfo source files or terminfo files that
have been decompiled using infocmp. See infocmp.

timeout The point at which a lock request is aborted because the requesting process
waited longer for the lock than the specified maximum time limit. A program
developer can set a time limit in IBM Informix OnLine through the SET LOCK
MODE statement; the Database Administrator sets a time limit for operations
across multiple IBM Informix STAR systems.

TLI Transport Level Interface. Interface designed for use by application programs
that are independent of network protocol.

trace Refers to keeping a running list of the values of program variables, argu-
ments, expressions, and so on, in a stored procedure.

tracepoint A named object, specified by a debugger, that the programmer can associate
with a statement, program block, or variable. When the tracepoint is reached,
the debugger displays information about the associated statement, program
block, or variable, and executes any optional commands that are specified by
the programmer. A tracepoint must be enabled to take effect. See debugger.
Glossary 23

transaction A collection of one or more SQL statements that is treated as a single unit of
work. If one of the statements in a transaction fails, the entire transaction can
be rolled back (canceled). If the transaction is successful, the work is commit-
ted and all changes to the database from the transaction are accepted.

transaction log See logical log.

tuple See row.

unique constraint Specifies that each entry in a column or set of columns contains a unique
value.

unique key See primary key.

unlock To free an object (database, table, page, or row) that has been locked. For
example, a locked table prevents others from adding, removing, updating, or
(in the case of an exclusive lock) viewing rows in that table, as long as it is
locked. When the user or program unlocks the table, others are again permit-
ted access.

update lock A promotable lock acquired during a SELECT...FOR UPDATE. An update
lock behaves like a shared lock until the update actually occurs; it then
becomes an exclusive lock. It differs from a shared lock in that only one
update lock can be acquired on an object at a time.

user interface The part of the program that communicates with the user by prompting for
input and displaying output based on information the user enters. Typical
user interfaces include menus, prompts, screen forms, and on-line help mes-
sages.

variable The identifier for a location in memory that stores the value of a program
object whose value can change during the execution of the program.

view A dynamically controlled picture of the contents in a database that allows
you to determine what information the user sees and manipulates. A view
represents a virtual table based on a specified SELECT statement.

virtual column A derived column of information that is not stored in the database. For exam-
ple, you can create virtual columns in a SELECT statement by arithmetically
manipulating a single column, such as multiplying existing values by a con-
stant, or by combining multiple columns, such as adding the values from two
columns.
24 IBM Informix Guide to SQL: Reference

warning A state or situation detected by the database server or compiler, possibly
incorrect syntax or a problem. A warning does not necessarily affect the abil-
ity of the code to run.

wildcard A special symbol that represents any sequence of zero or more characters or
any single character. In SQL, for example, the asterisk (*), question mark (?),
brackets ([]), percent sign (%), and underscore (_) can be used as wildcard
characters. (The asterisk, question mark, and brackets are also wildcards in
UNIX.)

window A rectangular area on the screen in which you can take actions without leav-
ing the context of the background program.
Glossary 25

@

Index

O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Index
A
ABSOLUTE keyword

syntax in FETCH 7-153
use in FETCH 7-156

ACCESS FOR keywords, in INFO
statement 7-187

Active set
constructing with OPEN 7-208
retrieving data with

FETCH 7-153
ADD CONSTRAINT keywords,

syntax in ALTER TABLE 7-20
Aggregate function

in 4GL and ESQL 7-397
in EXISTS subquery 7-356
in expressions 7-262, 7-383
in SELECT 7-263
in SPL expressions 8-23
restrictions with GROUP

BY 7-280
summary 7-396

Alias
for a table in SELECT 7-270

ALL keyword
beginning a subquery 7-276
syntax

in expression 7-383
in GRANT 7-179
in REVOKE 7-249
in SELECT 7-260
with UNION operator 7-258

use
in Condition subquery 7-357
in expression 7-394
in GRANT 7-180
in REVOKE 7-250

in SELECT 7-261
with UNION operator 7-288

ALLOCATE DESCRIPTOR
statement

syntax 7-13
with concatenation

operator 7-372
Allocating memory

dynamically in ESQL/C 6-4
dynamically in ESQL/

COBOL 6-13
with the ALLOCATE

DESCRIPTOR statement 7-13
ALTER INDEX statement

creating clustered index 7-17
dropping clustered index 7-19
syntax 7-17

ALTER keyword
syntax

in GRANT 7-175
in REVOKE 7-249

use
in GRANT 7-180
in REVOKE 7-250

Alter privilege 7-180
ALTER TABLE statement

ADD clause 7-22
ADD CONSTRAINT clause 7-33
adding a column 7-22
adding a column constraint 7-33
changing column data type 7-30
changing table lock mode 7-36
CHECK clause 7-28
DEFAULT clause 7-23
DROP clause 7-29
DROP CONSTRAINT clause 7-35
dropping a column 7-29

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
dropping a column
constraint 7-35

LOCK MODE clause 7-36
MODIFY NEXT SIZE clause 7-36
modifying next size 7-36
PAGE keyword 7-36
privilege for 7-175
reclustering a table 7-18
REFERENCES clause 7-27
ROW keyword 7-36
rules for primary key

constraints 7-34
rules for unique constraints 7-34

AND keyword
syntax in Condition

segment 7-345
use

in Condition segment 7-358
with BETWEEN keyword 7-272

AND logical operator 7-358
ANSI compliance

-ansi flag 4-7, 7-69, 7-76, 7-98
level Intro-22
table naming 7-243
updating rows 7-326

ANSI-compliant database
create with START

DATABASE 7-317
description of 7-51
FOR UPDATE not required

in 7-111
index naming 7-360, 7-413, 7-433
procedure naming 7-424
table privileges 7-76
using

with IBM Informix SE 7-53
with BEGIN WORK 7-38

ANY keyword
beginning a subquery 7-276
in WHENEVER 7-337, 7-339
use in Condition subquery 7-357

Arithmetic operator, in
expression 7-371

Array, moving rows into with
FETCH 7-158

AS keyword
in SELECT 7-260
syntax

in CREATE VIEW 7-97

in GRANT 7-175
use

in CREATE VIEW 7-99
in GRANT 7-182

with display labels 7-264
with table aliases 7-271

ASC keyword
syntax

in CREATE INDEX 7-54
in SELECT 7-283

use
in CREATE INDEX 7-56
in SELECT 7-284

ASCII collating order 7-430
Asterisk (*)

arithmetic operator 7-371
use in SELECT 7-260

At (@) sign, in database name 7-362
Audit trail

applying with RECOVER
TABLE 7-238

dropping with DROP
AUDIT 7-131

manipulating audit trail file 7-239
no clustered index 7-56
starting with CREATE

AUDIT 7-47
AVG function

syntax in expression 7-383
use in expression 7-395

B
Backslash (\)

as escape character with
LIKE 7-353

as escape character with
MATCHES 7-353

BEGIN WORK statement
locking in a transaction 7-37
syntax 7-37

BETWEEN keyword
syntax in Condition

segment 7-346
use

in Condition segment 7-349
in SELECT 7-272

Binary Large Object (BLOB)
effect of isolation on

retrieval 7-309
in a LOAD statement 7-202
in an UNLOAD statement 7-321

Boldface type Intro-11
Boolean expression

in Condition segment 7-345
Bourne shell, how to set

environment variables 4-4
BUFFERED keyword, syntax in SET

LOG 7-313
BUFFERED LOG keywords

syntax in CREATE
DATABASE 7-49

use in CREATE DATABASE 7-52
Buffered logging 7-49
BYTE data type

considerations for UNLOAD
statement 7-321

description of 3-5
requirements for LOAD

statement 7-202
selecting a BYTE column 3-6
syntax 7-365
with stored procedures 8-44, 8-48

C
C shell, how to set environment

variables 4-4
Calculated expression

description of 7-383
restrictions with GROUP

BY 7-280
CALL keyword, in the

WHENEVER statement 7-337,
7-342

CALL statement
assigning values with 8-25
executing a procedure 8-12
syntax 8-37

call_type table in stores5 database,
columns in 1-10

Caret (^) wildcard 7-353
CHAR data type

changing data types 3-22
description of 3-6
2 IBM Informix Guide to SQL: Reference

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
in INSERT 7-428
syntax 7-365
using as default value 7-24, 7-82

Character string
as DATE values 3-29
as DATETIME values 3-11, 3-29
as INTERVAL values 3-16

Check constraint
adding with ALTER TABLE 7-28
creating with CREATE

TABLE 7-89
definition of 7-89
specifying at column level 7-89
specifying at table level 7-89

CHECK keyword
use in ALTER TABLE 7-28
use in CREATE TABLE 7-89

CHECK TABLE statement, syntax
and usage 7-39

Checking for corrupted tables 7-39
CLOSE DATABASE statement

prerequisites to close 7-44
syntax 7-44

CLOSE statement
closing a select cursor 7-42
closing an insert cursor 7-42
cursors affected by transaction

end 7-43
syntax 7-41
with concatenation

operator 7-372
CLUSTER keyword

syntax
in ALTER INDEX 7-17
in CREATE INDEX 7-54

use
in ALTER INDEX 7-18
in CREATE INDEX 7-55

Clustered index
creating with CREATE

INDEX 7-55
with ALTER INDEX 7-17
with audit trails 7-56

Colon (:)
as delimiter in DATETIME 3-10
as delimiter in INTERVAL 3-15

Color, setting INFORMIXTERM
for 4-23

Column
changing data type 3-22
defining as foreign key 7-85
defining as primary key 7-85
displaying information for 7-186
dropping with ALTER

TABLE 7-29
in stores5 database 1-5 to 1-11
inserting into 7-191
modifying with ALTER

TABLE 7-30
naming conventions 7-80, 7-241
number allowed when defining

constraint 7-77
putting a constraint on 7-77
referenced and referencing 7-27,

7-86
renaming 7-241
specifying check constraint

for 7-89
specifying with CREATE

TABLE 7-80
virtual 7-99

Column expression
in SELECT 7-262
syntax 7-373

Column-level privilege 7-180
COLUMNS FOR keywords, in

INFO statement 7-186
COMMIT WORK statement

syntax 7-46
Committed Read isolation

level 7-308
COMMITTED READ keywords,

syntax in SET
ISOLATION 7-307

Comparison condition
syntax and use 7-346

Compiler
setting environment variable for

COBOL 4-20, 4-21
specifying storage mode for

COBOL 4-21
Compliance

with industry standards Intro-22
Composite column list, multiple-

column restrictions 7-34
Composite index

column limit 7-56

creating with CREATE
INDEX 7-54

definition of 7-56
Compound assignment 8-64
Concatenation operator (||) 7-372
Concurrency

