INFOFLEXU, INC

INFOFLEX-4GL

User Guide

Infoflex software and this manual are copyrighted and all rights are reserved by INFOFLEX, INC. No part
of this publication may be copied, photocopied, transated, or reduced to any electronic medium or machine
readable form without the prior written permission of INFOFLEX, INC.

LIMITED WARRANTY: INFOFLEX warrants that this software and manual will be free from defects in
materials and workmanship upon date of receipt. INFOFLEX DISCLAIMS ALL OTHER WARRANTIES,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
SOFTWARE, THE ACCOMPANYING WRITTEN MATERIALS, AND ANY ACCOMPANYING
HARDWARE. IN NO EVENT WILL INFOFLEX OR ANY AUTHORIZED REPRESENTATIVE BE
LIABLE FOR ANY DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS OF PROFITS, BUSINESS INTERUPTION, LOSS OF BUSINESS INFORMATION)
ARISING OUT OF THE USE OR INABILITY TO USE INFOFLEX SOFTWARE OR ANY
ACCOMPANYING INFOFLEX MANUAL, EVEN IF INFOFLEX HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

GOVERNING LAWS: Thisagreement isgoverned by the laws of California.

U.S. GOVERNMENT RESTRICTED RIGHTS:. Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subdivision (b)(3)(ii) of The Rights in Technical Data and Computer
Software clause at 252.227-7013.

Infoflex isaregistered trademark of INFOFLEX, INC.

UNIX isatrademark of Bell Laboratories.

XENIX and M S-DOS are trademarks of Microsoft Corporation.
Informix isaregistered trademark of Informix Software, Inc.
C-ISAM isatrademark of Informix Software, Inc.

D-1SAM isatrademark of Byte Designs Ltd.

Copyright L] 1986-2006 INFOFLEX, INC.
Printed in U.S.A. on May 2006

TABLE OF CONTENTS

1. INTRODUCTION TO INFOFLEX .

What Is Infoflex? .
Purpose of this User’s Guide .
The Relational Database
Comparison With Informix
The Audience S
Documentation Organization

2. BUILDING THE DATABASE

Basic Function

The SQL command file
Creating the Database .
Creating Tables

3. A SIMPLE SCREEN FORM .

Basic Function

The Screen File

The TABLES Section

The SELECT Section

The SCREEN Section .
The ATTRIBUTES Section
Compiling the Screen Form
Running the Screen Form

4. THE SCREEN ARRAY

What Is 1t?

Joining Tables

The SCREEN Section . .
REPEAT Within ATTRIBUTES .
Executing a Screen Array

The Detail-Only Array Screen

5. MORE ADVANCED SCREEN FEATURES

The Lookup Attribute .
The Helpselect Attribute
Online Help

Point and Shoot Screen
The Notepad Screen
Control Keys

Search Mode

Query Mode

6. A SSIMPLE REPORT

Basic Function

The Report File

The SCREEN Section .

The SELECT Section

The REPORT Section .

The ATTRIBUTE Section .
Compiling and Running the Report .

7. MORE ADVANCED REPORT

What Are Its Features?
Selection Criteria
Joining Tables

Report Breaks .
Sorting By Any Criteria

8. BUILDING MENUS

1-1
1-1
1-1
1-1
1-1
1-2
1-2

2-1
2-1
2-1
2-1
2-1

31
31
31
31
31
31
32
3-3
3-4

4-1
4-1
4-1
4-1
4-2
4-2
4-2

51
51
51
5-2
5-2
5-3
5-4
5-5
5-5

6-1
6-1
6-1
6-1
6-2
6-2
6-2
6-3

7-1
7-1
7-1
7-2
7-2
7-2

8-1

APPENDIX

RERRO0NDORAWNE

INDEX

0.
1.
2.
13.

Running the Demo

The Schema Ce
The Simple Screen - tbagent.flx
The Array Screen - bkinput.flx
The Simple Report - thagentr.flx
Sample Output - tbagentr.flx
Advanced Report | - saagent.flx
Advanced Output | - saagent.flx
Advanced Report Il - saagent2.flx

Advanced Output 11 - saagent2.rpt .

The Menus - menu.flx
Miscellaneous Screen | - sysfile.flx
Miscellaneous Screen |1 - tbven.flx

A-1

A-4

A-6

A-7
A-11
A-12
A-13
A-15
A-16
A-18
A-19
A-21
A-22

-1

1. INTRODUCTION TO INFOFLEX

What Is Infoflex?

InfoFlex isacomplete 4GL application development system that will meet the needs of both the non-technical user and the
most serious vertical market developer. InfoFlex may also be used to enhance existing applications written in Informix,
SCO Integra, D-1sam, C-Isam, Micro Focus Cobol, or SUN Netisam because of their compatible file structure.

Infoflex includes packages for developing menus (MENUFLEX), data entry screens (SCREENFLEX), reports
(REPORTFLEX), and SQL scripts (SQLFLEX). All of these packages with the exception of SQLFLEX, useaWYSIWYG
approach to programming: that is, menus, screens, and/or reports are defined by painting their image in an editor of your
choice. The coding syntax for these packages is consistent to facilitate learning.

Infoflex screens and reports are so versatile that much, if not all, of the features of an application can be defined without the
use of a procedural language. This is true for such features as multi-record scrolling/updating, report query screens, menu
chaining, and online field-specific help.

Though not a requirement of the Infoflex development process, C language routines can be easily linked with Infoflex
screens, reports, and/or menus rendering no application too complex or unusual for Infoflex implementation. Developing C
functions is made easy and powerful through our 4GL-like library and direct access to Infoflex variables.

Purpose of this User’'s Guide

The purpose of the Infoflex User’s Guide is to describe how a simple application, such as the Infoflex Demo, is developed.
In this guide you will learn the basic features of the three types of forms: screen, report, and menu.
All features of Infoflex are fully explained in the Infoflex Reference Manual.

A complete source code listing of the demo software is contained in the Appendix of this User’s Guide.

The Relational Database

Infoflex is designed to access arelational database which is a collection of related tables or files of information. Each table
is comprised of any number of records of information consisting of one or more fields.

A simple example of arelational database is a master/detail relationship asin an invoice. The master information is stored
in one table that contains data relating to the overall sale, such as customer and sale date. The detail information is stored in
a different table that contains information about the description of each item being sold, its cost, and quantity. These two
tables are then related based on their common information such as the invoice number.

Infoflex uses the same database structure as Informix database. This means that you can have an Infoflex or Informix
program manipul ate the same database.

Also, both Infoflex SQL FL EX and Informix SQL use the same syntax for database creation.

Comparison With Informix

For those familiar with Informix 4GL, Infoflex is a comparable product in developing large, sophisticated relational
database applications. Infoflex, as well as being compatible with Informix’s standard database, also uses a similar syntax to
Informix’s Perform package. Infoflex uses the Perform syntax to create menus, reports, and screens. As a result, Infoflex’s
interface is easier to learn and will reduce development time.

Another advantage of Infoflex over Informix is that the programs are smaller and program start-up is much faster. For
example, the Demo program is driven by a single 330K executable program. This executable is loaded once and has the
potential of driving any number of reports, screens, and menus.

Introduction to Infoflex 1-1

The Audience

References to you, in this manual refer to the Infoflex developer. References to the user refer to the person that uses the
application that you devel oped.

Documentation Organization

Thismanual isdivided into chapters which are divided into topics. Chapter titles are in boldface and centered; Topics titles
are in boldface and flush left like the topic title above this paragragh. For example, this topic is Documentation
Organization within the chapter, I ntroduction to I nfoflex.

Introduction to Infoflex 1-2

2. BUILDING THE DATABASE

Basic Function
Thefirst step in developing an application isto create collection of related tables or in other words, a database.

The SQL command file

SQLFLEX isthe Infoflex package that will alow you to build, modify and query database tables. To perform this function,
SQL FL EX reads commands from a command file created by you. The SQLFLEX command file is executed as follows:

fxsgl commandfile

Creating the Database
The SQL FL EX command file to create the storage area for the demo database is as follows:

create database demo;

Assuming you place this statment in the file demo.sql,
fxsgl demo

will create the database. The demo database will be created in the current directory under the directory name demo.dbs.
The environment variable FXDATA can be used to overide where fxsgl will look for the database.

This step must be done before creating any tables.

Creating Tables

The create table statement will define the name of the table to be created as well as define the field names and their data
types. The create index statement is another appropriate statement of this command file and defines an index for atable.

The tbagent table of our demo is created with this command file:

create table tbagent (

code char (4), /* this is a comment */
I name char (15),

f name char (10),

hire_date date,

socho char (13),

raise_date date,

paymethod integer,

salary money,

conmission float

)

create unique index tbagentkey
on thagent (code);

create unique index tbhagentkey?2
on thagent (Iname, code);

Chapter 8, Database Data Types, in the Reference Manual describes the use of all the data types of Infoflex.
Assuming you place these statements in the file tbagent.sql,
fxsgl tbagent

will create the table in your database.

Building the Database 2-1

SQLFLEX command files are portable to Informix SQL and furthermore, databases created by SQLFLEX are compatible
with Informix.

The SQLFLEX command file listings for creating the demo database tables are in Topic 2 of the Appendix.

Building the Database 2-2

3. A SIMPLE SCREEN FORM

Basic Function
A screen form is that part of an application that alows a user to interactively add or modify information in a database or
look up information in a database based on some index.

SCREENFLEX is that part of the Infoflex development environment that enables you to build the screen forms of an
application.

The simplest screen form will display and allow modification to the fields of a single record of asingle table.

The complete source code listing for the simple screen we are about to discuss is in Topic 3 of the Appendix. Thisis an
agent table maintenance screen. When running the demo, the simple screen isinvoked with option 3 from the main menu.

The Screen File
The Infoflex programmer defines how a screen isto look, the table or tables it accesses, the fields that are displayed, and the
attributes of the fields. Using atext editor, you create the screen definition in afile with a .flx file name extension.

The four sections that comprise the screen definition fileare: TABLES, SELECT, SCREEN, and ATTRIBUTES.

The TABLES Section

The TABLES section is where you will list all the tables to be accessed by a screen form and should be the first section in
the screen definition file. Our demo simple screen accesses an agent table called tbagent. Hereisthe TABLES section:

TABLES
tbagent
END

Each table defined in this section should have been previously created using SQL FL EX or Informix SQL.

The SELECT Section

The SELECT section defines the manner in which data is retrieved from the database, in this case from the tbagent table.
The SELECT section for our agent screen looks like this:

SELECT
tbagent(code)
EXTRACTALL
END

The code argument is the field of tbagent by which the selected records will be ordered. This field or fields therefore must
comprise an index of the associated table. EXTRACTALL indicates that all qualifying records will be selected. The user
will then page one record at atime with the screen form.

The SCREEN Section

The screen layout is defined in the SCREEN section. Here isacompressed version of the demo screen:

Simple Screen Form 31

SCREEN scemp
{

Agent Update Screen DATE: [tday]
Code <[eno]> Last Raise: [erdate]
Last Name: [elname] Pay Method: [e]
First Name: [efname] Commission Rate:[ecom]%
Soc Sec No.:[esocno] Salary : $[esalary]

Date Hired: [ehdate]

END

Follow the SCREEN keyword with the screen name. Bracket the lines of the screen layout with { }. Bracket with [] the
fields where dataisinput or displayed. Give each field a unique name or tag within the[]. Inthefollowing ATTRIBUTES
section, we may or may not map the field tags to database table fields.

The < > around the eno field is not required and is just a convention we use to denote akey field of the screen. For more on
this key field read the topic, Running the Screen Form.

The ATTRIBUTES Section

This section describes how each field of the form is used. List the field tags in the order that the screen cursor isto move
through them. The form of each field definition in the ATTRIBUTES section is asfollows:

ATTRIBUTES
fieldtag = table.field, attributesl,
. attributeN ;

END

Thetable.field is the database table field that corresponds to the screen field. In the demo, we defined the following screen
field:

elname = tbagent. Iname,

When the user retrieves atbagent record with this screen, the data of the Iname field of the tbagent table will automatically
display in the elname screen field. When he saves input for this screen field, the input is saved in the Iname field of the
tbagent table record. When a screen field is associated with a table field, the screen field automatically inherits the data
type of the table field.

The table.field parameter may also be replaced by a non-table or display-only designation:
tday = displayonly type date,

The tday tag has no associated database table field. You must explicitly state the data type of a displayonly field. See
Chapter 8, Database Data Types, of the Reference Manual.

Screen fields may have an assortment of attributes that can be listed in any order. The simple attributes taken up here deal
mainly with the appearance and input to screen fields. More sophisticated attributes, which will be taken up in the next
chapter, allow you to do table look-ups, bring up help screens, etc. For now, let’slook at some simple examples in the agent

Simple Screen Form 32

screen demo.

There are several ways to display information to a screen field. One method is the automatic display of table field
information; another iswith the default attribute as shown below.

tday = displayonly type date, ..., default = today;

This use of the default attribute will cause today’s date to display to the tday field. Today is a special keyword that
represents today’ s date when used in place of a quoted date string expression in the form of "mmv/dd/yy'.

Here are the compl ete attributes for our first field:

tday = displayonly type date, noentry, noupdate,
default = today;

It is not enough to specify afield as displayonly if you do not wish the user to address it. The noentry attribute prevents
input to the field in ADD mode. Noupdate prevents input to the field in CHANGE mode.

Four other common attributes of input fields are upshift, required, include, format, and comments.
The upshift attribute will take lowercase a phabetic input and immediately convert it to uppercase.

In ADD or CHANGE mode the required attribute will prevent the user from leaving a field or form without filling in the
required fields.

You may specify the range of acceptable values for afield with the include attribute. Any other user input will be rejected,
and the user required to re-enter the field. 1n the demo we have asfollows:

e = tbagent.paymethod, include (1 to 4, 8);

The values list in parenthesis can include individual values as well as ranges. An example of a valid expressions is:
include(1 to 4, 8, 11 to 15, 20). Also, you need not quote values for string fields. The following expression is acceptable for
astring field: include(ADAM to BOB, JOE). In this example, all names alphabetically between ADAM and BOB will be
accepted. So BILL islegal input; CARL isnot.

With the format attribute you may specify the format of numeric displays. There are two formatted numeric fields in the

demo.
ecom = tbagent.commission, format = "###. #";
esalary = tbagent.salary, format = "#, 6 ###. ##";

The comments attribute allows you to define a message that displays at the bottom of the screen in row 22, when the screen
cursor addresses afield. These are the attributes for the elname field:

elname = tbagent.Iname, upshift,
comments = "ENTER THIS EMPLOYEE'S LAST NAME";

Compiling the Screen Form

Once you have created the screen definition source file, you are ready to compile it into a file that can be run directly. The
Infoflex utility fxpp will convert the screen source file into a.pic file. Given that the demo screen source file is tbagent.flx,

fxpp tbagent

will generate tbagent.pic. If fxpp encounters an error in tbagent.flx, fxpp will report it and terminate.

Simple Screen Form 33

Note that the environment variable PATH must include the .../fx/bin directory path for Infoflex commands to operate.

Running the Screen Form

Once the screen is compiled, the user runsit with:
flex tbagent

The default behavior of Infoflex screen forms places the user in CHANGE mode with the cursor on the key field of the
screen. Thekey field isthe one you specified in the SELECT section. In our demo this istbagent.code.

Nearly all operations in a screen form are executed with a function key. At any time while running a screen form a ruler
appears at the bottom of the display with the operative function keys labelled. In CHANGE mode, while on the key field of
the screen, the ruler looks like this:

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 Fl2 F13 F14 F15 F16
SAVE HELP SRCH ADD -~ QRY PREV NEXT FRST LAST - DEL == =t e e

In CHANGE mode the user first selects a record that he may then modify. Severa function keys provide selection
capability. Inthe demo FRST will select and display the first record of the tbagent table ordered by the code field. LAST
will select the last record. Entering some value in the key field and pressing NEXT will bring up the next record in ordered
sequence by that key. For example, if AA and AC are consecutive values for the key, entering AA or AB and pressing
NEXT will bring up the record for AC. PREV works similarly but selects previous records. The SRCH and QRY allow
you to search for records based on field values. These two keys are discussed in the chapter MORE ADVANCED
SCREEN FEATURES.

With arecord displayed, the SAVE option will update the database record with any changes the user has made in the screen
form.

DEL will delete the record. Since DEL is such adestructive action, it will prompt the user to confirm the deletion.

At any time while in CHANGE mode, the ADD key will switch the form to ADD mode where, after filling out the form, the
user may insert anew record into the database.

When in ADD mode the active function keys are:
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16
SAVE HELP CHG
CHG will toggle back to CHANGE mode.
The HEL P function key will be discussed later.

At anytime ESC will abort and exit the screen (ESC ESC on UNIX or XENIX systems). If there are changes or additions
that may be lost with this exit, users are first asked if they wish to save the record.

Flex tbagent will bring up the tbagent screen in CHANGE mode. Alternately a screen may come up in ADD or SEARCH
mode. In these cases you must explicitly state on the flex command line the initial mode of the screen. At the same time, you
must also specify the other modes available to the screen. The command:

flex tbagent asqdc

initially places the tbagent screen in ADD mode.

Simple Screen Form 34
34

4. THE SCREEN ARRAY

What Is It?
A screen array allows the display of multiple database records in a screen form at the same time.

The complete source code listing for the screen we are about to discuss is in Topic 4 of the Appendix. This is a travel
agency booking screen. When running the demo, the array screen isinvoked with option 4 from the main menu.

Joining Tables

When there is an array in a screen form, the SELECT section will typically define the relationship between the header
record and the array records. Hereisthe SELECT section of our second demo screen, bkinput flx:

SELECT
bkmaster (bkno)
EXTRACTALL
bkdetail (bkno) bkmaster(bkno)
EXTRACTALL
END

For each selected bkmaster record, bkdetail records are selected that have the same value in their bkno field as in the
bkmaster’s bkno field. These two fields are joined, establishing the relationship between the two tables. It happens in this
example that the join fields have the same name, but this would not have to be the case. In the join expression:

bkdetail (bkno) bkmaster(bkno)

bkno must be an index of bkdetail, but the bkno of bkmaster would not have to be an index of bkmaster.

The final EXTRACTALL parameter specifies that all records of bkdetail are selected that qualify. Optionally, you may
instead specify EXTRACT, which would only select the first qualifying record. Obviously EXTRACT is not appropriate
for filling out a screen array.

The SCREEN Section
Here is an abbreviated version of the bkinput SCREEN section:

SCREEN bkinput
{

BOOKING ENTRY SCREEN DATE: [today]
Booking #: <[bkno]> Name <[bclient 1>
Agent:<[code]> [fname][I name]

Sup- Ship Depart Sale
plier Name Date Description Amount
[bsup |bship |bdepart |bdesc |salamount]

Supplier Name: [bsupname]

}
END

You need define only the first line of the array. The fields that make up the array are bsup through salamount. Note that
the pipe character " |" character is an alternate delimiter marking the end of one field and the beginning of the next. It is
used to save space for field definitions.

The Screen Array 4-1

REPEAT Within ATTRIBUTES

The REPEAT block within the ATTRIBUTES section brackets the array field. The number of array lines is specified after
the REPEAT keyword as shown below.

REPEAT (5)
bsup = bkdetail.supplier,
bship = bkdetail.ship,
bdepart = bkdetail.departdate,
bdesc = bkdetail.descript,

salamount= bkdetail.salamount,
ENDREPEAT

The screen array will display five lines of bkdetail records.
Executing a Screen Array

To execute the array program bkinput.flx, you will enter the following command.
flex bkinput

When the screen appears, the cursor will address the key field bkno for you to select a bkmaster record. To move to the
array portion of the screen press the SAVE key. This action causes the array of bkdetail records to be displayed and the
cursor to be positioned on the first row of the array. The array will only contain bkdetail records that successfully join with
the bkmaster record.

By default the initial mode in the array is CHANGE mode if records exist or ADD mode if they do not. The function key
ruler for the screen array appears the same as for the screen header. In array screens, however, PREV, NEXT, FRST, and
LAST behave differently than in the simple screen. NEXT will display the next page of records, where a page is the
number of records that can fit on one screen. PREV will display the previous page of records. FRST will display the first
page, LAST the last page. Up and down arrows move the cursor up and down rows of the array.

Pressing the ADD key or cursoring off the end of the array will open a new line at the end of the array and automatically
invoke ADD mode.

The DEL key will delete the current row and pull up rows below to close the gap.

The database is updated when the user cursors off an array row or presses SAVE. The SAVE key, in addition to saving the
record, will also clear the array display and return the cursor to the key field of the screen form header.

Pressing the ESC key from the array (ESC ESC on UNIX or XENIX systems) exits the entire screen in the same manner as
from the screen header.

The Detail-Only Array Screen

It is possible to have a screen form that is merely an array of records, without a header section. An example would be to
take the Simple Screen Form, redesign the screen, and put a REPEAT/ENDREPEAT block around all of the fields in the
ATTRIBUTES section. For more on the detail-only array screen see Topic 3.3, SELECT SECTION, in the Reference
Manual.

The Screen Array 4-2

5. MORE ADVANCED SCREEN FEATURES

The Lookup Attribute

Very often the value or code entered in a field must be verified. This is accomplished in simple cases with the include
attribute described earlier. Other cases may require the value exist in a table. This is accomplished with the lookup
attribute. To use this attribute, the field being looked up must be indexed in the table.

Below is an example of how the lookup attribute is specified.

code = bkmaster.agent, lookup(tbagent.tbagentkey),

In this example the code field will be looked up in the tbagent table using the tbagentkey index. The user will not be
allowed to enter a code value that is not found in the tbagent table.

L ookup alows additional parameters for assigning fields from the lookup table to the screen form. An example of thisis as

follows.
code = bkmaster.agent,
lookup(tbagent.tbagentkey,
bkinput.Iname = tbagent.|Iname,
bkinput.fname = tbagent.fname),
fname = displayonly type char, noupdate, noentry;
Iname = displayonly type char, noupdate, noentry;

The values of the table fields tbagent.fname and tbagent.Iname will be displayed in the screen fields bkinput.fname and
bkinput.lname. Thisis acommon usage of the lookup attribute, for often the looked-up value is a code and needs a more
descriptive field to go along with it.

The Helpselect Attribute

The helpselect attribute is used to provide a popup list of valid codes from another table. While on the popup list, the user
can search and select any valid code. The helpselect isinitiated by pressing the HEL P function key.

An example of syntax for the helpselect attribute is asfollows.

bsub = bkdetail.agent, helpselect(pointagent)

The pointagent is an Infoflex array-only screen that will list the tbgent table fields, code and name, ordered by the
tbagentkey index. The Appendix source file bkinput.flx shows the pointagent screen.

In addition to the standard array-only features, the helpselect screen provides 2 special methods for locating records: cursor
sorting and character postioning.

Cursor sorting means the rows will be sorted based on where the cursor is positioned. If the cursor is positioned on the
Agent Code field, the rows will be sorted by Agent Code. Likewise, if the cursor is positioned on the Agent Name field the
screen will be sorted by the Agent Name field. To cursor from field to field on a Help screen, you must use the TAB key.
Note that the field must have the sear chby attribute for it to be sorted.

The character positioning feature allows you to type characters to locate records in the Help screen. Each character you
press will reposition the screen to the closest match. To restart the character positioning (throw away previously entered
characters and start over) press the UP or DOWN arrow keys. You may also press the TAB key to perform character
positioning on a different field.

Once you have located the desired code on the Help screen, you may transfer the code to the original screen by pressing the

More Advanced Screen Features 51

SAVE or ENTER key. You will then be returned to the origina field with the selected code assigned.

Pressing ESCAPE will exit without effecting the original screen.

Online Help

Infoflex provides field specific help when pressing the HEL P key. While on the help screen, you can press the JUMP key
to access other levels of help. See Chapter 11, THE HELP SY STEM, of the Reference Manual for the details on setting up
ahelp system for your application.

Point and Shoot Screen

We have seen above how helpselect provides a point and shoot screen for selecting codes from atable. This section shows
how to program your own point and shoot popup screen. To implement the point and shoot screen you will need to define
the point and shoot screen layout, specify where and how the screen may be called, and develop the userexit function that
will call the screen.

The following is the screen layout for the point and shoot screen used in the Demo program (see Appendix source for
bkinput.flx). Note that this screen isanormal array-only screen.

SELECT
tbagent(Iname, code)
EXTRACTALL
END

SCREEN pointagent box popup reversebar window(10, 18)

{
Agent Last First

[code| I name | fname]

Press SAVE to Select or ESCAPE to exit
}

END

ATTRIBUTES

REPEAT (6)

code = tbagent.code, upshift,
searchby(tbagent.tbagentkey);

I name = tbagent.Iname, noupdate, noentry,
searchby(tbagent.tbagent2key);

f name = tbagent.fname, noupdate, noentry;

ENDREPEAT

END

To specify where and how the screen will be accessed, any one of the userexit functions may be used. The demo uses the
helpkey userexit so that the screen will be initiated upon pressing the HEL P function key. The Point and Shoot screen will
only be called from those fields where the helpkey is placed. Below isan example of its use.

code = bkmaster.agent, helpkey(pointshoot);

The helpkey userexit specifies the "C" function that will be called when the user presses the HELP key. It is this "C"
function that calls the point and shoot screen pointagent. This "C" function must be defined in the INSTRUCTION
section of the program. The following isalisting of the "C" function used by the demo.

More Advanced Screen Features 5-2

static pointshoot ()

{

/*This userexit calls the Point and Shoot Selection Screen*/
if (SAVEKEY == flexcmd("flex bkinput -f pointagent v-v")){
/* move selected values to bkinput screen fields */
move(@tbagent.code, @bkinput.code);
move(@tbagent.lname, @bkinput.Iname);
/* display effected bkinput screen fields */
tmaprng(@bkinput.code, @bkinput.lname);

}
return(R_MREPAINT) ; /*causes bkinput screen to be repainted*/

}

The Notepad Screen

To implement Notepad screen you will need to define the Notepad screen layout, specify where and how the screen may be
called, and develop the userexit function that will call the screen.

The following isthe screen layout for the Notepad screen used in the Demo program. The Notepad screen isanormal array
screen with one special keyword in the ATTRIBUTE section called sequence.

SELECT
bkdetail (bkno, recno)
EXTRACTALL
bknote(bkno, recno, seqno) bkdetail(bkno, recno)
EXTRACTALL
END

SCREEN bkscrnote popup box window(12, 15)
auserlkey(fxmovekey, MOVE)

{

Notes [bkno][recno]
[note]
[segno]

}
END

ATTRIBUTES

bkno = bkdetail.bkno, nodisplay, beforedit(be_bknote);

recno = bkdetail.recno, nodisplay;
REPEAT (6)
seqno = bknote.seqgno, sequence,
noupdate, noentry, nodisplay, setrow(-1);
note = bknote.note;
ENDREPEAT
END

To specify where and how the screen will be accessed, any one of the userexit functions may be used. The demo uses the
auser 1key userexit so that the screen will be initiated upon pressing the NOTE function key. Below is an example of its
use.

SCREEN bkinput frame auserlkey(auserlnote, NOTE)

Using the auser 1key also means the Notepad screen may be called by any of bkinput’sarray fields. The auser 1key userexit
specifies the "C" function that will be called when the user presses the NOTE key. It is this "C" function that calls the

More Advanced Screen Features 5-3

Notepad screen bkscrnote. This "C" function must be defined in the INSTRUCTION section of the program.

following isalisting of the "C" function used by the demo.

static auserlnote()
{
/* This userexit calls the Notepad Screen (bknote)*/
if (fxasave() < 0) /*save current array line record*/
return(-1);
flexemd("flex bkinput -f bkscrnote cs-cdsa");
return(0);

}

static int be_bknote()
{
/*
This userexit is called upon entering the Notepad
screen field bknote.bkno.
Its purpose is to automatically fill the
key fields (bkno and, recno) and then simulate the user
entering the SAVE function key so that the user

will immediately goto the note array.
These key fields setup the join
relationship between the bkinput line item and the
notes for that line item.
*/

move(@bkdetail.bkno, @bkscrnote.bkno);
move(@bkdetail.recno, @bkscrnote.recno);
flexkey = SAVEKEY;

return(-1);

}

The

The fxmovekey userexit on the bknote screen is a standard Infoflex userexit that may be used with sequenced screens. This
userexit provides a MOVE function key so the user can move rows on the array. To move rows, the user presses the

MOVE key while on the source row. Next, the user cursors to the destination row and presses the MOVE key again.

Control Keys

There are a number of Control keys that work on all on screens. These Control keys perform very useful functions and are

listed below.

CTL-D Saves the current screen values as defaults. These defaults will appear when in ADD MODE or on report
selection screens. Each user can have his own defaults by setting the environment variable FXDEFAULT to a

user-specific directory.

CTL-N Calls the Accounflex menu from wherever you are in the system. You will be returned to your current postion

upon returning from the menu.

CTL-P Repeats the previously entered value.

CTL-T Printsthe screen image to the default printer.

CTL-W Writes the screen image to disk. You will be prompted for a filename for storing the image. The filename you

enter will be appended with the suffix ’.scr’.

More Advanced Screen Features
5-4

5-4

Search Mode

As an aternative to searching on the key field of a form, SEARCH mode provides the capability of record selection by
other indices of the record.

SEARCH mode is turned on by specifying the sear chby attribute for one or more screen fields. When this mode is active,
the F5 key will be labeled SRCH in CHANGE mode.

Let uslook at an example in our demo. Inthe ATTRIBUTE section of the bkinput demo screen of the previous chapter we
have:

bclient = bkmaster.name, searchby(bkmaster.bkmname)

Bkmaster .bkmname is the name of an index associated with the bkmaster.name field. Any fields that are themselves
indices or parts of indices are candidates for a sear chby attribute.

When the user presses the SRCH key, those fields with the sear chby attribute will be underlined, and only those fields can
be cursor addressed. Here the PREV, NEXT, FRST, and LAST keys are available and make their record selections based
on the index specified in the sear chby attribute.