Committed Read isolation 7-308
Cursor Stability isolation 7-309
defining with SET

ISOLATION 7-307
Dirty Read isolation 7-308
Repeatable Read isolation 7-309

Condition segment
ALL, ANY, SOME

subquery 7-357
boolean expressions 7-346
comparison condition 7-346
description of 7-345
join conditions 7-277
relational operators in 7-348
subquery in SELECT 7-355
syntax 7-345
use of functions in 7-346
wildcards in searches 7-353
with BETWEEN keyword 7-349
with ESCAPE keyword 7-354
with EXISTS keyword 7-356
with IN keyword 7-350
with IS keyword 7-351
with LIKE keyword 7-352
with MATCHES keyword 7-352
with NOT keyword 7-352

CONNECT keyword
in GRANT 7-177
in REVOKE 7-251

Connect privilege 7-177, 7-251
Constant expression

in SELECT 7-262
inserting with PUT 7-232
restrictions with GROUP

BY 7-280
syntax 7-376

Constraint
adding with ALTER TABLE 7-33,

7-77
definition of 7-76
dropping with ALTER

TABLE 7-29, 7-35, 7-77
enforcing 7-78
Index 3

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
modifying a column that has
constraints 7-30

number of columns allowed 7-77,
7-84

privileges needed to create 7-35
requirements for 7-25
rules for unique constraints 7-34
setting checking mode 7-289
specifying at table level 7-84
specifying at the column

level 7-83
with DROP INDEX 7-134

CONSTRAINT keyword
in ALTER TABLE 7-33
in CREATE TABLE 7-83

Contact information Intro-23
CONTINUE keyword, in the

WHENEVER statement 7-337,
7-342

CONTINUE statement
exiting a loop 8-27
syntax 8-40

Conventions
example code Intro-17
for naming tables 7-76
syntax Intro-12
typographical Intro-11

Converting data types 3-22
Correlated subquery

definition of 7-355
COUNT field

getting contents with GET
DESCRIPTOR 7-169

setting value for WHERE
clause 7-293

use in GET DESCRIPTOR 7-171
COUNT function

use in expression 7-394, 7-396
COUNT keyword, use in SET

DESCRIPTOR 7-295
CREATE AUDIT statement

need for archive 7-48
starts audit trail 7-47
syntax 7-47

CREATE DATABASE statement
ANSI compliance 7-51
logging with OnLine 7-51
syntax 7-49
using with

CREATE SCHEMA 7-68
IBM Informix SE 7-52
PREPARE 7-50

CREATE INDEX statement
composite indexes 7-56
implicit table locks 7-55
syntax 7-54
using

with ASC keyword 7-56
with CLUSTER keyword 7-55
with CREATE SCHEMA 7-68
with DESC keyword 7-56
with UNIQUE keyword 7-55

CREATE PROCEDURE FROM
statement

in embedded languages 8-8
syntax and usage 7-67

CREATE PROCEDURE statement
inside a CREATE PROCEDURE

FROM 8-8
syntax 7-58
using 8-7

CREATE SCHEMA statement
syntax 7-68
with CREATE sequences 7-69
with GRANT 7-69

CREATE SYNONYM statement
ANSI-compliant naming 7-71
chaining synonyms 7-73
privileges on synonym 7-70
synonym for a table 7-70
synonym for a view 7-70
syntax 7-70
with CREATE SCHEMA 7-68

CREATE TABLE statement
CHECK clause 7-89
creating temporary table 7-90
DEFAULT clause 7-81
defining constraints

at column level 7-83
at table level 7-84

IN dbspace clause 7-92
LOCK MODE clause 7-95
naming conventions 7-76
REFERENCES clause 7-86
rules for primary keys 7-86
rules for referential

constraints 7-86
rules for unique constraints 7-86

setting columns NOT NULL 7-25,
7-83

specifying extent size 7-94
specifying table columns 7-80
storing database tables 7-92
syntax 7-75
with BLOB data types 7-84
with CREATE SCHEMA 7-68

CREATE VIEW statement
column data types 7-98
privileges 7-98
syntax 7-97
virtual column 7-99
WITH CHECK OPTION 7-100
with CREATE SCHEMA 7-68
with SELECT * notation 7-98

Current database
specifying with

DATABASE 7-101
CURRENT function

syntax
in Condition segment 7-346
in expression 7-376
in INSERT 7-194

use
in ALTER TABLE 7-23
in CREATE TABLE 7-81
in expression 7-379
in INSERT 7-196
in WHERE condition 7-380
input for DAY function 7-380

CURRENT keyword
syntax in FETCH 7-153
use in FETCH 7-156

CURRENT OF keywords
syntax

in DELETE 7-122
in UPDATE 7-325

use
in DELETE 7-123
in UPDATE 7-333

Cursor
activating with OPEN 7-207
affected by transaction end 7-43
associating with prepared

statements 7-117
characteristics 7-111
closing 7-41
4 IBM Informix Guide to SQL: Reference

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
closing with ROLLBACK
WORK 7-255

declaring 7-107
definition of types 7-110
opening 7-208
retrieving values with

FETCH 7-153
scroll 7-112
sequential 7-111
use with transactions 7-118
with

DELETE 7-122
INTO keyword in

SELECT 7-266
prepared statements 7-110

Cursor manipulation
statements 7-10

Cursor Stability isolation
level 7-309

CURSOR STABILITY keywords,
syntax in SET
ISOLATION 7-307

Cursory procedure 8-57
customer table in stores5 database,

columns in 1-5
cust_calls table in stores5 database,

columns in 1-10

D
Data access statements 7-11
Data definition statements 7-10
DATA field

description of 6-7, 6-16
setting with SET

DESCRIPTOR 7-298
Data integrity statements 7-11
Data manipulation statements 7-10
Data type

BYTE 3-5
changing with ALTER

TABLE 7-32
CHAR 3-6
CHARACTER 3-7
considerations for INSERT 7-195,

7-428
conversion 3-22
DATE 3-7

DATETIME 3-8
DEC 3-11
DECIMAL 3-11
DOUBLE PRECISION 3-12
FLOAT 3-12
floating-point 3-12
in SPL variables 8-20
INT 3-13
INTEGER 3-13
INTERVAL 3-13
MONEY 3-17
NUMERIC 3-17
REAL 3-17
requirements for referential

constraints 7-28, 7-88
SERIAL 3-18
SMALLFLOAT 3-19
SMALLINT 3-19
specifying with CREATE

VIEW 7-98
summary table 3-4
syntax 7-365
TEXT 3-19
VARCHAR 3-21

Data Type segment 7-365
Database

closing with CLOSE
DATABASE 7-44

creating ANSI-compliant 7-317
creating with CREATE

DATABASE 7-49
data types 3-4
default isolation levels 7-307
dropping 7-132
map of

stores5 1-11
system catalog tables 2-33

naming conventions 7-363
naming with variable 7-363
opening in exclusive mode 7-103
optimizing queries 7-336
remote 7-363
restoring 7-256
stores5 Intro-6

Database Administrator
(DBA) 7-178

Database lock 7-103
Database Name segment

database outside DBPATH 7-364

for remote database 7-363
naming conventions 7-362
naming with variable 7-363
syntax 7-362
using quotes, slashes 7-364

DATABASE statement
determining database type 7-101
exclusive mode 7-103
for database outside

DBPATH 7-102
specifying current database 7-101
SQLAWARN after 7-102
syntax 7-101
with

LIKE in 4GL 7-103
program variables 7-102

Database-level privilege
description of 7-177
granting 7-177
passing grant ability 7-181
revoking 7-251

Database, stores5 description of 1-3
Data, inserting with the LOAD

statement 7-199
DATE data type

converting to DATETIME 3-24
description of 3-7
range of operations 3-25
representing DATE values 3-28
syntax 7-365
with DATETIME and INTERVAL

values 3-28
Date data type

functions in 7-383
DATE function

syntax in expression 7-383
use in expression 7-387

DATE value
setting DBDATE environment

variable 4-8
specifying European format with

DBDATE 4-9
DATETIME data type

adding or subtracting INTERVAL
values 3-27

as quoted string 7-427
character string values 3-11
converting to DATE 3-24
field qualifiers 3-8, 7-368
Index 5

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
in
expression 7-381
INSERT 7-428

multiplying values 3-26
precision and size 3-8
range of expressions 3-25
range of operations with DATE

and INTERVAL 3-25
representing DATETIME

values 3-29
syntax 3-8, 7-365, 7-417
using the DBTIME environment

variable 4-17
with EXTEND function 3-26, 3-27

DATETIME Field Qualifier
segment 7-368

DATETIME formats, using the
DBTIME environment
variable 4-17

DAY function
syntax in expression 7-383
use

in expression 7-385
DAY keyword

syntax
in DATETIME data type 7-368
in INTERVAL data type 7-414

use
as DATETIME field

qualifier 3-8, 7-417
as INTERVAL field

qualifier 3-14, 7-420
DBA keyword

in GRANT 7-178
in REVOKE 7-251

DBANSIWARN environment
variable 4-7, 7-69, 7-76, 7-98

DBA-privileged procedure 8-16
DBDATE environment variable 4-8
DBDELIMITER environment

variable 4-9, 7-203
DBEDIT environment variable 4-10
DBFORMAT environment

variable 4-10
DBLANG environment

variable 4-11
dbload utility

specifying field delimiter with
DBDELIMITER 4-9

DBMENU environment
variable 4-12

DBMONEY environment
variable 4-12

DBNETTYPE environment
variable 4-13

DBPATH environment
variable 4-14, 7-102, 7-364

DBPRINT environment
variable 4-15

DBREMOTECMD environment
variable 4-15

.dbs extension 7-50, 7-102
DBSERVERNAME function

returning servername 7-378
use

in ALTER TABLE 7-23
in CREATE TABLE 7-81
in expression 7-378

dbspace
selecting with CREATE

DATABASE 7-49
DBSRC environment variable 4-16
DBTEMP environment

variable 4-17
DBTIME environment

variable 4-17
Deadlock detection 7-312
DEALLOCATE DESCRIPTOR

statement
syntax 7-105
with concatenation

operator 7-372
DECIMAL data type

changing data types 3-22
description of 3-11
floating-point 3-12
syntax 7-365
using as default value 7-24, 7-81

Decimal point (.)
as delimiter in DATETIME 3-10
as delimiter in INTERVAL 3-15

DECLARE statement
cursor characteristics 7-111
cursor types 7-110
cursors with prepared

statements 7-117
cursors with transactions 7-118

definition and use
hold cursor 7-112
insert cursor 7-111, 7-120
scroll cursor 7-112
select cursor 7-110
sequential cursor 7-111
update cursor 7-111, 7-114

insert cursor with hold 7-120
restrictions with SELECT with

ORDER BY 7-285
syntax 7-107
updating specified

columns 7-116
with

concatenation operator 7-372
FOR UPDATE keywords 7-111
SELECT 7-267

Default assumptions for your
environment 4-3

Default value
specifying

with CREATE TABLE 7-81
specifying with

ALTER TABLE 7-24
Default values

specifying with ALTER
TABLE 7-24

Deferred checking 7-289
DEFERRED keyword, in the SET

CONSTRAINTS
statement 7-289

DEFINE statement
placement of 8-43
syntax 8-42

DELETE keyword
syntax

in GRANT 7-179
in REVOKE 7-249

use
in GRANT 7-180
in REVOKE 7-250

Delete privilege 7-179
DELETE statement

CURRENT OF clause 7-123
privilege for 7-179
syntax 7-122
with Condition segment 7-345
with cursor 7-114
within a transaction 7-122
6 IBM Informix Guide to SQL: Reference

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
Delimiter
for DATETIME values 3-10
for INTERVAL values 3-15
for LOAD input file 7-203
specifying with UNLOAD 7-322

DELIMITER keyword
in LOAD 7-203
in UNLOAD 7-322

Demonstration database
copying Intro-7
installation script Intro-6
map of 1-11
overview Intro-6
structure of tables 1-4
tables in 1-5 to 1-11

DESC keyword 7-284
syntax

in CREATE INDEX 7-54
in SELECT 7-283

use
in CREATE INDEX 7-56
in SELECT 7-284

DESCRIBE statement
describing statement type 7-126
relation to GET

DESCRIPTOR 7-172
syntax 7-125
the USING SQL DESCRIPTOR

clause 7-128
values returned by SELECT 7-127
with concatenation

operator 7-372
Dirty Read isolation level 7-308
DIRTY READ keywords, syntax in

SET ISOLATION 7-307
Display label

syntax in SELECT 7-260
with UNION operator 7-287

DISTINCT keyword
syntax

in CREATE INDEX 7-54
in expression 7-383
in SELECT 7-260

use
in CREATE INDEX 7-55
in SELECT 7-261
no effect in subquery 7-356

Division (/) symbol, arithmetic
operator 7-371

DOCUMENT keyword
use in stored procedures 8-8

Documentation notes Intro-22
Documentation, types of

documentation notes Intro-22
machine notes Intro-22
release notes Intro-22

DROP AUDIT statement 7-131
DROP CONSTRAINT keywords

syntax in ALTER TABLE 7-20
use in ALTER TABLE 7-35

DROP DATABASE
statement 7-132

DROP INDEX statement
syntax 7-134

DROP keyword
syntax in ALTER TABLE 7-20
use in ALTER TABLE 7-29

DROP SYNONYM statement 7-137
DROP TABLE statement 7-139
DROP VIEW statement 7-141
Duplicate values in a query 7-261
Dynamic management

statements 7-11
Dynamic SQL

allocating memory
in ESQL/C 6-4
in ESQL/COBOL 6-13

using a system descriptor area
in ESQL/C 6-5
in ESQL/COBOL 6-13

using an sqlda pointer structure in
ESQL/C 6-9

E
Editor, specifying with

DBEDIT 4-10
Effective checking 7-289
Ellipses (...), wildcard in Condition

segment 7-353
Environment variable

default assumptions 4-3
definition of 4-3
how to set in Bourne shell 4-4
how to set in C shell 4-4
listed by product 4-5

Environment variables Intro-11

Error checking
continuing after error in stored

procedure 8-71
error status with ON

EXCEPTION 8-68
exception handling 8-32
in stored procedures 8-32
simulating errors 8-34
SQLCA record (4GL) 5-5
SQLCA record (ESQL/

COBOL) 5-10
sqlca structure (ESQL/C) 5-7
summary table of SQLCA data

structure 5-4
with SYSTEM 8-78

ERROR keyword, in the
WHENEVER statement 7-337,
7-341

ESCAPE keyword
syntax in Condition

segment 7-346
use

in Condition segment 7-352
with LIKE keyword 7-274,

7-354
with MATCHES

keyword 7-274, 7-354
with WHERE keyword 7-273

ESQL
error handling 5-3
SQL Communications Area 5-3

EXCLUSIVE keyword
syntax

in DATABASE 7-101
in LOCK TABLE 7-204

use
in DATABASE 7-103
in LOCK TABLE 7-205

EXECUTE IMMEDIATE statement
restricted statement types 7-148
syntax and usage 7-147
with concatenation

operator 7-372
EXECUTE ON keywords

syntax
in GRANT 7-175
in REVOKE 7-247

use
in GRANT 7-181
Index 7

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
in REVOKE 7-247
EXECUTE PROCEDURE statement

assigning values with 8-25
in FOREACH 8-56
using 8-12

EXECUTE statement
parameterizing a statement 7-144
syntax 7-142
USING DESCRIPTOR

clause 7-146
USING SQL DESCRIPTOR

clause 7-145
with concatenation

operator 7-372
with USING keyword 7-144

EXISTS keyword
beginning a subquery 7-275
use in condition subquery 7-356

EXIT statement
exiting a loop 8-27
syntax 8-50

Expression
in UPDATE 7-329
ordering by 7-285

Expression segment
aggregate expressions 7-393
calculated expressions 7-383
column expressions 7-373
combined expressions 7-398
constant expressions 7-376
expression types 7-371
in SPL expressions 8-24
syntax 7-371

EXTEND function
syntax in expression 7-383
with DATE, DATETIME and

INTERVAL 3-26, 3-27
Extension checking, specifying with

DBANSIWARN 4-7
EXTENT SIZE keywords 7-94

F
FETCH statement

as affected by CLOSE 7-42
checking results with

SQLCA 7-161
locking for update 7-160

relation to GET
DESCRIPTOR 7-169

specifying a value’s memory
location 7-157

syntax 7-153
with

concatenation operator 7-372
INTO keyword 7-266
program arrays 7-158
scroll cursor 7-155
sequential cursor 7-155

Field qualifier
for DATETIME 3-8, 7-368
for INTERVAL 3-14, 7-414, 7-420

File
extension

.dbs 7-50, 7-102

.lok 7-312
sending output with the OUTPUT

statement 7-216
FIRST keyword

syntax in FETCH 7-153
use in FETCH 7-155

FLOAT data type
changing data types 3-22
description of 3-12
syntax 7-365
using as default value 7-24, 7-81

FLUSH statement
syntax 7-162
with concatenation

operator 7-372
FOR keyword

in CONTINUE 8-40
in CREATE AUDIT 7-47
in CREATE SYNONYM 7-70
in EXIT 8-50

FOR statement
looping in a stored

procedure 8-27
specifying multiple ranges 8-54
syntax 8-52
using expression lists 8-54
using increments 8-53

FOR TABLE keywords, in UPDATE
STATISTICS 7-335

FOR UPDATE keywords
relation to UPDATE 7-333
syntax in DECLARE 7-107

use
in DECLARE 7-111, 7-114, 7-117
with column list 7-116

FOREACH keyword
in CONTINUE statement 8-40
in EXIT 8-50

FOREACH statement 7-213
looping in a stored

procedure 8-27
syntax 8-56

Foreign key 7-27, 7-85, 7-86
FOREIGN KEY keywords

in ALTER TABLE 7-33
in CREATE TABLE 7-84

Format
specifying for DATE value with

DBDATE 4-8
specifying for MONEY value with

DBMONEY 4-12
FRACTION keyword

syntax
in DATETIME data type 7-368
in INTERVAL data type 7-414

use
as DATETIME field

qualifier 3-9, 7-417
as INTERVAL field

qualifier 3-14, 7-420
FREE statement

effect on BYTE, TEXT
variables 7-168

effect on cursors 7-214
syntax 7-165
with concatenation

operator 7-372
FROM keyword

syntax
in PUT 7-230
in REVOKE 7-247
in SELECT 7-258

use
in PUT 7-234
in SELECT 7-269

Function
within a stored procedure 8-28

Function expression, in
SELECT 7-262
8 IBM Informix Guide to SQL: Reference

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
G
GET DESCRIPTOR statement

syntax 7-169
the COUNT keyword 7-171
with concatenation

operator 7-372
GOTO keyword, in the

WHENEVER statement 7-337,
7-341

GRANT statement
changing grantor 7-182
creating a privilege chain 7-182
database-level privileges 7-177
default table privileges 7-181
passing grant ability 7-181
privileges on a view 7-183
syntax 7-175
table-level privileges 7-179
with CREATE SCHEMA 7-68

GROUP BY keywords
syntax in SELECT 7-258
use in SELECT 7-279

H
HAVING keyword

syntax in SELECT 7-258
use in SELECT 7-281

Header
of a procedure 8-29

HEX function, use in
expression 7-390

HIGH keyword 7-315
Hold cursor

definition of 7-111
insert cursor with hold 7-120
use of 7-112

HOUR keyword
syntax

in DATETIME data type 7-368
in INTERVAL data type 7-414

use
as DATETIME field

qualifier 3-8, 7-417
as INTERVAL field

qualifier 3-14, 7-420

Hyphen (-)
as delimiter in DATETIME 3-10
as delimiter in INTERVAL 3-15

I
IBM Informix 4GL

STATUS variable 5-5
using SQLCODE with 5-5
WHENEVER ERROR

statement 7-337
Icon, explanation of Intro-13
IDATA field

description of 6-8, 6-17
with X/Open programs 7-172

IF statement
branching 8-26
syntax 8-60
syntax and use 8-60
with null values 8-61

ILENGTH field
description of 6-8, 6-17
with X/Open programs 7-172

IMMEDIATE keyword, in the SET
CONSTRAINTS
statement 7-289

IN keyword
syntax

in CREATE AUDIT 7-47
in CREATE DATABASE 7-49
in CREATE TABLE 7-92
in LOCK TABLE 7-204

use
in Condition segment 7-350
in Condition subquery 7-355
with WHERE keyword 7-273