Pressing the EXIT key will exit SEARCH mode and return to CHANGE mode with the selected record.

Query Mode

The Query feature, unlike the search feature, allows you to search on any field or combination of fields and use wildcard or
relational operators.

Query is active when the function key label QRY isdisplayed. Upon pressing QRY, the screen fields that are queriable will
be underlined and the QUERY M ODE message will appear at the top of the screen. While in QUERY M ODE you may
query on any of the underlined fields by cursoring to the desired field then entering the value you wish to query on. Values
may be entered for as many fields as you want.

The query values you enter may include special operator characters that provide enhanced searching capabilities. Below is
atable of operators that may be included with the query value.

Compatable
Operator ~ Operator Name Data Types
= Equa al
> Greater than all
< Lessthan all
>= Greator than or equal all
<= Lessthan or equa all
<> Not equal all
| OR all
& AND all
* Wildcard for any number of character CHAR
? Wildcard for 1 character CHAR
Range al

When using any of the first eight operators place the operator at the start of the query value.

Use the’=" operator only when you want to find NULL values in a character field. In this case you would just enter the ’=’
operator by itself.

More Advanced Screen Features 55

WILDCARD OPERATORS

Wildcard operators (*, ?) can only be used in character fields. Querying with wildcard operators is best described with
examples. For example, specifying the query value "*corp*" would find all records with the word "corp" anywhere in
that field. Thefollowing list of values would match this query value.

1) corporation
2) IBM Corporation
3) Marine Corp

Note that the query is not case sensitive.

The query value "corp*" would only find records where the field starts with the value "corp". In this case only the first
value in the above list "corporation” would match.

The wildcard operator (?) is a one character wildcard. For example, the query value "????corp*" would only match
"IBM Corporation" on the above list.
RANGE OPERATOR

The range operator (:) is used to specify a range. It lets you search for al values that lie between one value and
another. Therangeisinclusive.

For example, to search for all zip codes from 94010 and 95080, enter "94010:95080" as your query value. Query will
find al records where the value of the field lies within the specified range.

OR and AND OPERATORS

Query assumes that all entered query values must match the record for it to be selected. The OR (|) operator allows
you to select the record if either query values match. The OR (]) operator is placed at the beginning of each query
value.

While in the QUERY M ODE, the function key labels will appear asfollows.

F1 F2 F3 F4 F5 F6 F7 F8 F9 FI0 F11 F12 F13 Fl4 F15 F16
RUN HELP ORUN CLR - EXIT == e oo e

To start the query, press the RUN function key. After all of the records have been found, a message will appear at the
bottom of the screen showing the number of matches found. You will then be returned to the original screen where you will
be able to use the NEXT, PREV, FRST, LAST function keysto view the selected records.

When you return to the original screen, the mode message will be appear with asterisks *CHANGE M ODE* letting you
know you are looking at aquery list.

To clear the query list, you must return to the QUERY MODE, clear al of the query values (press the CLR function key),
and then rerun the query (press the RUN function key). When you return to the original screen you will be able to access
all records.

More Advanced Screen Features 5-6

6. A SIMPLE REPORT

Basic Function

Frequently a user may wish to look at many records of atable at once or make a hardcopy presentation of this information.
The format of such output should be easily readable and meaningful to the user.

REPORTFLEX is that part of the Infoflex development environment that enables you to build the report forms of an
application.

The complete source code listing for the simple report we are about to discussisin Topic 5 of the Appendix. When running
the demo, the simple report is invoked with option 5 from the main menu. The report shown in the demo is the agent
summary report.

The Report File

The Infoflex report file has many things in common with the Infoflex screen file. Like the screen file, the report definition
file name has a .flx extension.

The TABLES section of areport file isidentical to that of the screen file. It comes first in the file and specifies all tables
accessed by the report.

We will now describe the other sections which make up the report definition file.

The SCREEN Section

The SCREEN section and its accompanying ATTRIBUTES section in a report file are optional. Normally, you will
include these sections to allow the user to choose the form of output and the number of copies. Here is a compressed
version of the SCREEN section and its ATTRIBUTES section in the demo report file tbagentr .flx:

SCREEN select
{
REPORT SELECTION SCREEN
Agent Code Table

Report Destination: [d] (S=Screen, P#=Printer,
D=Disk, A=Aux)
Report Copies: [c] (2 - 10)
}
END
ATTRIBUTES

d(rptdest) displayonly type character,
required, upshift;
c(rptcopies) = displayonly type smallint,

required, include(1 to 10);

END

You must name the report screen select. The rptdest field tag is reserved for this special screen. Note that the tagname " d"
is renamed to tagname rptdest in the ATTRIBUTE section. If the value input to the rptdest field is" S* the output of the
report will display to the screen. An input of " P" will output the report to the system printer. Entering a " D" will output
the report to a disk file for later access. " A" will direct the report to the auxiliary port of the terminal where such a port
exists. The rptcopies field tag is reserved for the field that specifies the number of copies of the report. One to 10 copies of
areport can be generated with a single request. Note that the attributes for the rptdest and rptcopies fields insure proper
input to these fields.

Without this SCREEN and ATTRIBUTES section, one copy of the report will be displayed directly on the screen.

Simple Report 6-1

The SELECT Section

The next section of the report definition isthe SELECT section. In our simple demo report, since we are selecting all the
records of the tbagent table ordered by the code field, the SELECT section isidentical to that of our simple demo screen:

SELECT
tbagent(code)
EXTRACTALL
END

The REPORT Section

The section immediately following the SELECT section is the REPORT section. The REPORT section is used layout each
subsection of the report (headers, detail, totals, and footings). Our simple report has a header, then a body or the detail of the
report, and finally atotal. Hereis how the REPORT section defines our simple demo report:

REPORT
heading
{
AGENT TABLE REPORT PAGE: [page]
[tim][tday]
Code Last Name First Name Salary
}
detail
{
[eno] [elname] [efname][esalary]
}
total
{
Payroll Total: [esalary]
}
END

In the report output, the heading subsection will output at the top of every page, and the detail subsection will output for
each tbagent record read. The total subsection will be printed at the end of the report and will display the accumulated
total of esalary for all tbagent records that have been selected for the report.

The ATTRIBUTE Section

The ATTRIBUTE section is where the field tags are defined for the REPORT section. This is done exactly like the
ATTRIBUTE section for screens. Some field tags used primarily for reports are described below. Page isareserved field
tag that will cause the page number to be printed in that field. Since the page field is not associated with a table field, its
attribute must be:

page = displayonly type smallint;

Typically reports are time and date stamped. You achieve this by assigning the keywords today and time to the default
attributes of the tday and tim fields:

tday
tim

displayonly type date, default = today;
displayonly type mtime, default = time;

The mtime field data type isthe time of day in military format, the 24-hour clock.

The only other attributes that are meaningful in areport are left, right and format. The left and right attributes will left

Simple Report 6-2

and right justify a value within afield. Format will allow you to specify the format of a humeric value in the same way as
the format attribute of the screen form.

Compiling and Running the Report
Compiling and running reports is the same as for screens. To compile your report, use the fxpp command as follows.
fxpp tbagentr

The fxpp command will compile our tbagentr.flx demo report, generating the file tbagentr.pic.

The flex command is then used to run the compiled report.
flex tbagentr
will execute the report.

If the report uses a select screen, pressing RUN from a properly filled out select screen will initiate the report process. If
the report is directed to the screen, the first page of output is displayed with the following function key ruler:

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16
EXIT - JUMP - SRCH - PREV NEXT FRST LAST PRNT C132 - SHFL SHFR

These keys provide a variety of ways of moving through the report. NEXT pages forward through the report. PREV pages
backwards. FRST displays the first page of the report. LAST displays the last page of the report. JUMP will prompt the
user for a page number to display. SRCH will prompt for a character string pattern to search for in the report and if found
will display the page.

You may press SHFR to right shift the display to view columns beyond 80. SHFL will shift the display back to the left.
Some terminals will support character compression to 132 columns. The C132 key will place such terminals in that mode.

Finally, the PRNT key will direct the report to the system printer.

The EXIT key will exit back to the select screen if one exists. Press ESC from the select screen (ESC ESC on UNIX or
XENIX systems) to leave the report altogether.

Simple Report 6-3

Simple Report

6-4

6-4

7. MORE ADVANCED REPORT

What Are Its Features?

The advanced report example given in this chapter introduces a number of additional report features. These features
include a select screen for letting the user specify which records of atable to report, table joining, break totals, and sorting.

The complete source code listing for the more advanced report we are about to discuss isin Topic 7 of the Appendix. Th
report shown in the demo is a sales by agent report. When running the demo, this report isinvoked with option 6 from the
main menu.

Selection Criteria

Our first demo report printed all the records of the tbagent table. You may reference database fields with a select screen
that will allow the user to limit the records selected. The following report SCREEN section and its ATTRIBUTES section
are an abbreviated version of the demo report saagent.flx. This report selection screen alows the user to specify which
agents to include in the Sales Report.

SCREEN select

{
REPORT SELECTION SCREEN

Sales by Agent

Report Destination: [d] (S=Screen, P#=Printer,
D=Disk, A=Aux)
Report Copies: [c] (1 - 10)
Agent: 1) [agen]
2) [age2]
3) [age3]
}
END
ATTRIBUTES
d(rptdest) = displayonly type character,
required, upshift;
c(rptcopies) = displayonly type smallint,
required, include(1 to 10);
agen = bkmaster.agent, upshift;
age2 = bkmaster.agent, upshift;
age3 = bkmaster.agent, upshift;
END

Each of the three agent fields defined on the screen is tied to the database table field bkmaster.agent. On this particular
select screen, the user may specify up to three specific agents to report. If the user specifies no agents, then al bkmaster
records are selected.

If, instead of three agent field defined on the screen we had two, the report program would treat the two fields as a range.
For example:

Agent Range: [agefirst] to [agelast]

As a side note, report select screen fields can have many of the attributes that screen forms have, including lookup and
helpselect.

To enable the selection criteria feature in areport, a WHERE clause must be added to the SEL ECT section:

More Advanced Report 7-1

SELECT
bkmaster(agent, bookdate)
EXTRACTALL
WHERE whereselect
END

Joining Tables
All relations between tables must be defined in the SELECT section. Here is the SELECT section of the demo report

saagent.flx:
SELECT
bkmaster(agent, bookdate)
EXTRACTALL
bkdetail (bkno) bkmaster(bkno)
EXTRACTALL
tbven(code) bkdetail(supplier)
EXTRACT
tbagent(code) bkdetail(agent)
EXTRACT

WHERE whereselect
END

In the first join, records are selected from bkdetail by its bknoindex. The value for bkno of bkdetail is determined by the
value of bknoin arecord selected from bkmaster.

Now we see the use of EXTRACT. It isknown that there will only be one tbven record for a given supplier code, so there
isno reason to look further.

Report Breaks

A report break may occur at any point in the selection process where the value of the sort index changes. Again, the sort
index is established in the initial clause of the SELECT section:

bkmaster(agent, bookdate)
EXTRACTALL

In this demo report we wish to print a new heading for each agent. The following heading definition accomplishes this for
us. REPORT section of:

heading breakon(bkmaster.agent)

{
}

To print monetary totals for each week and each month of activity. You can break on different parts of adate. For example:
total breakon(bkmaster.bookdate, 4)

will print aweek’stotal. The specification:
total breakon(bkmaster.bookdate, 2)

will print amonth’stotal. 1 asthe second parameter of breakon specifies a break on year; 3 a break on day.

Sorting By Any Criteria

Reports have the ability to order their information in more ways than supported by the single index of a master table. Using
atemporary table, you can sort the records of areport by any of itsfields.

More Advanced Report 7-2

The ONINDEX clause in the SELECT section creates a temporary table and defines the index for the table and thus the
sort order of the report. The following example is the SELECT section of the demo report saagent2.flx. The complete
source listing for saagent2.flx isin Topic 9 of the Appendix.

SELECT

bkmaster (bookdate, bkno)
bookdate
agent
EXTRACTALL

bkdetail (bkno) bkmaster(bkno)
salamount
EXTRACTALL

tbagent(code) bkmaster(agent)
name
EXTRACT

WHERE whereselect
ONINDEX bktemp(agent, bookdate)

END

The temporary file created is bktemp. The sort index is made up of the agent and bookdate fields from the bkmaster table.
Note how the fields for the temporary table are specified. The bookdate and the agent fields from the bkmaster table, the
salamount field from the bkdetail table, and the name field from the tbagent table make up the fields of the bktemp table.
You may define the bktemp index to be any one or any combination of these fields.

More Advanced Report 7-3

More Advanced Report

7-4

7-4

8. BUILDING MENUS

Once you have developed all the screens and reports of your application, the final step isto organize them into menus.
MENUFLEX provides the tools that allow you to design, build, and compile menus for your application.

To build menus, select the Design Menu option on the Development Menu. An Infoflex screen will appear for creating
and modifying menus. The M enuflex chapter in the Reference Manual describes the process of developing menus.

Menu

81

Menu

8-2

APPENDIX

1. Running the Demo

This topic describes how to run the Infoflex demo application. The installation of the demo will depend on your machine,
operating system, and the media on which the demo is distributed to you. A precise set of installation instructions will
accompany the demo.
Onceinstalled, simply typing

demo

will execute the demo.

Here is the main menu of the demo:

INFOFLEX DEMO System DATE: 01/17/91
Master Menu (M)

| Welcome to the INFOFLEX DEMO !!!

This DEMO system is a sample application written in Infoflex. Each menu
option for this sample application demonstrates a specific Infoflex |
feature. Source code listings for each application program can be found |
in the User Guide Appendix. Note that this entire sample application runs]|

from a single 300K executable and uses only 40 lines of procedural code. |

. Example Menu Using Template *(8,11)
. Example Popup Menu *(8,11)
. Example Simple Screen *(3,3)

. Example Complex Screen *(4,4)

. Example Simple Report *(6,5)

. Example Complex Report *(7,7)

. Development Menu

* User Guide reference (Chapter, Appendix topic)

Enter Selection > 1

While on this menu, you may select an option by positioning the cursor and pressing RETURN or by entering an option
number and pressing RETURN. You may exit any menu choice, screen, and/or report by pressing the ESCAPE key once.
For your convenience each option is tagged with a Chapter number and an Appendix topic number as follows.

5. Example Simple Report (6,5).
Thistag indicates that the simple report is discussed in Chapter 6 and the source code listing isin Topic 5 of the Appendix.
The following section lists the features you will see when you explore each main menu option.
1. Example Menu Using a Template. Thisoption will enter a submenu, the design of which is specified by the bookmenu
template in Topic 11 of the Appendix. The options of this submenu do nothing, but the submenu demonstrates the flow
from one menu to another. Pressthe ESCAPE key to return to the main menu.
While on this menu you can try out the Menu Chaining feature. This feature will alow you to jump directly to any menu
option in the demo system. To activate this feature, press the F3 key. The following prompt will appear at the bottom of the
screen:

Enter Menu Chain word ===>

When this prompt appears type the menu code "M" and press RETURN. You will then go directly to the menu whose
menu code is "M". In the case of the demo, the menu you will go to is the Master menu. Had we typed a menu option

Appendix A-1
A-1

number after the menu code (M5), that option would have been executed. For your convenience the menu codes are
displayed within parenthesis after the menu title.