Index
displaying information for 7-186
dropping with DROP

INDEX 7-134
naming conventions 7-360, 7-413,

7-433
sharing with constraints 7-26,

7-78
with temporary tables 7-286

INDEX keyword
syntax

in GRANT 7-179

in REVOKE 7-249
use

in GRANT 7-180
in REVOKE 7-250

Index Name segment
syntax 7-360, 7-424
use 7-432

Index privilege 7-180
INDEXES FOR keywords, in INFO

statement 7-186
INDICATOR field

description of 6-7, 6-16
setting with SET

DESCRIPTOR 7-299
INDICATOR keyword, in

SELECT 7-265
Indicator variable

in EXECUTE 7-144
in expression 7-397

Indicator variables
in SELECT 7-265

Industry standards, compliance
with Intro-22

INFO statement
displaying privileges and

status 7-187
displaying tables, columns, and

indexes 7-186
syntax 7-185

Informix extension checking,
specifying with
DBANSIWARN 4-7

INFORMIXCOB environment
variable 4-20

INFORMIXCOBDIR environment
variable 4-20

INFORMIXCOBSTORE
environment variable 4-21

INFORMIXCOBTYPE environment
variable 4-21

INFORMIXDIR environment
variable 4-22

INFORMIXTERM environment
variable 4-23

informix, privileges associated with
user 7-178

Insert buffer
counting inserted rows 7-164,

7-237
Index 9

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
filling with constant values 7-232
inserting rows with a

cursor 7-192
storing rows with PUT 7-231
triggering flushing 7-235

Insert cursor
closing 7-42
definition of 7-110
in INSERT 7-192
in PUT 7-233
opening 7-209
reopening 7-210
result of CLOSE in SQLCA 7-42
use of 7-111
with hold 7-120
writing buffered rows with

FLUSH 7-162
INSERT INTO keywords

in INSERT 7-190
in LOAD 7-203

INSERT keyword
syntax

in GRANT 7-179
in REVOKE 7-249

use
in GRANT 7-180
in REVOKE 7-250

INSERT statement
effect of transactions 7-193
filling insert buffer with

PUT 7-231
in dynamic SQL 7-197
inserting

rows through a view 7-191
rows with a cursor 7-192
values into SERIAL

columns 3-18
SERIAL columns 7-196
specifying values to insert 7-194
syntax 7-189
use with insert cursor 7-120
with

DECLARE 7-107
SELECT 7-197

Installation directory, specifying
with INFORMIXDIR 4-22

INTEGER data type
changing data types 3-22
description of 3-13

syntax 7-365
using as default value 7-24, 7-81

Intensity attributes, setting
INFORMIXTERM for 4-23

INTERVAL data type
adding or subtracting from 3-30
adding or subtracting from

DATETIME values 3-27
as quoted string 7-427
description of 3-13
field delimiters 3-15
field qualifier, syntax 7-414
in expression 7-381
in INSERT 7-428
multiplying or dividing

values 3-30
range of expressions 3-25
range of operations with DATE

and DATETIME 3-25
syntax 7-365, 7-420
with EXTEND function 3-26, 3-27

INTERVAL Field Qualifier
segment 7-414

INTO keyword
in SELECT 7-265
syntax

in FETCH 7-153
in SELECT 7-258

use
in FETCH 7-158
in SELECT 7-265

INTO TEMP keywords
syntax in SELECT 7-258
use

in SELECT 7-285
with UNION operator 7-287

IS keyword
in Condition segment 7-351
with WHERE keyword 7-273

IS NOT keywords, syntax in
Condition segment 7-346

IS NULL keywords 7-273
Isolation level

Committed Read 7-308
Cursor Stability 7-309
definitions 7-308
Dirty Read 7-308
in external tables 7-309, 7-312
Repeatable Read 7-309

items table in stores5 database,
columns in 1-6

ITYPE field
description of 6-8, 6-17
setting with SET

DESCRIPTOR 7-299
with X/Open programs 7-172

J
Join

in Condition segment 7-277
multiple-table join 7-278
outer join 7-278
self-join 7-278
two-table join 7-277

L
LAST keyword

syntax in FETCH 7-153
use in FETCH 7-155

LENGTH field
description of 6-7, 6-16
setting with SET

DESCRIPTOR 7-298
with DATETIME and INTERVAL

types 7-299
with DECIMAL and MONEY

types 7-298
LENGTH function

in expression 7-262
syntax in expression 7-383
use in expression 7-389

LET statement
assigning values 8-25
executing a procedure 8-12
syntax 8-64

LIKE keyword
syntax in Condition

segment 7-346
use

in Condition segment 7-352
in SELECT 7-273

wildcard characters 7-274
Literal

DATETIME
in Condition segment 7-346
10 IBM Informix Guide to SQL: Reference

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
in expression 7-376, 7-381
segment 7-416
syntax 7-417
syntax in INSERT 7-194
use in ALTER TABLE 7-23
use in CREATE TABLE 7-81
with IN keyword 7-273

DATE, using as a default
value 7-24, 7-82

INTERVAL
in Condition segment 7-346
in expression 7-376, 7-381
segment 7-419
syntax 7-420
syntax in INSERT 7-194
using as default value 7-24, 7-82

Number
in Condition segment 7-346
in expression 7-376, 7-379
segment 7-422
syntax 7-422
syntax in INSERT 7-194
with IN keyword 7-351

LOAD statement
DELIMITER clause 7-203
input formats for data 7-201
INSERT INTO clause 7-203
loading VARCHAR, TEXT, or

BYTE data types 7-202
specifying field delimiter with

DBDELIMITER 4-9
specifying the table to load

into 7-203
syntax 7-199
the LOAD FROM file 7-200

LOCK MODE keywords
syntax

in ALTER TABLE 7-20
in CREATE TABLE 7-95

use
in ALTER TABLE 7-36
in CREATE TABLE 7-95

LOCK TABLE statement
in databases with

transactions 7-205
in databases without

transactions 7-206
syntax 7-204

Locking
during

delete 7-122
inserts 7-193
updates 7-115, 7-327

overriding row-level 7-205
releasing with COMMIT

WORK 7-46
releasing with ROLLBACK

WORK 7-254
types of locks

page lock 7-95
row lock 7-95

update cursors effect on 7-115
waiting period 7-311
with

FETCH 7-160
scroll cursor 7-309
SET ISOLATION 7-307
SET LOCK MODE 7-311
UNLOCK TABLE 7-323

within transaction 7-37
LOG IN keywords, syntax in

CREATE DATABASE 7-49
Logging

buffered vs. unbuffered 7-313
changing mode with SET

LOG 7-313
finding log file location 7-53
renaming log 7-318
setting with CREATE

TABLE 7-91
starting with START

DATABASE 7-52, 7-317
with IBM Informix OnLine 7-51
with IBM Informix SE 7-52

Logical operator
in Condition segment 7-358

.lok extension 7-312
Loop

controlled 8-52
creating and exiting in SPL 8-27
exiting using RAISE

exception 8-35
indefinite with WHILE 8-84

LOW keyword 7-315

M
Machine notes Intro-22
manufact table in stores5 database,

columns in 1-11
mary 7-32
MATCHES keyword

syntax in Condition
segment 7-346

use
in Condition segment 7-352
in SELECT 7-273

wildcard characters 7-274
MAX function

syntax in expression 7-383
use in expression 7-395

MDY function
syntax in expression 7-383

Memory
allocating for a system sqlda

structure 7-13
allocating in ESQL/C 6-4
allocating in ESQL/COBOL 6-13

Memory, releasing with
FREE 7-165

Menu, specifying with
DBMENU 4-12

Message file for error
messages Intro-19

Message files, specifying
subdirectory with
DBLANG 4-11

MIN function
syntax in expression 7-383
use in expression 7-395

Minus (-) sign, arithmetic
operator 7-371

MINUTE keyword
syntax

in DATETIME data type 7-368
in INTERVAL data type 7-414

use
as DATETIME field

qualifier 3-8, 7-417
as INTERVAL field

qualifier 3-14, 7-420
MODE ANSI keywords

syntax
in CREATE DATABASE 7-49
Index 11

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
in START DATABASE 7-317
use

in CREATE DATABASE 7-52
in START DATABASE 7-318

MODIFY keyword
syntax in ALTER TABLE 7-20
use in ALTER TABLE 7-30

MODIFY NEXT SIZE keywords
syntax in ALTER TABLE 7-20
use in ALTER TABLE 7-36

MONEY data type
changing data types 3-22
description of 3-17
syntax 7-365
using as default value 7-24, 7-81

MONEY value
setting DBMONEY environment

variable 4-12
specifying European format with

DBMONEY 4-13
MONTH function

syntax in expression 7-383
use in expression 7-385

MONTH keyword
syntax

in DATETIME data type 7-368
in INTERVAL data type 7-414

use
as DATETIME field

qualifier 3-8, 7-417
as INTERVAL field

qualifier 3-14, 7-420
Multi-row query

destination of returned
values 7-157

managing with FETCH 7-154

N
NAME field, description of 6-7,

6-16
Naming convention

column 7-80, 7-241
database 7-363
index 7-360, 7-413, 7-433
table 7-76, 7-400, 7-435

Nested ordering, in SELECT 7-284

Network environment variable
DBNETTYPE 4-13
DBPATH 4-14
SQLRM 4-26
SQLRMDIR 4-27

NEXT keyword
syntax in FETCH 7-153
use in FETCH 7-155

NEXT SIZE keywords
use in CREATE TABLE 7-94
use in GRANT 7-178

NOSORTINDEX environment
variable 4-24

NOT CLUSTER keywords
syntax in ALTER INDEX 7-17
use in ALTER TABLE 7-19

NOT FOUND keywords, in the
WHENEVER statement 7-337,
7-340

NOT IN keywords, use in
Condition subquery 7-355

NOT keyword
syntax

in Condition segment 7-345,
7-346

with BETWEEN keyword 7-272
with IN keyword 7-275

use
in Condition segment 7-352
with LIKE, MATCHES

keywords 7-273
NOT NULL keywords

syntax
in ALTER TABLE 7-22
in CREATE TABLE 7-80

use
in ALTER TABLE 7-30
in CREATE TABLE 7-83
with IS keyword 7-273

NOT WAIT keywords, in SET
LOCK MODE 7-311

NOTFOUND keyword, contrasted
with NOT FOUND
keywords 7-340

NULL keyword, ambiguous as
procedure variable 7-409

Null value
checking for in SELECT 7-265
in IF statement 8-61

restrictions on primary key 7-85
returned implicitly by stored

procedure 8-75
specifying as default value 7-25
with WHILE statement 8-84

NULLABLE field, description
of 6-8, 6-17

O
OF keyword

syntax in DECLARE 7-107
use in DECLARE 7-116

ON EXCEPTION statement
placement of 8-69
scope of control 8-33
syntax 8-67
trapping errors 8-32
user-generated errors 8-34

ON keyword
syntax

in CREATE INDEX 7-54
in GRANT 7-175
in REVOKE 7-247

use
in CREATE INDEX 7-55
in GRANT 7-181

Online
files Intro-22
help Intro-22

OPEN statement
constructing the active set 7-208
opening an insert cursor 7-209
opening select or update

cursors 7-208
reopening a cursor 7-210
substituting values for ?

parameters 7-211
syntax 7-207
when to use FOREACH 7-213
with concatenation

operator 7-372
with FREE 7-214

Optimization, specifying a high or
low level 7-315

Optimizer
and SET OPTIMIZATION

statement 7-315
12 IBM Informix Guide to SQL: Reference

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
Optimizing
a query 7-301
a server 7-315
across a network 7-316
updating system catalog

tables 7-335
OR keyword

syntax in Condition
segment 7-345

use in Condition segment 7-358
ORDER BY keywords

ascending order 7-284
descending order 7-284
restrictions in INSERT 7-197
select columns by number 7-285
syntax in SELECT 7-258
use

in SELECT 7-283
with UNION operator 7-287

orders table in stores5 database,
columns in 1-6

OUTER keyword, with FROM
keyword in SELECT 7-269

OUTPUT statement, syntax and
use 7-216

Owner
in ALTER TABLE 7-21
in CREATE SYNONYM 7-71
in Index Name segment 7-360,

7-413, 7-424, 7-433
in RENAME COLUMN 7-241
in RENAME TABLE 7-243
in Table Name segment 7-399,

7-435
in View Name segment 7-438
of view in CREATE VIEW 7-439

Owner-privileged procedure 8-16

P
PAGE keyword

use in ALTER TABLE 7-36
use in CREATE TABLE 7-95

Parameter
BYTE or TEXT in SPL 8-49
in CALL statement 8-38
to a stored procedure 8-29

Parameterizing a statement
in PREPARE 7-223
with SQL identifiers 7-225

Parent-child relationship 7-27, 7-86
PATH environment variable 4-28
Pathname

including in SQLEXEC 4-25
specifying with DBPATH 4-14
specifying with DBSRC 4-16
specifying with PATH 4-28

Percent (%) sign, wildcard in
Condition segment 7-353

PERFORM keyword, in the
WHENEVER statement 7-337

Performance
increasing with stored

procedures 8-6
Permission

with SYSTEM 8-79
Phantom row 7-308
PIPE keyword, in the OUTPUT

statement 7-217
Plus (+) sign, arithmetic

operator 7-371
PRECISION field

description of 6-7, 6-16
setting with SET

DESCRIPTOR 7-298
with GET DESCRIPTOR 7-173

PREPARE statement
executing 7-142
increasing performance

efficiency 7-229
multi-statement text 7-222, 7-228
parameterizing a statement 7-223
parameterizing for SQL

identifiers 7-225
question (?) mark as

placeholder 7-219
releasing resources with

FREE 7-167
restrictions with SELECT 7-221
statement identifier use 7-219
syntax 7-218
valid statement text 7-221
with concatenation

operator 7-372

Prepared statement
describing returned values with

DESCRIBE 7-126
executing 7-142
prepared object limit 7-219
valid statement text 7-221

PREVIOUS keyword
syntax in FETCH 7-153
use in FETCH 7-155

Primary key constraint
data type conversion 7-32
defining column as 7-85
dropping 7-35
enforcing 7-78
modifying a column with 7-31
referencing 7-27
requirements for 7-26, 7-85
rules of use 7-34, 7-86

PRIMARY KEY keywords
in ALTER TABLE statement 7-25
in CREATE TABLE 7-83, 7-84
use in ALTER TABLE 7-33

Printing, specifying print program
with DBPRINT 4-15

PRIOR keyword
syntax in FETCH 7-153
use in FETCH 7-155

Privilege
Alter 7-180
Connect 7-177
DBA 7-178
default for stored

procedures 8-16
default for table using CREATE

TABLE 7-76
Delete 7-180
displaying with the INFO

statement 7-187
encoded in system catalog 2-29,

2-32
Index 7-180
Insert 7-180
needed

to create a view 7-183
to drop an index 7-134
to modify data 7-180

on a synonym 7-70
on a view 7-98
Resource 7-178
Index 13

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Update 7-180
when privileges conflict 7-176
with DBA-privileged

procedures 8-18
with owner-privileged

procedures 8-17
PRIVILEGES FOR keywords, in

INFO statement 7-187
PRIVILEGES keyword

syntax
in GRANT 7-179
in REVOKE 7-249

use
in GRANT 7-180
in REVOKE 7-250

Procedure name
conflict with function name 7-424
naming conventions 7-424

PUBLIC keyword
syntax

in GRANT 7-175
in REVOKE 7-247

use
in GRANT 7-178
in REVOKE 7-249

PUT statement
source of row values 7-232
use in transactions 7-231
with concatenation

operator 7-372
with FLUSH 7-231

Q
Qualifier, field

for DATETIME 3-8, 7-368, 7-417
for INTERVAL 3-14, 7-414, 7-420

Query
piping results to another

program 7-217
sending results to an operating

system file 7-216
sending results to another

program 7-217
Query optimization information

statements 7-11
Question (?) mark

as placeholder in PREPARE 7-219

naming variables in PUT 7-234
replacing with USING

keyword 7-211
supplying values to placeholders

with EXECUTE 7-144
wildcard in condition 7-353

Quoted string
in expression 7-376
syntax

in Condition segment 7-346
in expression 7-383
in INSERT 7-194

use
in expression 7-377
in INSERT 7-428
with LIKE, MATCHES

keywords 7-273
Quoted String segment

DATETIME, INTERVAL values
as strings 7-427

syntax 7-426
wildcards 7-427
with LIKE in a condition 7-427

R
RAISE EXCEPTION statement

exiting a loop 8-27
syntax 8-73

RECOVER TABLE statement
archiving a database with audit

trails 7-238
manipulating audit trail file 7-239
syntax 7-238

Recursion, in a stored
procedure 8-29

REFERENCES FOR keywords, in
INFO statement 7-187

REFERENCES keyword
in ALTER TABLE 7-27
in CREATE TABLE 7-86, 7-88
syntax

in GRANT 7-179
in REVOKE 7-249

use
in GRANT 7-180
in REVOKE 7-250

References privilege
definition of 7-180
displaying with the INFO

statement 7-187
Referential constraint

data type restrictions 7-88
definition of 7-27, 7-86
dropping 7-35
enforcing 7-78
modifying a column with 7-31
rules of use 7-86

Relational Operator
segment 7-429

Relational operator
in Condition segment 7-346
with WHERE keyword in

SELECT 7-272
Relational Operator segment 7-429
RELATIVE keyword

syntax in FETCH 7-153
use in FETCH 7-156

Relay Module
SQLRM environment

variable 4-26
SQLRMDIR environment

variable 4-27
Release notes Intro-22
RENAME COLUMN statement

restrictions 7-241
syntax 7-241

RENAME TABLE statement
ANSI-compliant naming 7-243
syntax 7-243

REPAIR TABLE statement, syntax
and use 7-245

Repeatable Read isolation level
description of 7-309
emulating during update 7-160

REPEATABLE READ keywords,
syntax in SET
ISOLATION 7-307

RESOURCE keyword
use in GRANT 7-178
use in REVOKE 7-251

Resource privilege 7-178
Resource privilege with SPL 8-16
RETURN statement

exiting a loop 8-27
returning insufficient values 8-75
14 IBM Informix Guide to SQL: Reference

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
returning null values 8-75
syntax 8-75

REVOKE statement
column-specific privileges 7-251
database-level privileges 7-251
privileges needed 7-248
syntax 7-247
table-level privileges 7-249

ROLLBACK WORK statement
restriction with FOREACH 7-255
syntax 7-254
use with WHENEVER 7-38, 7-45,

7-255
ROLLFORWARD DATABASE

statement
exclusive locking 7-256
syntax 7-256

ROUND function, use in
expression 7-391

Row
deleting 7-122
engine response to locked

row 7-311
inserting through a view 7-191
inserting with a cursor 7-192
multi-row queries with

FETCH 7-154
phantom 7-308
retrieving with FETCH 7-156
rowid definition 7-156
updating through a view 7-326
writing buffered rows with

FLUSH 7-162
ROW keyword

use in ALTER TABLE 7-36
use in CREATE TABLE 7-95

Rowid 7-405
Run-time program

setting DBANSIWARN 4-7
setting INFORMIXCOBDIR 4-20

S
SCALE field

description of 6-7, 6-16
setting with SET

DESCRIPTOR 7-298
with GET DESCRIPTOR 7-173

Scroll cursor
definition of 7-111
use of 7-112
with FETCH 7-155
with hold, in a transaction 7-309

SCROLL keyword
syntax in DECLARE 7-107
use in DECLARE 7-112

SECOND keyword
syntax

in DATETIME data type 7-368
in INTERVAL data type 7-414

use
as DATETIME field

qualifier 3-9, 7-417
as INTERVAL field

qualifier 3-14, 7-420
Select cursor

closing 7-42
definition of 7-110
opening 7-208
reopening 7-210
use of 7-110

SELECT keyword
ambiguous use as procedure

variable 7-409
syntax

in GRANT 7-179
in REVOKE 7-249

use
in GRANT 7-180
in REVOKE 7-250

Select privilege
definition of 7-180

SELECT statement
aggregate functions in 7-393
as an argument to a stored

procedure 8-38
assigning values with 8-25
associating with cursor with

DECLARE 7-110
column numbers 7-281, 7-285
describing returned values with

DESCRIBE 7-125
FROM Clause 7-269
GROUP BY clause 7-279
HAVING clause 7-281
INTO clause with I4GL,

ESQL 7-265

INTO TEMP clause 7-285
joining tables in WHERE

clause 7-277
ORDER BY clause 7-283
remote query 7-259
restrictions with INTO

clause 7-221
SELECT clause 7-260
select numbers 7-281, 7-285
subquery with WHERE

keyword 7-272
syntax 7-258
UNION operator 7-287
use of expressions 7-261
with

Condition segment 7-345
DECLARE 7-107
FOREACH 8-56
INSERT 7-197
INTO keyword 7-157
LET 8-65

writing rows retrieved to an
ASCII file 7-319

Self-join
description of 7-278

Sequential cursor
definition of 7-111
use of 7-111
with FETCH 7-155

SERIAL data type
description of 3-18
in ALTER TABLE 7-22
in INSERT 7-196
inserting values 3-18
resetting values 3-18
syntax 7-365
with stored procedures 8-43