2. Example Pop-Up Menu. This option will display a bordered overlay or pop-up submenu. This particular menu has no
template, and therefore its appearance is generated automatically. Pressthe ESCAPE key to return to the main menu.

3. Example Simple Screen. This option invokes the agent entry screen to demonstrate the basic screen form operations on
asingle database table record.

At the very bottom of the simple screen are listed the active function keys. This list varies depending on which field the
cursor is on. To position to an existing agent record you may enter an agent code and press RETURN or press the NEXT
function key (F8). You may also enter part of an agent code and pressthe NEXT key to move to the closest matching agent
code.

To add an agent, press the ADD function key (F4). When you are finished, press the ESCAPE key to return to the main
menu.

4. Example Complex Screen. Thiscomplex entry screen will demonstrate a number of features including: online text help,
point and shoot table selection, popup data entry screens, master detail relation, multi-record scrolling/updating, tablehelp
facility, and popup notepad entry.

When the complex entry screen appears press the NEXT function key to position to the first master record. This demo
application screen isfor entering trip bookings and will sometimes be refered to as the booking screen.

ONLINE HELP

While positioned on the first field of the screen, you can press the HEL P function key to obtain information about the
field you are on. This is the online text help system that is available for al fields. Once in the online help subsystem
there are many levels of help that may be accessed by pressing the HEL P, NEXT, or PREV functions keys. To exit
online help pressthe RETURN or ESCAPE key and you will be returned to the booking screen.

HELP SELECTION

Next, you will want to see the help point and shoot selection screen. This popup screen lists al of the possible codes
and allows you to choose one. To access the help selection screen, cursor to the agent field then press the HEL P key.
Upon pressing the HEL P key, alist of agent codes and names are displayed. If you had entered an agent code prior to
accessing the point and shoot screen, the point and shoot list will begin with the closest match. To select an agent,
position the cursor onto the desired agent and then press the SAVE or ENTER key. You will then be returned to the
booking screen with the agent code you selected. To return to the booking screen without making a selection, pressthe
ESCAPE key.

While on the help selection screen, you may search for an agent code by typing characters. Asyou type characters the
list repositions to the closest match. If you want to search by agent name, cursor over to the agent name field by
pressing the TAB key. When you are cursored on the agent name field, the screen sort order changes from code to
name. Also, asyou enter characters the screen searches by name instead of code.

You may also search for agents using the QRY key. The QRY key puts you into QUERY M ODE where you can do
wildcard searches on one or more fields. Refer to the chapter MORE ADVANCED SCREEN FEATURES for
information about QUERY MODE.

POPUP DATA ENTRY SCREEN

In addition to selecting agents, you may also enter new agents. This is accompished by pressing the ZOOM function
key (F13 or shift F3) while on the agent code field. Upon pressing the ZOOM key a popup screen for entering agent
information will appear. This screen behaves exactly like the simple screen discussed above. When you have finished
entering a new agent, press the SAVE key or the ESCAPE key to return to the booking screen.

MASTER-DETAIL RELATION

Another important feature of the booking screen is the joining of an array of detail records to the master booking
record. To join the array of detail records, press the SAVE function key (F1). Thiswill move you to the lower portion
of the screen where the detail records appear. While on the detail portion of the screen, you will want to play with

Appendix A-2
A-2

various function keys for scrolling pages (see labels at bottom of screen).

POPUP DATA ENTRY SCREEN (more)

The supplier field, like the agent field, also has a popup entry screen for entering new suppliers. To see this popup
entry screen, position the cursor on the Supplier Code field and then press the ZOOM function key (F13 or shift F3).
While on the popup data entry screen you may ADD, DELETE, or CHANGE information stored in the table. Pressing
the SAVE key will save your entry and return you to the array screen. Pressing the ESCAPE key will abort the entry
and return you to the array screen.

POPUP NOTEPAD SCREEN

To see the notepad data entry screen, press the function key labeled NOTE (F14 or shift F4). While on the note entry
screen you may ADD, DELETE, or CHANGE notes for the detail record you were on. The notepad screen is
essentially another multi-record scrolling screen joined to the booking detail record. Another feature worth noting is
the MOVE function key. Thiskey allows you to move lines by pressing the M OV E key twice; once on the source row
and then next on the destination row. Pressing the SAVE or ESCAPE key will return you to the booking detail record.

To get back to the master portion of the booking screen, you can press the SAVE key. Pressing the ESCAPEKEY will
return you to the menu.

5. Example Simple Report. Thisreport simply lists all the data in a single database table. Theinitial screen you encounter
will prompt for Report Parameters. To see the report, press the RUN function key.

6. Example Complex Report. The report joins data from several separate tables. It has a selection screen which alows
you to vary the criteria by which records are selected. To see the report, press the RUN function key.

7. Development Menu. The Development Menu is a menu that comes with the Infoflex Development Package. The
choices on this menu are described in the Reference Manual.

Appendix

A-3
A-3

2. The Schema

create table menuhead (

menuname
titlel
title2
prevmenu
template
ncolumns
nmenufields
startcr
urow

ucol

I row

lcol

)

create unique

char (10),
char (76),
char(76),
char (10),
char (18),
smallint,
smallint,
char (1),
smallint,
smallint,
smallint,
smallint

index mhmenukey

on menuhead (menuname) ;

create table menufield (

menuname
i temnum

i temdesc
exectype
execline
password
clearscr
startcr

endcr

)

create unique

char (10),
smallint,
char (60),
char (1),
char (80),
char (8),
char(1),
char (1),
char (1)

index mfmenukey

departdate);

on menufield (menuname, itemnum);
create table sysfile (
sysname char (10),
company char (40)
)i
create unique index sysfilekey
on sysfile (sysname) ;
create table bkmaster (
bkno serial (50),
name char (20),
bookdate date,
agent char (4),
salamount money
)i
create unique index bkmbkno
on bkmaster (bkno);
create unique index bkmname
on bkmaster (name, bkno);
create index bkmagent
on bkmaster (agent, bookdate, bkno);
create index bkmbookdate
on bkmaster (bookdate, bkno);
create table bkdetail (
recno serial,
bkno integer,
bookdate date,
supplier char (6),
ship char (6),
departdate date,
descript char (20),
salamount money
)
create unique index bkdbkno
on bkdetail (bkno, recno);
create index bkdtrip
on bkdetail (supplier, ship,
create index bkdsupdepart

Appendix

on bkdetail (supplier, departdate);
create index bkdsupbook

on bkdetail (supplier, bookdate);
create table bknote
(bkno integer,
recno integer,
seqno integer,
note character (45)

)

create unique index bknotekey
on bknote (bkno, recno, seqno);

create table tbagent (

code char (4),
| name char (15),
fname char (10),
hire_date date,
socho char (13),
raise_date date,
paymethod integer,
salary money,
conmission float
)i

create unique index tbagentkey
on thagent (code);

create table tbven

(code char (6),
name char (15),
contact char (15),
phone char (15),
saleflag char (1),
type char (1)
)i

create unique index tbvenkey
on thven (code);

Appendix

3. The Simple Screen - tbagent.flx

TABLES
tbagent
END

SELECT
tbagent (code)
EXTRACTALL
END

SCREEN tbagent frame defaulton

{

DEMO [modemsg] Agent Entry Screen DATE: [tday
Code <[eno > Last Raise: [erdate
Last Name: [elname] Pay Method: [e]
First Name: [efname] Commission Rate:[ecom]%
Soc Sec No.: [esocno] Salary : $[esalary]
Date Hired: [ehdate]

}

END

ATTRIBUTES

modemsg = displayonly type character, noupdate, noentry, reverse, retain;
tday = displayonly type date, noupdate, noentry, default = today, retain;

eno = tbagent.code, upshift, required, searchby(tbagent.tbagentkey),
"Enter the agent’s code number to identify this agent throughout

elname= tbagent.Iname, searchby(tbagent.tbagent2key),
comments = "Enter this employee’s last name";

efname= tbagent.fname, comments = "Enter this employee’s first name";

esocno = tbagent.socno, comments =
"Enter this employee’s social security number"
ehdate = tbagent.hire_date,

comments = "Enter the hire date for this employee";
erdate = tbagent.raise_date, comments =
"Enter the date of the last pay raise for this employee";
e(epaymeth)= tbagent.paymethod, include(1l to 4, 8), comments
"Enter the method number (1-4, 8) by which this employee will
ecom = tbagent.commission, format="###.#", conments =
"Enter the commission rate for this employee";
esalary = tbagent.salary, format="#,###. ##", comments =
"Enter the yearly salary for this employee";

END

be paid";

comments
the system";

Appendix

A-6

4. The Array Screen - bkinput.flx

TABLES
menufield
tbagent
tbven
bkmaster
bkdetai
bknote

END

SELECT
bkmaster (bkno)
EXTRACTALL
bkdetail (bkno) bkmaster(bkno)
EXTRACTALL

END

SCREEN bkinput frame defaulton

zoomscreen("tbvenpop") azoomscreen("tbagentpop")

auserlkey(auserlnote, NOTE)

{

DEMO [modemsg] BOOKING ENTRY SCREEN [tday J[time
Booking #:<[bkno]> Name<[bclient 1> Booking Date:<[bkdate]>
Agent:<[code]>[fname][Iname]

@

Supplier Ship Depart Sale
Code Name Name Date Description Amount

@

[bsup |bsupname][bship][bdepart][bdesc][salam]

@

Supplier Contact:[contact]Phone: [phone]Totals:$[saltot

}

END
ATTRIBUTES

modemsg = displayonly type character, noupdate, noentry, reverse, retain;
tday = displayonly type date, default=today, noupdate, noentry, retain,

format="Mmm dd yyyy Dddddddd";

time = displayonly type time, default=time, noupdate, noentry, retain;

bkno = bkmaster.bkno, searchby(bkmaster.bkmbkno), right,
comments="Enter the Booking Number.";

bclient = bkmaster.name,upshift, searchby(bkmaster.bkmname), required,

conments = "Enter the Client’s Name"
bkdate= bkmaster.bookdate, searchby(bkmaster.bkmbookdate),
default=today, required,
comments = "Enter the Booking Date";
code = bkmaster.agent, upshift,
searchby(bkmaster.bkmagent), zoomscreen("tbagentpop"),
lookup(tbagent . tbagentkey, bkinput.Iname = tbagent.|name,
bkinput.fname = tbagent.fname),
autohelp,
helpselect(pointagent)

comments="Enter Agent code (press the HELP key to select choice)";

fname = displayonly type char, noupdate, noentry;
Iname = displayonly type char, noupdate, noentry;

REPEAT (6)

bsup = bkdetail.supplier, required, upshift, zoomscreen("tbvenpop")
lookup(tbven. tbvenkey, bkinput.bsupname = tbven.name,
bkinput.contact = tbven.contact,
bkinput.phone = tbven.phone),

tablehelp("demoflex tbven asdc", tbven.tbvenkey, tbven.code, tbven.name),

searchby(bkdetail.bkdsupdepart),

comments = "Enter the supplier (press HELP to see a list of valid codes)";

bsupname = displayonly type char, noupdate, noentry;

bship = bkdetail.ship, upshift, left,
comments = "Enter the ship name for Cruises";
bdepart = bkdetail.departdate, searchby(bkdetail.bkdsupdepart),

Appendix

A-7

comments = "Enter the departure date";

bdesc = bkdetail.descript,
comments = "Enter any description you would like";

salam = bkdetail.salamount, total(bkinput.saltot), format="#,###. ##"
conments = "Enter total sale amount";

ENDREPEAT

contact = displayonly type character, noupdate, noentry;

phone = displayonly type character, noupdate, noentry;

saltot = bkmaster.salamount, format="b#,###.##", noupdate, noentry;

END

TABLES
tbagent
END

SELECT
tbagent (code)
EXTRACTALL
END

SCREEN tbagentpop box popup window(7, 35, 0, 0)

{
AGENT UPDATE SCREEN
@
Code <[eno]>
Last Name: [elname]
First Name: [efname]
Soc Sec No.: [esocno]
Date Hired: [ehdate]
Last Raise: [erdate]
Pay Method: [e]
Commission Rate:[ecom]%
Salary : $[esalary]

}

END

ATTRIBUTES

eno = tbagent.code, upshift, required, comments =

"Enter the agent’s code number to identify this agent throughout the system";
elname= tbagent.Iname, comments = "Enter this employee’s last name";

efname= tbagent.fname, comments = "Enter this employee’s first name";

esocno = tbagent.socno, conmments =

"Enter this employee’s social security number"

ehdate = tbagent.hire_date, comments = "Enter the hire date for this employee";
erdate = tbagent.raise_date, comments =

"Enter the date of the last pay raise for this employee";

e(epaymeth)= tbagent.paymethod, include(1l to 4, 8), conments =

"Enter the method number (1-4, 8) by which this employee will be paid";

ecom = tbagent.commission, format="###.#", conments =

"Enter the commission rate for this employee";

esalary = tbagent.salary, format="#,###. ##", comments =

"Enter the yearly salary for this employee";

END

TABLES
tbven
END

SELECT
tbven(code)
EXTRACTALL

END

SCREEN tbvenpop frame popup window(7, 30, 0, 0)
{

SUPPL |ER UPDATE SCREEN

Code <[vno 1>

Name [vname]
Type [t]
Sale Flag [s]
}
END
ATTRIBUTES
Appendix

vno = tbven.code, upshift, required, comments="Enter THE SUPPLIER’s CODE";

vname = tbven.name, conmments = "Enter SUPPLIER's NAME";

t = tbven.type,
comments =
s = tbven.salefl
comments =

END

SELECT

upshift, required, include(T, C, O),
"Enter SUPPLIER TYPE: T= Tour, C=Cruise,
ag, upshift, required, include(Y, N),
"SALE included in Sales Analysis Reports:

tbagent (code)
EXTRACTALL

END

SCREEN pointagent box popup reversebar window(10, 18)

azoomsc

{
Agent Last
[code| Iname

Press SAVE to

reen("demoflex tbagent")

First
| fname]

Select or ESCAPE to exit

Y=Yes,

O=Other";

N=No"

}
END

ATTRIBUTES

REPEAT (6)
code = tbagent.code, upshift,
searchby(tbagent.tbagentkey);
I name = tbagent.Iname, noupdate, noentry,
searchby(tbagent.tbagent2key);
fname = tbagent.fname, noupdate, noentry;
ENDREPEAT

END

SELECT
bkdetail (bkno, recno)
EXTRACTALL
bknote(bkno, recno, seqno) bkdetail (bkno, recno)
EXTRACTALL
END

SCREEN bkscrnote popup box window(12, 15)
auserlkey (fxmovekey, MOVE)
{

Notes [bkno][recno]
[note]
[seqno]

}
END

ATTRIBUTES

bkno = bkdetail.bkno, nodisplay, beforedit(be_bknote);
recno = bkdetail.recno, nodisplay;