SET CONSTRAINTS statement,
syntax and use 7-289

SET DEBUG FILE statement
with TRACE 8-80

SET DEBUG FILE TO statement,
syntax and use 7-291

SET DESCRIPTOR statement
syntax 7-293
the VALUE option 7-296

SET EXPLAIN statement
interpreting output 7-301
MERGE JOIN information 7-303
Index 15

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
optimizer access paths 7-302
output examples 7-303
SORT SCAN information 7-303
syntax 7-301

SET ISOLATION statement
default database levels 7-307
definition of isolation levels 7-308
effects of isolation 7-309
syntax 7-307

SET keyword
syntax in UPDATE 7-325
use in UPDATE 7-328

SET LOCK MODE statement
kernel locking 7-312
setting wait period 7-312
syntax 7-311

SET LOG statement
buffered vs. unbuffered 7-313
syntax 7-313

SET OPTIMIZATION statement,
syntax and use 7-315

Setting environment variables 4-4
SHARE keyword, syntax in LOCK

TABLE 7-204
Shared memory parameters,

specifying file with
TBCONFIG 4-27

Simple assignment 8-64
Single-precision floating-point

number, storage of 3-12
SITENAME function

returns servername 7-378
syntax

in expression 7-376
in INSERT 7-194

use
in ALTER TABLE 7-23
in CREATE TABLE 7-81
in expression 7-378
in INSERT 7-196

Slash (/), arithmetic operator 7-371
SMALLFLOAT data type

changing data types 3-22
description of 3-19
syntax 7-365

SMALLINT data type
changing data types 3-22
description of 3-19
syntax 7-365

using as default value 7-24, 7-81
SOME keyword

beginning a subquery 7-276
use in Condition subquery 7-357

Sorting
in a combined query 7-287
in SELECT 7-283

Space ()
as delimiter in DATETIME 3-10
as delimiter in INTERVAL 3-15

SPL
flow control statements 8-26
relation to SQL 8-5
statement syntax 8-36

SQL
statement types 7-9

SQL Communications Area
(SQLCA)

description of 5-3
effect of setting

DBANSIWARN 4-7
result after CLOSE 7-42
result after DATABASE 7-101
result after DESCRIBE 7-126
result after FETCH 7-161
result after FLUSH 7-163
result after OPEN 7-209
result after PUT 7-236
result after SELECT 7-268

SQLCA.SQLAWARN (4GL) 5-6
sqlca.sqlcode

in ESQL/C 5-8
SQLCA.SQLCODE (4GL) 5-5
sqlca.sqlerrd

in ESQL/C 5-8
SQLCA.SQLERRD (4GL) 5-5
sqlca.sqlwarn

in ESQL/C 5-10
SQLCODE OF SQLCA (ESQL/

COBOL) 5-11
sqlda structure

fields in sqlda 6-11
fields in sqlvar_struct 6-11
sqlda.h header file shown 6-10
syntax

in DESCRIBE 7-125
in EXECUTE 7-142
in FETCH 7-153
in OPEN 7-208

in PUT 7-230
system descriptor area in ESQL/

C 6-5
system descriptor area in ESQL/

COBOL 6-13
use

in DESCRIBE 7-127
in FETCH 7-159
in OPEN 7-213
in PUT 7-234

using pointers in ESQL/C 6-9
sqlda.h header file

fields in sqlda 6-11
fields in sqlvar_struct 6-11
shown 6-10

SQLERRD OF SQLCA (ESQL/
COBOL) 5-12

SQLERROR keyword, in the
WHENEVER statement 7-337

SQLEXEC environment
variable 4-25

SQLRM environment variable 4-26
SQLRMDIR environment

variable 4-27
SQLWARN of SQLWARN (ESQL/

COBOL) 5-13
SQLWARNING keyword, in the

WHENEVER statement 7-340
START DATABASE statement

syntax and use 7-317
state table in stores5 database,

columns in 1-11
Statement identifier

associating with cursor 7-110
definition of 7-219
releasing 7-220
syntax

in DECLARE 7-107
in DESCRIBE 7-125
in EXECUTE 7-142
in FREE 7-166
in PREPARE 7-218

use
in DECLARE 7-117
in FREE 7-167
in PREPARE 7-219

Statement types 7-9
Statement variable name,

definition 7-147
16 IBM Informix Guide to SQL: Reference

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
STATUS FOR keywords, in INFO
statement 7-188

STATUS variable (4GL) 5-5
Status, displaying with INFO

statement 7-188
stock table in stores5 database,

columns in 1-8
STOP keyword, in the WHENEVER

statement 7-337, 7-342
Stored procedure

altering 8-16
BYTE and TEXT data types 8-44,

8-48
comments in 8-8
creating from an embedded

language 8-8
creating from DBACCESS 8-7
cursors with 8-56
DBA-privileged 8-16
debugging 8-14, 8-80
definition of 8-6
displaying contents 8-11
displaying documentation 8-11
documenting 8-8
executing 8-12
granting privileges on 7-181
handling multiple rows 8-76
header 8-29, 8-43
introduction to 8-5
name confusion with SQL

functions 8-23
naming output file for TRACE

statement 7-291
owner-privileged 8-16
receiving data from

SELECT 7-265
recursion 8-29
returning values 8-29
revoking privileges on 7-248
simulating errors 8-73
use 8-6
variable 8-19

stores5 database
call_type columns 1-10
catalog table columns 1-9
copying Intro-7
creating on IBM Informix

OnLine Intro-7

creating on IBM Informix
SE Intro-8

customer table columns 1-5
cust_calls table columns 1-10
data values 1-21
description of 1-3
items table columns 1-6
manufact table columns 1-11
map of 1-11
orders table columns 1-6
overview Intro-6
primary-foreign key

relationships 1-13 to 1-21
state table columns 1-11
stock table columns 1-8
structure of tables 1-4

Subquery
beginning with ALL/ANY/

SOME keywords 7-276
beginning with EXISTS

keyword 7-275
beginning with IN

keyword 7-275
correlated 7-355
definition of 7-272
in Condition segment 7-355
restrictions with UNION

operator 7-287
with DISTINCT keyword 7-261

SUM function
syntax in expression 7-383
use in expression 7-396

Synonym
ANSI-compliant naming 7-71
chaining 7-73
creating with CREATE

SYNONYM 7-70
difference from alias 7-70
dropping 7-137

Syntax diagram
conventions Intro-12
elements of Intro-15

System catalog
accessing 2-8
database entries 7-50
description of 2-3
map of tables 2-33
sysblobs 2-10
syschecks 2-11

syscolauth 2-11, 7-249
syscoldepend 2-12
syscolumns 2-13
sysconstraints 2-16
sysdefaults 2-17
sysdepend 2-18
sysindexes 2-18
sysindexes entry for

constraint 7-78
sysopclstr 2-21
sysprocauth 2-23
sysprocbody 2-24, 8-11
sysprocedures 2-25
sysprocplan 2-26
sysreferences 2-27
syssynonyms 2-27
syssyntable 2-28
systabauth 2-29, 7-183, 7-249
systables 2-30
sysusers 2-32
sysviews 2-33
updating 2-9
updating data for

optimization 7-335
updating statistics 2-9

System descriptor area
fields defined 6-7, 6-16
in ESQL/C 6-5
in ESQL/COBOL 6-13
modifying contents 7-293
resizing 7-295
values for TYPE and ITYPE

fields 6-8, 6-17
System name, in database

name 7-363
SYSTEM statement

syntax 8-78

T
Table

adding a constraint 7-33
alias in SELECT 7-269
ANSI-compliant naming 7-435
changing the data type of a

column 3-22
checking with the CHECK TABLE

statement 7-39
Index 17

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
creating
a synonym for 7-70
a table 7-75
a temporary table 7-90

dropping
a constraint 7-35
a synonym 7-137
a table 7-139

engine response to locked
table 7-311

joins in Condition segment 7-277
loading data with the LOAD

statement 7-199
locking

changing mode 7-36
with ALTER INDEX 7-18
with LOCK TABLE 7-204

logging 7-91
naming conventions 7-76, 7-400,

7-435
optimizing queries 7-336
renaming 7-243
repairing with REPAIR TABLE

statement 7-245
restoring with audit trail 7-238
structure in stores5 database 1-4
system catalog tables 2-10 to 2-33
unlocking 7-323
use of temporary 7-91

TABLE keyword, syntax in
UPDATE STATISTICS 7-335

Table Name segment 7-434
Table-level privilege

column-specific privileges 7-251
default with GRANT 7-181
definition and use 7-180
granting 7-179
passing grant ability 7-181
revoking 7-249

TABLES keyword, in INFO
statement 7-186

TBCONFIG environment
variable 4-27

tbconfig file, specifying with
TBCONFIG 4-27

TEMP keyword
syntax in SELECT 7-258
use in SELECT 7-285

TEMP TABLE keywords, syntax in
CREATE TABLE 7-75

Temporary files, specifying
directory with DBTEMP 4-17

Temporary table
creating constraints for 7-91

TERM environment variable 4-29
TERMCAP environment

variable 4-29
termcap file

and TERMCAP environment
variable 4-29

selecting with
INFORMIXTERM 4-24, 4-25

Terminal handling
and TERM environment

variable 4-29
and TERMCAP environment

variable 4-29
and TERMINFO environment

variable 4-30
terminfo directory

and TERMINFO environment
variable 4-30

selecting with
INFORMIXTERM 4-24

TERMINFO environment
variable 4-30

TEXT data type
description of 3-19
requirements for LOAD

statement 7-202
selecting a column 3-20
syntax 7-365
with control characters 3-20
with stored procedures 8-44, 8-48

Text editor, specifying with
DBEDIT 4-10

Time function
restrictions with GROUP

BY 7-280
syntax in expression 7-383
use in SELECT 7-262

TO CLUSTER keywords, in ALTER
INDEX 7-18

TO keyword
in expression 7-383
in GRANT 7-175

TODAY function
syntax

in Condition segment 7-346
in expression 7-376
in INSERT 7-194

use
in ALTER TABLE 7-23
in constant expression 7-379
in CREATE TABLE 7-81
in INSERT 7-196