REPEAT (6)
seqgno = bknote.segno, sequence, noupdate, noentry, nodisplay, setrow(-1);
note = bknote.note, savecol,

comments="Enter Notes (press the SAVE or ESC key when done)";

ENDREPEAT

END

INSTRUCT |ONS

static auserlnote()

{
/* This userexit calls the Notepad Screen (bknote) */
if (isempty(@okinput.bsup) == YES) {
msggerr("Supplier Code required");
return(0);
}
Appendix

if (fxasave() < 0) [/* save current array line record */

return(-1);
flexemd ("flex bkinput -f bkscrnote cs-cdsa");
return(0);

static int be_bknote()
{
/%
This userexit is called upon entering the Notepad
screen field bknote.bkno.
Its purpose is to automatically fill the
key fields (bkno and, recno) and then simulate the user
entering the SAVE function key so that the user
will immediately goto the note array.
These key fields setup the join
relationship between the bkinput line item and the
notes for that line item.
*/

move(@bkdetail.bkno, @bkscrnote.bkno);
move(@bkdetail.recno, @kscrnote.recno);
flexkey = SAVEKEY;

return(-1);

END

Appendix A-10
A-10

5. The Simple Report - tbagentr.flx

TABLES
tbagent
END

SCREEN select frame

{

DEMO Agent Report DATE: [tday
Report Destination:[d] (S=Screen, P#=Printer, D=Disk, A=Aux)
Report Copies: [c] (1 - 10)

}

END

ATTRIBUTES

tday = displayonly type date, default = today,

noupdate, noentry;

d(rptdest) = displayonly type character, required, upshift;
c(rptcopies) = displayonly type smallint, required, include(1 to 10);

END

SELECT
tbagent (code)
EXTRACTALL
END

REPORT
heading

{
DEMO Agent Report

PAGE: [page]
[tim][tday]

Code Last Name First Name Soc Sec No. Date Hired Last Raise

detai
{
[eno] [elname][efname][esocno
Pay Method: [e] Salary [esalary]
}
END
ATTRIBUTES
tday = displayonly type date, default = today;

tim = displayonly type mtime, default = time;
page = displayonly type smallint

] [ehdate] [erdate]

Commission Rate [ecom]%

eno = tbagent.code, right;
esocno = tbagent.socno;
elname = tbagent.lname;
efname = tbagent.fname;
ehdate = tbagent.hire_date;
erdate = tbagent.raise_date;
e = tbagent.paymethod;
esalary = tbagent.salary, format="#,###. ##",
ecom = tbagent.commission, format="###.#";
END
Appendix

A-11

A-11

6. Sample Output - tbagentr.flx

DEMO Agent Report PAGE: 1
17:25:16 01/17/91
Code Last Name First Name Soc Sec No. Date Hired Last Raise
CeF Favero Bruce 546907780 02/01/88 01/06/86
Pay Method: Salary 1,000.99 Commission Rate %
DT Torence Donna 546907780 04/01/85 01/06/86
Pay Method: Salary 300.99 Commission Rate %
GP Pollard Gary 546907780 01/01/85 01/06/86
Pay Method: Salary 200.99 Commission Rate %
HA Henry Adams 546907780 02/01/85 01/06/86
Pay Method: Salary 1,000.99 Commission Rate %
IM Mobley Janice 546907780 03/01/85 01/06/86
Pay Method: Salary 1,000.99 Commission Rate %
JS Smi th John 546907780 02/01/85 01/06/86
Pay Method: Salary 1,000.99 Commission Rate %
LR Renolds Leon 546907780 04/01/85 01/06/86
Pay Method: Salary 300.99 Commission Rate %
LS Sanford Larry 546907780 04/01/85 01/06/86
Pay Method: Salary 300.99 Commission Rate %
Mv Valesques Maria 546907780 04/01/85 01/06/86
Pay Method: Salary 300.99 Commission Rate %
SJ Jefferson Susan 546907780 03/01/85 01/06/86
Pay Method: Salary 1,000.99 Commission Rate %
Appendix

A-12

A-12

7. Advanced Report | - saagent.flx

TABLES
tbagent
tbven
bkmaster
bkdetai
END
SCREEN select frame
{
DEMO Sales By Agent Report DATE: [tday
Report Destination:[d] (S=Screen, P#=Printer, D=Disk, A=Aux)
Report Copies: [c] (1 - 10)
Report Title Page: [t] (Y=Yes, N=No)
Agent: 1) [agen] [bempname]

2) [age2?] [bempnam2]
3) [age3] [bempnam3]

Booking Date Range: [bdate] to [edate
Supplier: [sup] [supname]

Sales Only: [s] (Y=Yes or leave blank)

|

upshift;
include(1 to 10);
upshift, include(Y, N);

tbagent.code, tbagent.lname);

tbagent.code, tbagent.lname);

}
END
ATTRIBUTES
tday = displayonly type date, default = today, noupdate, noentry;
d(rptdest) = displayonly type character, required,
c(rptcopies) = displayonly type smallint, required,
t(rpttitle) = displayonly type character, required,
agen = bkmaster.agent, upshift,
lookup(tbagent . tbagentkey, select.bempname = tbagent.|name),
tablehelp(“"flex tbagent asdc", tbagent.tbagentkey,
age2 = bkmaster.agent, upshift,
lookup(tbagent . tbagentkey, select.bempnam2 = tbagent.|name),
tablehelp(“"flex tbagent asdc", tbagent.tbagentkey,
age3 = bkmaster.agent, upshift,

lookup (tbagent. tbagentkey,
tablehelp("flex tbagent asdc",

bempname = displayonly type char, noupdate, noentry;
bempnam2 = displayonly type char, noupdate, noentry;
bempnam3 = displayonly type char, noupdate, noentry;

bdate
edate

sup =

= bkmaster.bookdate;
= bkmaster.bookdate, default = today;

bkdetail.supplier, upshift,
lookup(tbven. tbvenkey,

select.bempnam3 = tbagent.lname),

tbagent . tbagentkey, tbagent.code, tbagent.lname);

select.supname = tbven.name),

tablehelp(“flex tbven asdc", tbven.tbvenkey, tbven.code, tbven.name);

supname = displayonly type char, noupdate, noentry;

s = tbven.saleflag;
END
SELECT

bkmaster(agent, bookdate, bkno)
EXTRACTALL

bkdetail (bkno) bkmaster(bkno)
EXTRACTALL

tbven(code) bkdetail(supplier)
EXTRACT

tbagent (code) bkmaster(agent)
EXTRACT

WHERE whereselect

1

Appendix

A-13

A-13

END

REPORT

heading breakon(bkmaster.agent) newpage everypage pitchl2

{
DEMO Sales by Agent Report PAGE: [page]
[tim][tday]
Agent:[bemp] [bempname]
Sale
Book Date Book No Name Amount
}
heading breakon(bkmaster.bkno)
{
[bdate][bkno][bclient] [bsalam]
}
detail
{
[bsup] [bship][bdescription][dsalam]
}
total breakon(bkmaster.bookdate,h4)
{
WEEK Subtotal :$[dsalam]
}
total breakon(bkmaster.bookdate,?2)
{
MONTH Subtotal :$[dsalam]
}
total breakon(bkmaster.agent)
{
AGENT Subtotal:$[dsalam]
}
total
{
GRAND TOTALS: $[dsalam]
}
END
ATTRIBUTES
tday = displayonly type date, default = today;
tim = displayonly type mtime, default = time;
page = displayonly type smallint
bkno = bkmaster.bkno, right;
bclient = bkmaster.name;
bdate= bkmaster.bookdate;
bemp = bkmaster.agent
bempname = tbagent. |name;
bsalam = bkmaster.salamount, format="#, ###.##", nodisplay;
bsup = bkdetail.supplier;
bship = bkdetail.ship;
bdescription = bkdetail.descript;
dsalam= bkdetail.salamount, format="#,###. ##";
END
Appendix A-14

A-14

8. Advanced Output I - saagent.flx

DEMO Sales by Agent Report PAGE: 1
18:00:16 01/17/91
Agent: GP Pollard
Sale
Book Date Book No Name Amount
02/02/87 1 gerard 1,330.00
CCL TUG Cruise Cabin A 300.00
HOTEL CLAR Double Suite 200.00
AIR Regular Faire 100.00
PCL Cruise Delux Cabin 150.00
INSUR $100,000 10.00
SIT DUKE Cruise 250.00
INSUR $250,000 20.00
HOTEL DUKE Regular Faire 300.00
WEEK Subtotal:$ 1,330.00
MONTH Subtotal:$ 1,330.00
03/03/87 3 gerard 500.00
AIR DUKE Regular Faire 100.00
PCL DUKE Regular Faire 150.00
INSUR DUKE Regular Faire 250.00
03/04/87 4 gerard 500.00
CCL DUKE Regular Faire 100.00
SIT DUKE Regular Faire 150.00
PCL DUKE Regular Faire 250.00
03/05/87 5 gerard 500.00
AIR DUKE Regular Faire 100.00
SIT DUKE Regular Faire 150.00
PCL DUKE Regular Faire 250.00
03/06/87 6 gerard 500.00
CCL DUKE Regular Faire 100.00
SIT DUKE Regular Faire 150.00
HOTEL DUKE Regular Faire 250.00
03/07/87 7 gerard 500.00
AIR DUKE Regular Faire 100.00
SIT DUKE Regular Faire 150.00
HOTEL DUKE Regular Faire 250.00
WEEK Subtotal:$ 2,500.00
MONTH Subtotal:$ 2,500.00
AGENT Subtotal:$ 3,830.00
DEMO Sales by Agent Report PAGE: 2
18:00:16 01/17/91
Agent: GAM
Sale
Book Date Book No Name Amount
03/08/87 8 menicuccil/gerard 500.00
PRINCE DUKE Regular Faire 100.00
SITMAR DUKE Regular Faire 150.00
PEARL DUKE Regular Faire 250.00
03/09/87 9 menicuccil/gerard 500.00
PRINCE DUKE Regular Faire 100.00
SITMAR DUKE Regular Faire 150.00
PEARL DUKE Regular Faire 250.00
WEEK Subtotal:$ 1,000.00
MONTH Subtotal:$ 1,000.00
AGENT Subtotal:$ 1,000.00
GRAND TOTALS: $ 4,830.00
Appendix

A-15

9. Advanced Report Il - saagent2.flx

TABLES
tbagent
tbven
bkmaster
bkdetai

END

SCREEN select frame

DATE: [tday

{
DEMO Sales By Agent Report
Report Destination: [d] (S=Screen, P#=Printer, D=Disk, A=Aux)
Report Copies: [c] (1 - 10)
Report Title Page: [t] (Y=Yes, N=No)
Agent: 1) [agen] [bempname]
2) [age2?] [bempnam2]
3) [age3] [bempnam3]
Booking Date Range: [bdate] to [edate
Supplier: [sup] [supname]
Sales Only: [s] (Y=Yes or leave blank)
}
END
ATTRIBUTES

tday = displayonly type date, default = today, noupdate, noentry;

d(rptdest) = displayonly type character, required,
c(rptcopies) = displayonly type smallint, required,
t(rpttitle) = displayonly type character, required,

agen = bkmaster.agent, upshift,

upshift;
include(1 to 10);
upshift, include(Y, N);

lookup(tbagent . tbagentkey, select.bempname = tbagent.|name),

tablehelp(“"flex tbagent asdc", tbagent.tbagentkey,

age2 = bkmaster.agent, upshift,

tbagent.code, tbagent.lname);

lookup(tbagent . tbagentkey, select.bempnam2 = tbagent.|name),

tablehelp(“"flex tbagent asdc", tbagent.tbagentkey,

age3 = bkmaster.agent, upshift,

tbagent.code, tbagent.lname);

lookup(tbagent . tbagentkey, select.bempnam3 = tbagent.|name),

tablehelp("flex tbagent asdc", tbagent.tbagentkey,

bempname = displayonly type char, noupdate, noentry;
bempnam2 = displayonly type char, noupdate, noentry;
bempnam3 = displayonly type char, noupdate, noentry;

bdate = bkmaster.bookdate;
edate = bkmaster.bookdate, default = today;

sup = bkdetail.supplier, upshift,

tbagent.code, tbagent.lname);

lookup(tbven. tbvenkey, select.supname = tbven.name),
tablehelp(“flex tbven asdc", tbven.tbvenkey, tbven.code, tbven.name);

supname = displayonly type char, noupdate, noentry;

s = tbven.saleflag;
END
SELECT

bkmaster (bookdate, bkno)
bookdate
agent
EXTRACTALL

bkdetail (bkno) bkmaster (bkno)
salamount
EXTRACTALL

tbagent (code) bkmaster (agent)
fname
I name
EXTRACT

Appendix

A-16

A-16

WHERE whereselect

ONINDEX bktemp(agent, bookdate)

END
SELECT
bktemp(agent, bookdate)
EXTRACTALL
END
REPORT

heading breakon(bktemp.agent) pitchl2

{

DEMO SALES ANALYSIS REPORT PAGE: [page]
Sales Summary by Agent [tim][tday]

Sales

Agent Amount

}

heading breakon(bktemp.agent)

{

[agent][fname | 'name]

}

total breakon(bktemp.bookdate,2)

{
Month of[bd]: $[dsalam]

total breakon(bktemp.agent)

{

SUBTOTAL by Reference:$[dsalam]
}
total
{

GRAND TOTALS:$[dsalam]

}
END
ATTRIBUTES
tday = displayonly type date, default = today;
tim = displayonly type mtime, default = time;
page = displayonly type smallint;

bd= bktemp.bookdate;
agent = bktemp.agent;
fname = bktemp. fname;
Iname = bktemp. |name;

dsalam= bktemp.salamount, format="#, ###. ##",

END

Appendix A-17
A-17

10. Advanced Output Il - saagent2.rpt

DEMO SALES ANALYSI|S REPORT PAGE: 1
Sales Summary by Agent 18:04:08 01/17/91
Sales
Agent Amount
GP Gary Pollard
Month of 02 : $ 1,330.00
Month of 03 : $ 2,500.00
SUBTOTAL by Reference:$ 3,830.00
DEMO SALES ANALYSIS REPORT PAGE: 1
Sales Summary by Agent 18:04:08 01/17/91

Sales
Agent Amount
GM
Month of 03 : $ 1,000.00
SUBTOTAL by Reference:$ 1,000.00
GRAND TOTALS:$ 4,830.00
Appendix

A-18

A-18

11. The Menus - menu.flx

TABLES
sysfile
menuhead
menufield
menuuser
menuusty
menuperm

END

MENU demomenu

{
@ @
| Welcome to the INFOFLEX DEMO !!! |
@ | I
| This sample application has been designed to demonstrate the features |
| available with Infoflex-4GL. You should refer to Appendix 1 in the User |
| Guide for instructions on how to proceed thru the DEMO. Source listings |
| can also be found in the Appendix. Note that this entire DEMO runs from |
| a single 301K executable and uses only 40 lines of procedural code !!!
I I
[m1] *(8,11)
[m2] *(8,11)
[m3 I *(3.,3)
[m4 1 *(4.4)
[m5] *(6,5)
[m6 1 *(7.7)
[m7
* User Guide reference (Chapter, Appendix topic)
Enter Selection > [s]
}
END
ATTRIBUTES
ml = menufield. i temdesc;
m2 = menufield. i temdesc;
m3 = menufield. i temdesc;
m4 = menufield. i temdesc;
m5 = menufield. i temdesc;
m6 = menufield. i temdesc;
m7 = menufield. i temdesc;
s = displayonly type char
END

MENU bookmenu

{
@ @
| DATA ENTRY PROGRAMS |l REPORTS |
I (| I
[ml] [ml1
[m2 | [m12
[m3 | [m13
[m4] [m14
[m5] [m15
[m6 @
[m7 11 END-OF -THE MONTH PROCESSING
[m8 l@ |
[m9 | [m16
@ [m17
| QUERY ON-LINE | [m18
I I
[m10]
Enter Selection > [s]
}
END
ATTRIBUTES

ml = menufield. i temdesc;

Appendix

A-19

A-19

m2
m3
m4
m5
mé
m7
m8
m9

= menufield.

menufield.
menufield.
menufield.
menufield.
menufield.
menufield.

= menufield.

ml0 = menufield.
= menufield.
= menufield.
= menufield.
= menufield.
= menufield.
= menufield.
= menufield.
= menufield.

mll
mi2
mi3
ml4
ml5
ml6
ml7
mil8

END

displayonly type char;

MENU devmenu

itemdesc;
itemdesc;
itemdesc;
itemdesc;
itemdesc;
itemdesc;
itemdesc;
itemdesc;

temdesc;
temdesc;

itemdesc;

temdesc;
temdesc;
temdesc;
temdesc;
temdesc;
temdesc;

{
MENU PROGRAMMING
[ml] [ml1]
[m2] [m12]
[m3] [m13]
[m4 | [m14 |
SECURITY [m15]
[m5] [m1l6]
[m6] [m17]
[m7] MI SCELLANEQUS
[m8] [m18]
[m9] [m19]
[m10] [m20]
[m21]
[m22]
[m23]
Enter Selection > [s]
}
END
ATTRIBUTES
ml = menufield. itemdesc;
m2 menufield. i temdesc;
m3 menufield. i temdesc;
m4 menufield. i temdesc;
m5 menufield. i temdesc;
mé6 menufield. i temdesc;
m7 menufield. i temdesc;
m8 menufield. i temdesc;
m9 = menufield. itemdesc;
ml0 = menufield. itemdesc;
mll = menufield. itemdesc;
ml2 = menufield. itemdesc;
ml3 = menufield. itemdesc;
ml4 = menufield. itemdesc;
ml5 = menufield. itemdesc;
ml6 = menufield.itemdesc;
ml7 = menufield. itemdesc;
ml8 = menufield. itemdesc;
ml9 = menufield. itemdesc;
m20 = menufield. itemdesc;
m21 = menufield. itemdesc;
m22 = menufield. itemdesc;
m23 = menufield. itemdesc;
s = displayonly type char;
END
Appendix

A-20

A-20

12. Miscellaneous Screen | - sysfile.flx

tables
sysfile
end

select
sysfile(sysname)
EXTRACTALL

end

screen sysfile frame

{
INFOFLEX [modemsg] SYSTEM FILE MAINTENANCE SCREEN
System Name: <[sysname 1>
Company Name: [company
}
end

attributes

modemsg = displayonly type character, noupdate, noentry,

DATE: [today

reverse, retain;

today = displayonly type date, noupdate, noentry, default=today;

sysname = sysfile.sysname, upshift,
required, comments = "Enter system abbreviation";

company = sysfile.company,
comments = "Enter company name";

end

Appendix

A-21

A-21

13. Miscellaneous Screen Il - tbven .flx

TABLES
tbven
END

SELECT
tbven(code)
EXTRACTALL

END

SCREEN tbven frame defaulton

{

DEMO [modemsg] Supplier Entry Screen DATE: [tday
Code <[vno 1>
Name : [vname]
Contact:[contact]
Phone: [phone]
Type [t]
Sale Flag [s]

}

END

ATTRIBUTES

modemsg = displayonly type character, noupdate, noentry, reverse, retain;
tday = displayonly type date, noupdate, noentry, default=today;

vno = tbven.code, upshift,
required, comments =

"Enter the supplier’s code to identify this supplier throughout the system";

vname = tbven.name,

comments = "Enter supplier’s name";
contact = tbven.contact;
phone = tbven.phone;

t = tbven.type, upshift, required, include(T, C, O),
comments = "Enter supplier type: T= Tour, C=Cruise, O=Other";

s = tbven.saleflag, upshift, required, include(Y, N),
comments = “"Sale included in Sales Analysis Reports: Y=Yes, N=No"

END

Appendix A-22
H-22

INDEX

Appendix

A-1

Appendix

A-2

ADD mode 3-3, 3-4, 4-2
ATTRIBUTES Section 3-(2-3), 5-(1-2), 6-1, 6-2, 7-1
REPEAT 4-2
attributes
COMMENTS 3-3
DEFAULT 6-2
DISPLAYONLY 3-2, 3-3, 5-1, 6-2
FORMAT 3-3, 6-2
HELPSELECT 5-(1-2), 7-1
INCLUDE 3-3, 5-1
LEFT 6-2
LOOKUP 5-1, 7-1
REQUIRED 3-3
RIGHT 6-2
SEARCHBY 5-5
UPSHIFT 3-3
BREAKON 7-2
CHANGE mode 3-3, 3-4, 4-2, 55
COMMENTS attribute 3-3
compilation 6-3
Control Keys 5-4
database 1-1, 2-(1-2)
DEFAULT
TIME 6-2
TODAY 6-2
DELETE option 3-4
demo 1-1, A-1
DETAIL subsection 6-2
DISPLAYONLY attribute 3-2, 3-3, 5-1, 6-2
ESCkey 3-4, 4-2
EXTRACT 4-1, 7-2
EXTRACTALL 3-1, 4-1
field tags, keyword
page 6-2
rptcopies 6-1
rptdest 6-1
flex 3-4, 5-2, 6-3
FORMAT attribute 3-3, 6-2
function keys
ADD 3-4, 4-2
CHG 34
DEL 3-4, 4-2
FRST 34, 4-2, 55
HELP 3-4, 5-1
JUMP 5-2
LAST 34, 4-2, 55
NEXT 3-4, 4-2, 5-5
PREV 3-4, 4-2, 5-5
QRY 34
RUN 6-3
SAVE 34, 4-2
SRCH 5-5
fxpp 3-3, 6-3
fxsgl 2-1
HEADING subsection 6-2, 7-2
HELPSELECT attribute 5-(1-2), 7-1

INDEX

INCLUDE attribute 3-3, 5-1

Informix 1-1, 2-2

joins, table 7-2

LOOKUP éttribute 5-1, 7-1

MENUFLEX 8-(1-20)

modes, run-time
ADD 3-3, 34, 4-2
CHANGE 3-3, 3-4, 4-2, 55
SEARCH 3-4, 5-5

MTIME datatype 6-2

Notepad Screen 5-4
- 53

ONINDEX clause 7-3

page field tag 6-2

Point and Shoot Screens 5-3
- 52

Query Mode 5-5, 5-6

relational database 1-1, 2-(1-2)

REPEAT 4-2

REPORT Section 6-(2-2), 7-3
BREAKON 7-2
DETAIL 6-2
HEADING 6-2, 7-2
TOTAL 6-2, 7-2

REPORTFLEX 6-(1-3), A-(11-18)
ATTRIBUTES Section, REPORT 6-2
ATTRIBUTES Section, SCREEN 6-1, 7-1
REPORT Section 6-(2-3), 7-2, 7-3
SCREEN Section 6-1, 7-1
select screen 6-3, 7-1
SELECT Section 6-2, 7-(1-2), 7-3
TABLES Section 6-1

REQUIRED attribute 3-3

RIGHT attribute 6-2

rptcopies field tag 6-1

rptdest field tag 6-1

schema A-(4-5)

screen array 4-(1-2), A-(7-10)

SCREEN Section 3-1, 4-1, 6-1, 7-1

SCREENFLEX 3-(1-2), A-(6-10), A-(21-22)
array 4-(1-2), A-(7-10)
ATTRIBUTES Section 3-(2-3), 4-2, 5-(1-2)
SCREEN Section 3-1, 4-1
SELECT Section 3-1, 3-4, 4-1
TABLES Section 3-1

Screens
Control Keys 5-4

SEARCH mode 3-4, 5-5

SEARCHBY attribute 5-5

select screen 6-3, 7-1

SELECT Section 3-1, 3-4, 4-1, 6-2, 7-(1-2), 7-3
EXTRACT 4-1, 7-2
EXTRACTALL 3-1, 4-1
joins, table 7-2
ONINDEX clause 7-3
WHERE clause 7-1

INDEX

SQLFLEX 1-1, 2-(1-2)
TABLES Section 3-1, 6-1
TOTAL subsection 6-2, 7-2
UPSHIFT attribute 3-3
WHERE clause 7-1

INDEX

INFOFLEXU, INC

INFOFLEX-4GL

Reference Guide

Infoflex software and this manual are copyrighted and all rights are reserved by INFOFLEX, INC. No part
of this publication may be copied, photocopied, transated, or reduced to any electronic medium or machine
readable form without the prior written permission of INFOFLEX, INC.

LIMITED WARRANTY: INFOFLEX warrants that this software and manual will be free from defects in
materials and workmanship upon date of receipt. INFOFLEX DISCLAIMS ALL OTHER WARRANTIES,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
SOFTWARE, THE ACCOMPANYING WRITTEN MATERIALS, AND ANY ACCOMPANYING
HARDWARE. IN NO EVENT WILL INFOFLEX OR ANY AUTHORIZED REPRESENTATIVE BE
LIABLE FOR ANY DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS OF PROFITS, BUSINESS INTERUPTION, LOSS OF BUSINESS INFORMATION)
ARISING OUT OF THE USE OR INABILITY TO USE INFOFLEX SOFTWARE OR ANY
ACCOMPANYING INFOFLEX MANUAL, EVEN IF INFOFLEX HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

GOVERNING LAWS: Thisagreement isgoverned by the laws of California.

U.S. GOVERNMENT RESTRICTED RIGHTS:. Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subdivision (b)(3)(ii) of The Rights in Technical Data and Computer
Software clause at 252.227-7013.

Infoflex isaregistered trademark of INFOFLEX, INC.

UNIX isatrademark of Bell Laboratories.

XENIX and M S-DOS are trademarks of Microsoft Corporation.
Informix isaregistered trademark of Informix Software, Inc.
C-ISAM isatrademark of Informix Software, Inc.

D-1SAM isatrademark of Byte Designs Ltd.

Copyright L] 1986-2006 INFOFLEX, INC.
Printed in U.S.A. on May 2006

1. INTRODUCTION
Infoflex In Brief

Scope

Manual Organization .

2. DEVELOPMENT PROCEDURES
Software Installation
Application Set-Up
The Development Menu .
Development Commands

Advanced Development Techniques

3. SCREENFLEX

31
32
33
34
35
3.6
3.7

SECTION ORGANIZATION

TABLES SECTION
SELECT SECTION
SCREEN SECTION
SCREEN USEREXITS
ATTRIBUTES SECTION

RUNNING THE SCREEN FORM .

4. FIELD ATTRIBUTES
AFTEREDIT
AFTERFIELD .

AUTOHELP
AUTONEXT
BEFOREDIT
CENTER

CLEAR .

COMMENTS
DEFAULT .

DEFAULTNEXT .
DEFAULTON,DEFAULTOFF
DOWNSHIFT .

FORMAT

FORMATFIELD

HELPKEY .

HELPSCREEN

HELPSELECT
INCLUDE .
LEFT
LINENO
LOOKUP
NOCLEAR
NODISPLAY
NOENTRY
NOUPDATE
PHONE .
REQUIRED
RETAIN
RIGHT . .
REVERSE .
SEARCHBY
SEQUENCE
SETCOL
SETROW
TOTAL .
TRUNCATE

TABLE OF CONTENTS

1-1
1-1
1-1
1-1

2-1
2-1
2-2
2-3
2-5
2-7

31
31
32
35
37
3-10
3-15
3-19

4-1
4-1
4-1
4-1
4-1
4-1
4-1
4-2
4-2
4-2
4-2
4-2
4-2
4-2
4-3

4-4
4-4
4-5
4-5
4-5
4-5
4-6
4-6
4-6
4-6
4-6
4-6
4-6
4-6
4-6
4-6
4-7
4-8
4-8
4-8
4-8

ULOOKUP
UPSHIFT
ZOOMKEY
ZOOMSCREEN

5. REPORTFLEX e
51 SECTION ORGANIZATION
52 TABLESSECTION
53 SCREEN SECTION e
54 ATTRIBUTESSECTION FOR SCREEN .
55 SELECT SECTION
5.6 REPORT SECTION e
57 ATTRIBUTESSECTION FOR REPORT .
58 RUNNING THE REPORT FORM .

6. MENUFLEX . .o
6.1 MENUBUILDING
6.2 RUNNING THEMENU . .o
6.3 MENU TEMPLATE ORGANIZATION
6.4 TABLESSECTION
6.5 MENU SECTION
6.6 ATTRIBUTESSECTION

6. MENU SECURITY .
6.1 Defining User Types
6.2 Defining Users
6.3 Change Password .

7. THEINSTRUCTIONS SECTION
Overview
Syntax
Description
Notes
Example

8. DATABASE DATA TYPES
CHAR .o
SMALLINT or SHORT
INTEGER or LONG
DECIMAL .
SMALLFLOAT
FLOAT or DOUBLE .
MONEY
SERIAL
DATE .
TIMEor MTIME .

9. ENVIRONMENT VARIABLES

FXDIR

FXBIN

FXDATA

FXHELP

FXEDIT

FXPRINT

FXPRT .

FXDATE

10. TOOLFLEX
10.1 Overview
10.2 DataBuffers .
10.3 Global Variables
10.4 Function Arguments
10.5 Table Management Functions

4-8
4-8
4-8
4-9

51
5-1
5-2
5-3
5-6
5-9
5-14
5-18
5-20

6-1
6-1
6-3
6-4
6-5
6-6
6-9

6-1
6-1
6-4
6-5

7-1
7-1
7-1
7-1
7-1
7-4

81
81
81
8-1
8-1
81
81
81
8-1
81
8-2

9-1
9-1
9-1
9-1
9-1
9-1
9-1
9-1
9-1

10-1
10-1
10-2
10-3
10-5
10-6

10.6 Screen/Report Management Functions
10.7 Data Flow Management Functions .
10.8 Program Branching

10.9 Main Function .

10.10 Error Codes

11. THEHELPSYSTEM
11.1 Overview
11.2 Levelsof Help
11.3 Help At Run-Time

12. SQLFLEX . .
121 ALTERTABLE
122 CREATE DATABASE
12.3 CREATEINDEX .
124 CREATETABLE .
125 DELETE
12.6 DROPDATABASE
12.7 DROPINDEX
12.8 DROPTABLE
129 INFO
12.10 INSERT
12.11 LOAD
12.12 RENAMECOLUMN
12.13 RENAME TABLE
12.14 SELECT .
12.15 Boolean Expressions .
12.16 Aggregate Functions .
12.17 UNLOAD
12.18 UPDATE

13. TERMINAL SETUP
Overview
Terminal Control F|Ie
Defining aNew Terminal Capab|I|ty

14. PRINTER SETUP
Overview .
Printer Control File
Printer Configuration File
Defining a New Printer Capability

APPENDIX
Sample SCREEN FL EX Program W|th I NSTRUCTI ONS
Sample SCREENFLEX Program with MAIN function
Sample SCREENFLEX Program using ZOOM
Sample SCREENFLEX Program for PURGING .
Sample REPORTFLEX Program
Sample REPORTFLEX Program for CH ECK Pr| nt| ng
Sample ISAMFLEX Program using dynamic file access

ERRORS .
Compiler Errors
Runtime Error .