TRACE statement
debugging a stored

procedure 8-14
syntax 8-80

Transaction
and CREATE DATABASE 7-52
committing with COMMIT

WORK 7-46
logging 7-317
recovering transactions 7-256
rolling back 7-254
scroll cursor and data

consistency 7-309
starting with BEGIN WORK 7-37
using cursors in 7-118

Transaction logging
renaming log 7-318

TRUNC function, use in
expression 7-392

TYPE field
changing from BYTE or

TEXT 7-299
description of 6-7, 6-16
setting in SET

DESCRIPTOR 7-296
setting in X/Open

programs 7-298
with X/Open programs 7-172

Typographical
conventions Intro-11

U
Underscore (_), wildcard in

Condition segment 7-353
UNION operator

restrictions on use 7-287
syntax in SELECT 7-258
18 IBM Informix Guide to SQL: Reference

O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
use in SELECT 7-287
Unique constraint

data type conversion 7-32
dropping 7-35
enforcing 7-78
modifying a column with 7-31
requirements for 7-25
rules of use 7-34, 7-85, 7-86

UNIQUE keyword
syntax

in CREATE INDEX 7-54
in CREATE TABLE 7-83
in SELECT 7-260

use
in ALTER TABLE 7-33
in CREATE INDEX 7-55
in CREATE TABLE 7-84
in expression 7-393
in SELECT 7-261
no effect in subquery 7-356

UNITS keyword
syntax in expression 7-376
use in expression 7-382

UNLOAD statement
DELIMITER clause 7-322
specifying field delimiter with

DBDELIMITER 4-9
syntax 7-319
UNLOAD TO file 7-320
unloading VARCHAR, TEXT, or

BYTE columns 7-321
UNLOAD TO file 7-320
UNLOCK TABLE statement, syntax

and use 7-323
Updatable view 7-100
Update cursor

definition of 7-110
locking considerations 7-115
opening 7-208
restricted statements 7-115
use in UPDATE 7-333
using 7-114

UPDATE keyword
syntax

in GRANT 7-179
in REVOKE 7-249

use
in GRANT 7-180
in REVOKE 7-250

Update privilege
definition of 7-180
with a view 7-326

UPDATE statement
and transactions 7-326
locking considerations 7-327
restrictions on columns for

update 7-116
rolling back updates 7-327
syntax 7-325
updating through a view 7-326
updating with cursor 7-333
use of expressions 7-330
with

Condition segment 7-345
FETCH 7-160
SET keyword 7-328
WHERE CURRENT OF

keywords 7-333
WHERE keyword 7-332

with an update cursor 7-114
UPDATE STATISTICS statement

optimizing search
strategies 7-335

syntax 7-335
when to execute 7-336

USER function
as affected by ANSI

compliance 7-378
syntax

in Condition segment 7-346
in expression 7-376
in INSERT 7-194

use
in ALTER TABLE 7-23
in CREATE TABLE 7-81
in expression 7-377
in INSERT 7-196

User informix, privileges associated
with 7-178

USING DESCRIPTOR keywords
information from

DESCRIBE 7-127
syntax

in EXECUTE 7-142
in FETCH 7-153
in OPEN 7-207
in PUT 7-230

use
in FETCH 7-159
in OPEN 7-213
in PUT 7-146, 7-234, 7-235

USING keyword
syntax

in EXECUTE 7-144
in OPEN 7-207

use
in EXECUTE 7-144
in OPEN 7-211

USING SQL DESCRIPTOR
keywords

in DESCRIBE 7-128
in EXECUTE 7-145

V
VALUE field

after NULL value is fetched 7-174
use in GET DESCRIPTOR 7-172

VALUE keyword
relation to FETCH 7-173
use in SET DESCRIPTOR 7-296

VALUES keyword
syntax in INSERT 7-190
use

effect with PUT 7-233
in INSERT 7-194

VARCHAR data type
considerations for UNLOAD

statement 7-321
description of 3-21
requirements for LOAD

statement 7-202
syntax 7-365
using as default value 7-24, 7-82

Variable
default values in SPL 8-46, 8-47
define in SPL 8-42
GLOBAL and LOCAL in

SPL 8-20
global, in SPL 8-45
in SPL 8-19
local, in SPL 8-47
scope of SPL variable 8-43
unknown values in IF 8-61
Index 19

@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
with same name as a
keyword 8-22

View
creating synonym for 7-70
dropping 7-141
privileges 7-98
privileges with GRANT 7-183
restrictions with UNION

operator 7-287
updating 7-326
virtual column 7-99
with SELECT * notation 7-98

View Name segment 7-438
View, updatable 7-100

W
WAIT keyword, in the SET LOCK

MODE statement 7-311
WARNING keyword, in the

WHENEVER statement 7-337,
7-340

Warnings
with stored procedures 8-10

WEEKDAY function
syntax in expression 7-383

WHENEVER statement, syntax and
use 7-337

WHERE CURRENT OF keywords
syntax

in DELETE 7-122
in UPDATE 7-325

use
in UPDATE 7-333

WHERE keyword
joining tables 7-277
setting descriptions of

items 7-293
syntax

in DELETE 7-122
in SELECT 7-258
in UPDATE 7-325

use
in DELETE 7-123
in UPDATE 7-332
with a subquery 7-272
with ALL keyword 7-276
with ANY keyword 7-276

with BETWEEN keyword 7-272
with IN keyword 7-273
with IS keyword 7-273
with LIKE keyword 7-273
with MATCHES keyword 7-273
with relational operator 7-272
with SOME keyword 7-276

WHILE keyword
in CONTINUE statement 8-40
in EXIT 8-50

WHILE statement
looping in a stored

procedure 8-27
syntax 8-84
with NULL expressions 8-84

Wildcard characters, with LIKE or
MATCHES 7-427

WITH APPEND keywords, in the
SET DEBUG FILE TO
statement 7-291

WITH CHECK keywords
syntax in CREATE VIEW 7-97
use in CREATE VIEW 7-100

WITH GRANT keywords
syntax in GRANT 7-175
use in GRANT 7-181

WITH HOLD keywords
syntax in DECLARE 7-107
use in DECLARE 7-112, 7-120

WITH keyword, syntax in CREATE
DATABASE 7-49

WITH LISTING IN keywords
warnings in a stored

procedure 8-10
WITH LOG IN keywords, syntax in

START DATABASE 7-317
WITH MAX keywords

relationship with COUNT
field 7-294

WITH NO LOG keywords
syntax

in CREATE TABLE 7-75
in SELECT 7-285

use
in CREATE TABLE 7-91
in SELECT 7-287

WITH RESUME keywords, in
RETURN 8-76

WITHOUT HEADINGS keywords,
in the OUTPUT statement 7-216

X
X/Open compliance level Intro-22

Y
YEAR function

syntax in expression 7-383
use in expression 7-385

YEAR keyword
syntax

in DATETIME data type 7-368
in INTERVAL data type 7-414

use
as DATETIME field

qualifier 3-8, 7-417
as INTERVAL field

qualifier 3-14, 7-420

Symbols
. 6-13
||

concatenation operator 7-372
20 IBM Informix Guide to SQL: Reference

	IBM Informix Online Documentation
	Table of Contents
	Introduction
	In This Introduction
	About This Manual
	Organization of This Manual
	IBM�Informix Products That Use SQL
	Products Covered in This Manual
	The Demonstration Database
	Creating the Demonstration Database on IBM�Informix OnLine
	Creating the Demonstration Database on IBM�Informix SE

	New Features in IBM�Informix Server Products, Version�5.x
	Document Conventions
	Typographical Conventions
	Syntax Conventions
	Example Code Conventions

	Additional Documentation
	Online Manuals
	Error Message Files
	The finderr Script
	The rofferr Script

	Documentation Notes, Release Notes, Machine Notes

	Compliance with Industry Standards
	IBM Welcomes Your Comments

	The stores5 Database
	In This Chapter
	Structure of the Tables
	The customer Table
	The orders Table
	The items Table
	The stock Table
	The catalog Table
	The cust_calls Table
	The call_type Table
	The manufact Table
	The state Table

	The stores5 Database Map
	Primary-Foreign Key Relationships
	The customer and orders Tables
	The orders and items Tables
	The items and stock Tables
	The stock and catalog Tables
	The stock and manufact Tables
	The cust_calls and customer Tables
	The call_type and cust_calls Table
	The state and customer Tables

	Data in the stores5 Database

	System Catalog
	In This Chapter
	Using the System Catalog
	Accessing the System Catalog
	Updating System Catalog Data

	Structure of the System Catalog
	SYSBLOBS
	SYSCHECKS
	SYSCOLAUTH
	SYSCOLDEPEND
	SYSCOLUMNS
	SYSCONSTRAINTS
	SYSDEFAULTS
	SYSDEPEND
	SYSINDEXES
	SYSOPCLSTR
	SYSPROCAUTH
	SYSPROCBODY
	SYSPROCEDURES
	SYSPROCPLAN
	SYSREFERENCES
	SYSSYN�ONYMS
	SYSSYNT�ABLE
	SYSTABAUTH
	SYSTABLES
	SYSUSERS
	SYSVIEWS

	System Catalog Map

	Data Types
	In This Chapter
	Database Data Types
	BYTE
	CHAR(n)
	CHARACTER(n)
	DATE
	DATETIME
	DEC
	DECIMAL[(p,s)]
	DOUBLE PRECISION(n)
	FLOAT(n)
	INT
	INTEGER
	INTERVAL
	MONEY(p,s)
	NUMERIC(p,s)
	REAL
	SERIAL(n)
	SMALLFLOAT
	SMALLINT
	TEXT
	VARCHAR(m,r)

	Data Type Conversions
	Converting from Number to Number
	Converting Between Number and CHAR
	Converting Between DATE and DATETIME

	Range of Operations Using DATE, DATETIME, and INTERVAL
	Manipulating DATETIME Values
	Manipulating DATETIME with INTERVAL Values
	Manipulating DATE with DATETIME and INTERVAL Values
	Manipulating INTERVAL Values
	Multiplying or Dividing INTERVAL Values

	Environment Variables
	In This Chapter
	Setting Environment Variables
	Informix Environment Variables
	DBANSIWARN
	DBDATE
	DBDELIMITER
	DBEDIT
	DBFORMAT
	DBLANG
	DBMENU
	DBMONEY
	DBNETTYPE
	DBPATH
	DBPRINT
	DBREMOTECMD
	DBSRC
	DBTEMP
	DBTIME
	INFORMIXCOB
	INFORMIXCOBDIR
	INFORMIXCOBSTORE
	INFORMIXCOBTYPE
	INFORMIXDIR
	INFORMIXONLINEDIR
	INFORMIXTERM
	NOSORTINDEX
	SQLEXEC
	SQLRM
	SQLRMDIR
	TBCONFIG