INDEX .

10-8
10-12
10-15
10-16
10-17

11-1
11-1
11-1
11-3

12-1
12-2
12-3
12-4
12-6
12-7
12-9
12-10
12-11
12-12
12-13
12-14
12-15
12-16
12-17
12-22
12-33
12-39
12-40

13-1
13-1
13-1
13-3

14-1
14-1
14-1
14-2
14-4

A-1
A-1
A-4
A-9
A-12
A-16
A-19
A-27

E-1
E-1
E-1

-1

1. INTRODUCTION

Infoflex In Brief

Infoflex is an computer application development language and environment built around an Informix™ compatible
relational database. Infoflex specializes in the rapid development and integration of application menus, screen forms, and
reports.

Scope

The Reference Manual will provide a concise explanation of Infoflex features.

Infoflex istargeted for the UNIX or XENIX and DOS operating systems. Porting to other operating systems will done upon
reguest. Thismanual assumes that you have aworking knowledge of your operating system.

Manual Organization

The Reference Manual is organized in chapters, and each chapter is subdivided into topics. A topic is always headed with
an emboldened title unindented to the left of the main body of text. For example, thistopic is Manual Organization within
the chapter, I ntroduction.

The Reference Manual may further subdivide its topics into subtopics, which also have emboldened titles. Subtopics are
indented within topics so that they are easily recognized. The intent is for you to find things quickly in the Reference
Manual.

Introduction 1-1

Introduction

1-2

2. DEVELOPMENT PROCEDURES

Software Installation

Certain software must be in place before you begin your Infoflex application development. The following subtopics will
describe these.

Infoflex

The Infoflex installation procedure is concisely laid out for each hardware and operating system configuration and
media of distribution. Each release of the Infoflex will include an instruction sheet enclosure.

The Infoflex Development Package is made up of several sub-packages. Each sub-package may be installed
independent of the others or in any combination.

SCREENFLEX. If your applications use screen forms you will need SCREENFLEX. The features and language
of SCREENFLEX are detailed in Chapter 3 and 4.

REPORTFLEX. If your applications use reports you will need REPORTFLEX. The features and language of
REPORTFLEX are detailed in Chapter 5.

MENUFLEX. If your applications use menus you will need MENUFLEX. The features and language of
MENUFLEX are detailed in Chapter 6.

SQLFLEX. SQLFLEX isthe Infoflex language and procedure for creating and modifying the structure of your
Infoflex databases and querying their contents. The features and language of SQLFLEX are detailed in Chapter
12.

The following Infoflex packages are not stand-alones but must be incorporated with one or more of the stand-alone
packages above:

TOOLFLEX. Once you begin linking C language code in with your Infoflex screens and reports, you may wish
to make use of the special C function library available under TOOLFLEX. These functions assist in the data
manipulation between an Infoflex database and your application screens and reports. The functions of
TOOLFLEX are detailed in Chapter 10.

PRINTFLEX. PRINTFLEX isincluded with al Infoflex installations. It provides the means of setting up the
printer characteristics, such asfont changes, for any printer used with Infoflex.

C Compiler

If you intend to link in your own C functions with your Infoflex applications you will need a C language devel opment
system. On UNIX the compiler should be in the standard directories. On DOS the C compiler is expected to be under
the \c directory.

D-ISAM™ or C-ISAM™

If you use an INSTRUCTIONS section anywhere in your in application, you will need to install the C language
library for the D-ISAM file manager from Byte Designs or the C-ISAM file manager from Informix. Follow their
installation instructions exactly to achieve compatibility with the Infoflex development system. On UNIX the libraries
are expected to bein the /.../fx/lib directory and on DOSthe \...\fx\lib directory.

Devel opment Procedures 2-1

Application Set-Up

Once your Infoflex Development Package and supporting software are installed, you are ready to initiate the devel opment
of your application. The first step in preparing your development environment is to set up the Infoflex environment
variables. Chapter 9 describes the various environment variables and their purpose. To assist with setting these variables,
we provide a utility called fxsetenv. The fxsetenv utility isrun slightly different on UNIX versus DOS.

ON UNIX:

Set FXDIR to the Infoflex base directory, FXAPDIR to the application’s base directory, and then execute the
fxsetenv utility. For example,

$ FXDIR=/.../fx; export FXDIR
$ FXAPDIR=/.../appname; export FXAPDIR
$. $FXDIR/unx/fxsetenv

ON DOS:

Execute the fxsetenv utility with the Infoflex base directory and the application base directory as arguments. For
example,

> \fx\dos\fxsetenv \..\fx \appname
Once the environment variables are properly set, the next step isto create your application directory and database structure.
To create your application structure run the fxmkapp utility asfollows:
ON UNIX:
The fxmkapp utility takes the Infoflex base directory as the first argument and the application base directory as
the second argument. The fxmkapp will do the following:

$fxmkapp /../fx [../Jappname

ON DOS:
The fxmkapp utility takes the Infoflex base directory as the first argument and the application name as the second
argument.

> fxmkapp \..\fx appname

The fxmkapp will do the following:
. Create the following directory structure:

bin help appname.dbs

The bin directory will be where you will develop and compile the Infoflex source files of your application. The help
directory will be where your on-line help files are stored. Appname.dbsis your application’s database directory.

. Install the Infoflex development menu system (MENUFLEX) in the application bin directory. From the development
menu you may create and compile Infoflex source files, .flx files, and link in any C functions you have written for
your application. The development menu aso has an option to edit the menu tables, that define the menu structure of
the application, and an option to edit the sysfile table, that defines the company and application names to appear in the
menu headers.

. The sysmsg flx fileis placed in the bin directory. Thisfile contains all the standard run-time messages of an Infoflex
application and will interface with your application automatically with no special programming. Thisfile also defines
the default function key assignments, function key label names, and color parameters.

Devel opment Procedures 2-2

. Create two executable files in the application bin directory with the names appname and xappname. Appname will
set the appropriate application environment variables and start-up your application menu system. Xappname will set
the appropriate developmental environment variables and start up the development menu.

The Development Menu

This topic describes the options of the Infoflex development menu. If you did not purchase the MENUFLEX subpackage,
you will not be able to develop from the menu system. Instead, you should follow the instructions in the next topic on how
to develop from the command line.

Before starting, move to the bin directory of the application that you wish to develop. Execute the xappname program to
call up the development menu. The xappname program was created by the fxmkapp utility when setting up the application.

The menu will appear asfollows:

INFOFLEX DEVELOPMENT MENU

Set Source File Name

Edit Source

Process Source

Compile and Link C Userexits
Test Program

Modify Central File

Modi fy Menu

Modify Dictionary

0w N O O WDN PR

Enter Option []

Thisis briefly what each menu option does.

1. Set Source File Name

You will be prompted for the source file name without the .flx extension. The name should be eight characters or less
for compatibility with DOS. The name you enter will be displayed in the upper right hand corner of the video display.

2. Edit Source

You will be placed into the editor to create or modify an Infoflex source file (the environment variable FXEDIT
determines which editor). The content of this source file will define a menu, screen, or report layout and its field
attributes. See Chapter 3 through 7 for a detailed description of the contents of the Infoflex source file. One
requirement of the development menu system is, if you wish to test your application from the menu, that there be only
one SCREEN section per screen source file and one REPORT section per report source file.

3. Process Source

Your source file will be compiled into aloadable Infoflex .picfile.

4. Compile and Link C Userexits

Here you may compile and link any C language code generated by Step 3. C code will be generated if there is an
INSTRUCTIONS section in the source file. The resultant executable program will have the same name as the source
file but without a file name extension.

Devel opment Procedures 2-3

5. Test Program

You may run your compiled menu, screen form, or report from here.

6. Modify Central File

This option allows you to update the system wide information, specifically the application title and the company name,
using a canned Infoflex screen form.

7. Modify Menu

This option alows you to update the menu structure of your application using the cwmenu utility (see Topic 6.1).
Note that the development menu definition itself is stored in the menu tables of your application database.

8. Modify Dictionary

You will be placed in the editor to create an SQL script. The SQL script may modify the application database structure
or query the database. Once you have saved your script, the SQLFLEX utility isinvoked to process your SQL script.

Devel opment Procedures 2-4

2-4

Development Commands

Thistopic will show you how to develop an Infoflex program without using the development menu system.

Developers wanting to use a makefile, a UNIX automated compilation utility, or who feel more comfortable developing
from the operating system command line will want to read this chapter.

The first step is to set the environment variables using the fxsetenv utility described in previous topic on Application Set-
Up. Once the environment variables are set you are ready to do any of the following developmental procedures:

1. Set Source File Name

This step is not used from the operating system command line.

2. Edit Source

Use the text editor of your choice to create an Infoflex source file. The file name has the form: filename.flx.

3. Process Source
Use the fxpp command to compile your Infoflex source file.
fxpp filename

filename without the .flx extension, produces the file filename.pic that is loaded at application run-time to produce your
menu, screen form, or report.

4. Compile and Link C Userexits
If your source file has an INSTRUCTIONS section, fxpp will also produce the file filename.c, which is the
INSTRUCTIONS section code fully trandated to C language code. In this case you will need to further compile
filename.c with:

fxcl filename.c -0 progname

Thefinal result isthe executable file progname.

5. Test Program

In the case where there is no INSTRUCTIONS section associated with your filename.pic file, you execute
filename.pic with:

flex filename

In the above example where we compiled and linked in INSTRUCTIONS section C code and produced the executable
file progname,

progname filename
becomes the command for executing filename.pic.

Also see Topic 3.7, RUNNING THE SCREEN FORM.

6. Modify Central File

The command for modifying the central fileis:

Devel opment Procedures 2-5

flex sysfile

7. Modify Menu
The command for modifying your application’s menu data is:
flex cwmenu

See Topic 6.1, THE CWMENU UTILITY.

8. Modify Dictionary

To modify the structure of your application database structure, you must create with a text editor an SQLFLEX script
of the form: script.sgl. This script will contain database modifying SQLFLEX statements that are executed with the
command:

fxsgl appname script

You must be in the your application directory appname when running this command.

In the case that you do not have the Infoflex SQLFLEX sub-package, you will need to use Informix-SQL or a similar
database management system to modify your database. Refer to the documentation for the system you are using.

Devel opment Procedures 2-6

Advanced Development Techniques

This topic covers more advanced development techniques for reducing processing time, combining programs, and using
makefiles. These techniques are primarily useful for Infoflex programs containing INSTRUCTIONS section C language
code.

Reducing Processing Time

The fxpp command offers a command line option for selectively processing the INSTRUCTIONS section. By using
this command option, you can avoid processing the entire .flx file when there has only been a change to the
INSTRUCTIONS section. Hereis an example command line that will process the INSTRUCTIONS section only.

fxpp -c filename
Thiswill generate the filename.c file and leave the filename.pic alone.

When using the technique you need to be fairly confident that the INSTRUCTIONS section is the only part of your
source file that has changed. One way to solve this problem is to move the INSTRUCTIONS section outside of the
file containing the screen/report definition. If the INSTRUCTIONS are in a separate file or files, then it is easier to
determine from the file dates what parts need recompiling. You can even go a step further and use an automated
recompliation technique, such as a makefile system, that determines automatically which files need recompilation and
which files are already up to date. More on makefiles later.

Combining Programs

In this subtopic we discuss how to combine your Infoflex executable programs. With little effort it is possible to
combine your entire application into a single executable program.

What often happens after developing a sophisticated application is you end up with a number of source files that use
INSTRUCTIONS section code. Each of these source files, when fully compiled, result in a sizeable executable
program. This is often undesirable for three reasons: disk space is used up, response time for switching programs is
slow, and run-time memory is used up (especially for multi-user installations). Infoflex offers an easy way of
combining the executable programs to avoid these disadvantages.

The steps for combining programs are:
1. Process each .flx file that isto be combined using the ’-n’ option as follows:
fxpp -n filenamel

fxpp -n filename2
fxpp -n filename3

2. Create afile filelist.Ist containing a list of all .flx files that will be sharing the same executable. You may have
duplicate C language function names across these .flx files as long as they are declared as static (this is applies to
main() functions as well). Filelist.Ist should look as follows:

filenamel . flx
filename2 . flx
filename3 . flx

3. Processthefilelist.Ist asfollows:

fxpp - filelist.Ist

Devel opment Procedures 2-7

This process will generate a C source filefilelist.c that will later be compiled and linked with the executable.

4. Compile all .c files generated from step 1 and 3 above. Note that .c files will only be generated for .flx files having
an INSTRUCTIONS section.

fxcl -c filelist.c
fxcl -c filenamel.c
fxcl -c filename2.c

5. Link object code generated in step 4 together into a single executable (.0 is.obj on DOS):

fxcl -o progname filelist.o filenamel.o filename2.0 ...

6. Change the menu option to load a screen internally. This is done by changing the TYPE to F and having the
execution line call the flex function.

7. Initiate the application using the progname on the command line.

The Makefile

A makefile system will automate your compilation activity, and for large multi source file applications, it is almost
imperative that you use makefiles. A makefile will contain the rules and steps for creating your application from

source files. Such a system will aso enable you to reconstruct the application at any time with the minimum
recompilation steps.

On UNIX and XENIX the makefile interpreter program called make comes with the standard C language devel opment
system. On DOS make-like utilities are available for program development. For a thorough understanding of the

theory, syntax, and usage of makefiles, we refer you to the documentation that comes with your particular makefile
system.

Hereisapractical example using amakefile. Our application module is made up of three source files:

scrn.flx
uexitsl.flx
uexits2.flx

Scrn.flx contains only the screen definition, uexitsl.flx and uexits2.flx contain the INSTRUCTIONS section code.

The following will be the UNIX or XENIX makefile text for our example above:

.SUFFIXES: .o .flx

fix.o:
fxpp -p scrn.pic -n -c $*
fxcl -c $*.c
rm *.c

OBJS = scrn.o uexitsl.o uexits2.o0

applic: $(OBJS)
fxcl -o applic $(OBJS)

scrn.o: scrn.flx
fxpp -x scrn
fxpp -1 scrn.lIst
fxcl -c scrn.c
rm -f scrn.c $(OBJS)

Devel opment Procedures 2-8

We consider this the optimum makefile structure for an Infoflex application, and all Infoflex development procedures
can be patterned after it. The new fxpp options used here are documented in the next subtopic.