	UNIX Environment Variables
	PATH
	TERM
	TERMCAP
	TERMINFO

	Error Handling with SQLCA
	In This Chapter
	The SQLCA Record in IBM�Informix 4GL
	The sqlca Structure in IBM�Informix ESQL/C
	The SQLCA Record in IBM�Informix ESQL/COBOL

	Using Descriptors
	In This Chapter
	The System Descriptor Area and the sqlda Structure in ESQL/C
	Using a System Descriptor Area
	The System Descriptor Area

	Using Pointers to an sqlda Structure
	The sqlda.h Header File

	The System Descriptor Area in ESQL/COBOL
	Using a System Descriptor Area
	The System Descriptor Area

	Syntax
	In This Chapter
	SQL Statements
	Data Definition Statements
	Data Manipulation Statements
	Cursor Manipulation Statements
	Dynamic Management Statements
	Data Access Statements
	Data Integrity Statements
	Query Optimization Information Statements
	Stored Procedure Statements
	Auxiliary Statements
	ALLOCATE DESCRIPTOR
	The WITH MAX Clause

	ALTER INDEX
	The TO CLUSTER Option
	The TO NOT� CLUSTER Option

	ALTER TABLE
	DEFAULT Clause
	Subset of Constraint-Definition Option

	BEGIN WORK
	CHECK TABLE
	CLOSE
	CLOSE DATABASE
	COMMIT WORK
	CREATE AUDIT
	CREATE DATABASE
	Designating Buffered Logging
	Designating an ANSI-Compliant Database
	Designating an ANSI-Compliant IBM Informix SE Database

	CREATE INDEX
	UNIQUE Option
	CLUSTER Option
	Composite Indexes
	The ASC and DESC Keywords

	CREATE PROCEDURE
	DBA Option
	Subset of SQL Data Types Allowed in the Parameter List
	Subset of SQL Statements Allowed in the Statement Block

	CREATE PROCEDURE FROM
	CREATE SCHEMA
	CREATE SYNONYM
	Synonyms with the Same Name

	CREATE TABLE
	Limits on Constraint Definitions
	Adding or Dropping Constraints
	Enforcing Primary Key, Unique, and Referential Constraints
	Constraint Names
	The DEFAULT Clause
	Specifying NOT NULL in a Column Definition
	Defining a Column as Unique
	The CHECK Clause
	Subset of Column-Definition Option
	Subset of Constraint-Definition Option
	WITH NO LOG Option for Temporary Tables
	The IN dbspace Clause
	Extent Option
	LOCK MODE Clause
	The IN pathname Option

	CREATE VIEW
	DATABASE
	DEALLOCATE DESCRIPTOR
	DECLARE
	Select Cursor
	Update Cursor
	Insert Cursor
	Sequential Cursor
	Scroll Cursor
	Hold Cursor
	Subset of the SELECT Statement Associated with an Update Cursor
	Locking with an Update Cursor
	Using FOR UPDATE with a List of Columns
	Using an Insert Cursor with Hold

	DELETE
	CURRENT OF Clause

	DESCRIBE
	DROP AUDIT
	DROP DATABASE
	DROP INDEX
	DROP PROCEDURE
	DROP SYNONYM
	DROP TABLE
	DROP VIEW
	EXECUTE
	USING Clause

	EXECUTE IMMEDIATE
	Restricted Statement Types

	EXECUTE PROCEDURE
	FETCH
	Row Numbers
	How the Database Server Stores Rows
	Using the INTO Clause of SELECT
	Using the INTO Clause of FETCH
	Using a System Descriptor

	FLUSH
	Counting Total and Pending Rows

	FREE
	GET DESCRIPTOR
	Using the COUNT Keyword
	VALUE Clause

	GRANT
	INFO
	Displaying Tables, Columns, and Indexes
	Displaying Privileges, References, and Status

	INSERT
	Value and Column Type Compatibility �
	Inserting Values into SERIAL Columns
	Using Functions in the VALUES Clause
	Inserting Nulls with the VALUES Clause

	LOAD
	The LOAD FROM File
	DELIMITER Clause
	INSERT INTO Clause

	LOCK TABLE
	OPEN
	Naming Variables in USING
	USING SQL DESCRIPTOR Clause

	OUTPUT
	PREPARE
	Statement Identifier
	Releasing a Statement Identifier
	Statement Text
	Permitted Statements

	PUT
	Using Constant Values in INSERT
	Naming Program Variables in INSERT
	Naming Program Variables in PUT
	Using a System Descriptor Area
	Using an sqlda Structure
	Counting Total and Pending Rows

	RECOVER TABLE
	RENAME COLUMN
	RENAME TABLE
	REPAIR TABLE
	REVOKE
	ROLLBACK WORK
	ROLLFORWARD DATABASE
	SELECT
	Allowing Duplicates
	Expressions in the Select List
	Using a Display Label
	INTO Clause with Indicator Variables
	INTO Clause with Cursors
	Preparing a SELECT...INTO Query
	Using Array Variables with the INTO Clause
	Error Checking
	AS Keyword with Table Aliases
	Using a Condition in the WHERE Clause
	Using a Join in the WHERE Clause
	Using Select Numbers
	Nulls in the GROUP BY Clause
	Ordering by a Derived Column
	Ascending and Descending Orders
	Nulls in the ORDER BY Clause
	Nested Ordering
	Using Select Numbers
	ORDER BY Clause with DECLARE
	INTO TEMP Clause and INTO
	WITH NO LOG Option
	Restrictions on a Combined SELECT
	Duplicate Rows in a Combined SELECT

	SET CONSTRAINTS
	SET DEBUG FILE TO
	SET DESCRIPTOR
	COUNT Option
	VALUE Option

	SET EXPLAIN
	SET ISOLATION
	SET LOCK MODE
	SET LOG
	SET OPTIMIZATION
	START DATABASE
	UNLOAD
	UNLOAD TO File
	DELIMITER Clause

	UNLOCK TABLE
	UPDATE
	Selecting All Columns with the Set Clause
	Subset of Expressions Allowed in the SET Clause
	Subset of SELECT Statements Allowed in the SET Clause
	Single Columns Paired to Single Expressions
	Multiple Columns Equal to Multiple Expressions

	UPDATE STATISTICS
	WHENEVER

	Segments
	Condition
	Relational-Operator Condition
	BETWEEN Condition
	IN Condition
	IS NULL Condition
	LIKE and MATCHES Condition
	Subset of a SELECT Allowed in a Subquery
	IN Subquery
	EXISTS Subquery
	ALL/ANY/SOME Subquery

	Constraint Name
	Database Name
	Data Type
	DATETIME Field Qualifier
	Expression
	Using Subscripts on Character Columns
	Using Rowids
	Using the At Sign
	Quoted String as Expression
	USER Function
	SITENAME and DBSERVERNAME Functions
	Literal Number as Expression
	TODAY Function
	CURRENT Function
	Literal DATETIME as an Expression
	Literal INTERVAL as an Expression
	UNITS Keyword
	DAY, MONTH, WEEKDAY, and YEAR Functions
	DATE Function
	EXTEND Function
	MDY Function
	LENGTH Function
	HEX Function
	ROUND Function
	TRUNC Function
	Subset of Expressions Allowed in an Aggregate Expression
	Including or Excluding Duplicates in the Row Set
	COUNT(*) Keyword
	AVG Keyword
	MAX Keyword
	MIN Keyword
	SUM Keyword
	COUNT Keyword
	Summary of Aggregate Function Behavior
	Error Checking with Aggregate Functions

	Identifier
	Using Keywords as Column Names
	Using ALL, DISTINCT, or UNIQUE as a Column Name
	Using INTERVAL or DATETIME as a Column Name
	Using rowid as a Column Name
	Using AS with Column Labels
	Using AS with Table Aliases
	Using CURRENT, DATETIME, INTERVAL, and NULL in INSERT
	Using NULL and SELECT in a Condition
	Using ON, OFF, or PROCEDURE with TRACE
	Using GLOBAL as a Variable Name

	Index Name
	INTERVAL Field Qualifier
	Literal DATETIME
	Literal INTERVAL
	Literal Number
	Procedure Name
	Quoted String
	Relational Operator
	Synonym Name
	Table Name
	View Name

	Stored Procedures and SPL
	In This Chapter
	Introduction to Stored Procedures and SPL
	What You Can Do with Stored Procedures
	Relationship Between SQL and a Stored Procedure

	Creating and Using Stored Procedures
	Creating a Procedure Using DB-Access
	Creating a Procedure Using an Embedded-Language Product
	Commenting and Documenting a Procedure
	Diagnosing Compile-Time Errors
	Finding Syntax Errors in a Procedure Using DB-Access
	Finding Syntax Errors in a Procedure Using an Embedded-Language Product

	Looking at Compile-Time Warnings
	Generating the Text or Documentation
	Looking at the Procedure Text
	Looking at the Procedure Documentation

	Executing a Procedure
	Debugging a Procedure
	Re-creating a Procedure

	Privileges on Stored Procedures
	Privileges at Creation
	Privileges at Execution
	Privileges and Owner-Privileged Procedures
	Privileges and DBA-Privileged Procedures
	Privileges and Nested Procedures

	Revoking Privileges

	Variables and Expressions
	Variables
	Format of Variables
	Global and Local Variables
	Defining Variables
	Data Types for Variables
	Scope of Variables
	Variable/Keyword Ambiguity

	Expressions
	Assigning Values to Variables

	Program Flow Control
	Branching
	Looping
	Function Handling
	Calling Procedures Within a Procedure
	Running an Operating System Command from Within a Procedure
	Recursively Calling a Procedure

	Passing Information into and out of a Procedure
	Returning Results
	Specifying Return Values
	Returning the Value
	Returning More Than One Set of Values from a Procedure

	Exception Handling
	Trapping an Error and Recovering
	Scope of Control of an ON EXCEPTION Statement
	User-Generated Exceptions
	Simulating SQL Errors
	Using RAISE EXCEPTION to Exit Nested Code

	SPL Statement Syntax
	CALL
	CONTINUE
	DEFINE
	EXIT
	FOR
	FOREACH
	IF
	LET
	ON EXCEPTION
	RAISE EXCEPTION
	RETURN
	SYSTEM
	TRACE
	WHILE

	Notices
	Glossary
	Index