If you are not familiar with UNIX makefiles (and a good DOS makefile system should pattern itself after the UNIX
model), then | would not go any further and would first familiarize yourself with your makefile system. Further
explanation here assumes that you at least understand the makefile syntax and sematics in the above example.

As a further optimization, the makefile will create the userexits array as a separate .c filee. The command that
accomplishes thisis:

fxpp -1 scrn.lIst

where the contents of scrn.lst issimply:

scrn.flx

The next step isto compile the resultant scrn.c with:

fxcl -c scrn.c

So therationale is, if we update scrn.flx, a new scrn.pic and scrn.o will be generated. We then remove scrn.c asit is
an intermediate file that we do not need to keep. We aso remove uexitsl.o and uexits2.o (rm -f isused so that if these
files are missing, rm does not generate an error), which forces the recompilation of these two .o files. The idea is that
since scrn.pic has been regenerated, the INSTRUCTIONS code in uexitsl.flx and uexits2.flx, which depends on the
content of scrn.pic, must be recompiled. The general .flx.o rule of the makefile recompiles uexitsl.flx and uexits2.flx.

Now we can see that the minimum compilation steps are taken with each regeneration of the application applic. If
scrn.flx is modified, the .pic and al .0's are regenerated. If only uexitsl.flx is modified, then only uexitsl.o is
regenerated.

The command:
make

looks for the file makefile or M akefile in the current directory and processesit.

FXPP Options

-X This option wll generate the .pic file but not process the source filés INSTRUCTIONS section that would
produce the .cfile.

-c Use this option to process just the INSTRUCTIONS section to generate the .c file. The .pic file will not be
generated.

-n Normally the .c file built from an INSTRUCTIONS section includes an array variable listing the userexit
names. The .c file generated when using the -n option excludes this userexits array. The .pic file will be
generated however.

-p Use this option with the additional argument filename.pic. Here fxpp will not look to the source file being
compiled for the .pic information, but instead reads an earlier compiled filename.pic. Thiswould be one way to
compile INSTRUCTIONS-only source files.

-l Use this option with the additional argument filename.Ist which is a text file containing a vertical list of .flx file
names. Fxpp will then generate a single .c file with a userexits array that is the union of all the userexits of all
the source filesin the list. No other code is placed in this file except the maximum memory required at run-time
to load any one of the .pic files compiled from the .flx files listed.

Devel opment Procedures 2-9

Special Processor Commands
The Infoflex processor alows specia processor commands, which are lines beginning with the character #.

The current processor commands are:

#include insert text from another file.

The #include macro causes the entire contents of a specified Infoflex source file to be processed as if those contents
had appeared in place of the #include macro. The form of the command is:

#include "filename"

#include macros appearing in the body of the INSTRUCTIONS section will not be processed by Infoflex unless the
file extension is .flx. Thisisto avoid conflict with the C preprocessor which isrun at alater step.

Devel opment Procedures 2-10
2-10

3. SCREENFLEX

SCREENFLEX isthe specia language for Infoflex screen form development.
Throughout this chapter we will be referring to header and array portions of the screen form. The header portion is where a

single record is displayed and updated. The array portion is where multiple records from the same table are displayed and
updated. A screen may have a header only, an array only, or have both portions.

3.1 SECTION ORGANIZATION

A SCREENFLEX source file is an ordinary text file of the form filename.flx. Its content is subdivided into sections. The
organization of these sections has certain ordering rules.

TABLES Section

The TABLES section is arequired section and must be the first section of the screen source file. Topic 3.2 contains a
full description of the SCREENFLEX TABL ES section.

SELECT Section

The SELECT section is required and immediately follows the TABLES section. Topic 3.3 contains a full description
of the SCREENFLEX SELECT section.

SCREEN Section

The SCREEN section isrequired and immediately follows the SELECT section. Topic 3.4 contains a full description
of the SCREENFLEX SCREEN section.

ATTRIBUTES Section

The ATTRIBUTES section is required and immediately follows the SCREEN section. Topic 3.6 contains a full
description of the SCREENFLEX ATTRIBUTES section.

INSTRUCTIONS Section
The INSTRUCTIONS section is an optional last section of the screen form source file. It contains your C language

functions called by any userexits of the screen forms. Chapter 7 contains a full description of the INSTRUCTIONS
section.

Multiple Screen Definitions

More than one screen form can be defined in a single screen source file. There are afew variations on how the sections
can be organized, and those variations will be taken up under the appropriate section topic.

Screenflex 31

3.2 TABLES SECTION

Overview

The TABLES section lists the names of any tables referenced in the screen form source file.

Syntax
TABLES
tablename [tableparms]
END
Description

TABLES isarequired keyword.

tablename is a database table name.

tableparms are optional and may be any one of the following: open, read, alias aliasname. Open parameter will

open the file upon starting the program. Read parameter will open the file, read the first record, and
close the file upon starting the program (usefile for control files). The alias aliasname parameters will
alow you to open the file under a different name.

END isarequired keyword.

Notes

. There can be any number of tablenamesin the TABLES section. There must be at least one.

. In multiple screen source files there can be a separate TABL ES section before each SELECT section, or there
can be a single TABLES section that includes all the tables referenced in the source file. For example, this
would be the outlines of two possible screen source files with three screen definitions:

Screenflex 3-2

Outline A
TABLES section

SELECT section
SCREEN section
ATTRIBUTES section

SELECT section
SCREEN section
ATTRIBUTES section

SELECT section
SCREEN section
ATTRIBUTES section

OutlineB

TABLES section
SEL ECT section
SCREEN section
ATTRIBUTES section

TABLES section
SEL ECT section
SCREEN section
ATTRIBUTES section

TABLES section
SEL ECT section
SCREEN section
ATTRIBUTES section

. In Outline B here is no problem in specifying the same table in two or three of the TABL ES sections. Itisnot an
error and will not require redundant memory resources.

Screenflex 33

Example

TABLES
tbemp
tbven
bkmaster
bkdetai l
END

Screenflex

3-4

34

3.3 SELECT SECTION

Overview

The optional SELECT section defines which database records are to be selected and saved by the Screen Form. This
section will also specify the ordering of the records and, when multiple tables are accessed, how they are joined. If the
SELECT section is not specified, no records will be selected and the user will be placed in PROMPT mode (for
further explanation on modes see the topic on Running the Screen Form).

Syntax
SELECT
mastertable (sortfields)
EXTRACTALL
[jointable (joinfields) mastertable (mastfields)
EXTRACTALL
]
END
Description
SELECT isarequired keyword.
mastertable isthe required primary table from which records will be selected.
sortfields is the field or fields that comprise an index of mastertable. The selected records are ordered by this
index. If there are two or more fields, sortfields is a comma separated list.
jointable isan optiona table joined to the primary table.
joinfields is the field or fields that comprise the joined index of jointable. The selected jointable records are

ordered by thisindex. If there are two or more fields, joinfields is a comma separated list.
mastfields are the fields of the primary table that are joined to joinfields of the joined table.

EXTRACTALL is a keyword required by both table selects. It specifies that the table selection should retrieve all
matching records.

END isarequired keyword.
Notes
. The optional jointable is only needed when the screen form contains a header portion and an array portion.
. The array portion is the multiple record scrolling region of the screen form. This region is specified by the

REPEAT and ENDREPEAT keywords (see Topic 3.6, ATTRIBUTES SECTION).

. As a record is selected from mastertable, the value of its mastfields determines the values given to the
corresponding joinfields in selecting records from jointable. The data type of each field of mastfields must be the
same as the data type of the corresponding joinfields field.

Example 1

Thisisthe SELECT section for a screen form with a single table defined.

Screenflex 35

SELECT
bkmaster (bookdate, bkno)
EXTRACTALL
END

For afurther examples, see Example 2 under Topic 3.6, ATTRIBUTES SECTION.

Example 2

Thisisthe SELECT section for a screen form with both a header and an array portion:

SELECT
bkmaster (bookdate, bkno)
EXTRACTALL
bkdetail (bkno) bkmaster(bkno)
EXTRACTALL
END

Screenflex

36

3.4 SCREEN SECTION

Overview

The SCREEN section defines the layout of the screen form.

Syntax

SCREEN screenname
[WINDOW(row,col [,height,width)]]
[BOX | FRAME] [POPUP]
[zoomscreen("scrcommand")]
[azoomscreen("ascrcommand")]
[joinon(tableindexname, parts) |
[ajoinon(atableindexname, aparts) |
[userexit(funcname)]

literals [fieldtag]

END

Description

SCREEN isarequired keyword.
screenname isrequired and should represent a unique identifier among all SCREEN sections of the source file.

WINDOW isan optiona keyword. The WINDOW clause specifies aternate video display coordinates where the
screen layout will be placed at run-time.

row Where there isa WINDOW clause, thisisthe top row coordinate. Thefirst row isrow O.

col Where thereisaWINDOW clause, thisisthe leftmost column coordinate. The first column is column
0.

height Where there isaWINDOW clause, thisisthe optional height or number of rows.

width Where there isaWINDOW clause, thisis the optional width or number of columns.

BOX is an optional keyword that specifies that the screen region defined by WINDOW will have a single
line border.

FRAME is an optional keyword that specifies that the screen region defined by WINDOW will have a single

line border with an additional line separating atitle region at the top of the WINDOW.
POPUP isan optional keyword that specifies that the screen will overlay any pre-existing screen.

zoomscreen is an optiona keyword to specify a screen to invoke when the ZOOM function key is pressed
anywhere within screenname’s non-array portion.

scrcommand is required with a zoomscreen clause and is a command line for running a screen. The zoomscr een
command line begins with the layout parameter as specified in topic 7 of this chapter.

azoomscreen is an optiona keyword to specify a screen to invoke when the ZOOM function key is pressed
anywhere within screenname 'sarray portion.

ascrcommand isrequired with an azoomscreen clause and isa command line for running a screen. The azoomscr een
command line begins with the layout parameter as specified in topic 7 of this chapter.

joinon is an optional keyword to specify an index to be relationaly joined to the screen headers index (as
specified in the SELECT section).

Screenflex 37

table.indexname is required with the joinon clause and is the name of the index that will be relationaly joined to the

screen header’s index. The values in this index’s fields will be related to each field of the screen
header’ sindex, therefore, these fields must be of the same type and length.

parts is optional with the joinon clause and is the significant number of fields within the table.indexname
which will be relationaly joined to the screen header’sindex. The default isall parts of the index.
ajoinon is an optional keyword to specify an index to be relationaly joined to the screen array’s index (as

specified in the SELECT section).

atable.indexname is required with the ajoinon clause and is the name of the index that will be relationaly joined to the

screen array’sindex. The values in thisindex’sfields will be related to each field of the screen array’s
index, therefore, these fields must be of the same type and length.

aparts is optional with the ajoinon clause and is the significant number of fields within the atable.indexname

which will be relationaly joined to the screen array’sindex. The default isall parts of the index.

userexit isoptional and is a userexit name.

funcname is required with a userexit clause and is the name of a C function that you have written in the screen

{}

form' sINSTRUCTIONS section. Userexit will pass program control to this function.

are required brackets and enclose the screen layout. Each bracket must be on aline by itself.

literals isthat part of the screen layout that will display at run-time exactly asit isrepresented in the layout.

[]

are brackets actually used in the screen layout definition and define the position and length of a given
field.

fieldtag is a label or name for an input or display field of the screen form. This is the name that is used to

END

Notes

reference the field in the subsequent AT TRIBUTES section and optional INSTRUCTIONS section.
isarequired keyword.

All of the fields making up the primary index, as specified in the SELECT section, must be defined on the
screen.

Without the height parameter for the WINDOW clause, the height of the window will be calculated from the
screen layout. Without the width parameter for the WINDOW clause, the width of the window will also be
calculated from the screen layout. Without the WINDOW clause altogether, WINDOW (0, 0) is assumed.

When exiting a screen entered using zoomscr een or azoomscr een, screenname will be refreshed.
Zoomscr een and zoomkey keywords are mutually exclusive as are the keywords azoomscr een and azoomkey

To save space used by the field brackets, [], you may use the vertical bar | to mark the end of one field and the
beginning of another.

Field brackets or field delimiting vertical bars will not appear in the screen form at run-time.

You may only have literals and displayable fields on the first twenty lines of the video display. At run-time
SCREENFLEX reserves the bottom three lines for comments, function key labels, prompts, and messages.

There can be any number of userexit clauses, and if more than two, they are space or newline separated. The
specific userexits available to the SCREEN section are taken up in the next topic, SCREEN USEREXITS.

Only the fields of the first row of a screen array are defined in the screen layout. See Topic 3.6, ATTRIBUTES
SECTION, for further syntax on the specification of screen arrays.

For amulti screen form any number of SCREEN sections can follow asingle SELECT section. Each SCREEN
section would have its own ATTRIBUTES section. A requirement is that the screenname of the first screen isa
prefix of the screennames of the other screen forms. The names tbemp and tbemp?2 are an example of the first
and second screennames of a multi screen form. A further requirement is that none of the screen layouts of a
multi screen form contains a screen array.

There isaspecial screen fieldtag reserved for displaying the current mode (ADD,CHANGE, etc.). The fieldtag is
modemsg and has a length of 13.

Screenflex

3-8

Example

SCREEN bkinput WINDOW(4,13,15,65)
beforesection(startup)
beforesave(checkval)

{
BOOKING ENTRY SCREEN
Booking #: <[bkno]> Name <[bclient 1>
Sup- Ship Depart
plier Name Dest Date Description
[bsup |bship |bdest |bdepart |bdesc]
}
END

Screenflex

3.5 SCREEN USEREXITS

Overview

In this topic we will describe at what point in the screen form run-time activity each userexit would pass control to its
C function parameter. Again the form of the userexit clause is:

userexit (- funcname)

SCREEN userexits include one group for the header portion of the screen form and a parallel group for the array
portion of the form. The name of both the header and array userexits are the same, except the array versions are
prefixed with an a. For example, the afterrow userexit in the array is aafterrow. Unless otherwise noted, an array
userexit worksin away similar to its corresponding header userexit.

The return values from funcname that are recognized by SCREENFLEX are listed for each userexit.

BEFORESECTION

The befor esection userexit isinvoked upon starting the screen section. There is no array version of this userexit since
it isonly executed once.

Return values:
0 Only vaueto return.

AFTERSECTION

The aftersection userexit isinvoked upon exiting the screen section. There is no array version of this userexit since it
isonly executed once.

Return values:
0 Only vaue to return.

BEFORESUBSECTION

The befor esubsection userexit isinvoked immediately upon entering the header portion of the screen form. Itisaso
invoked immediately upon returning to the header portion of the form, having exited the array portion. It is also
invoked when changing modes or restarting the header portion. The abeforesubsection userexit is invoked
immediately upon entering the array portion, if any, of the screen form.

Return values:
0 Only vaueto return.

AFTERSUBSECTION

The after subsection userexit is invoked as a last step before leaving the header portion of the screen form, whether
that be an exit from the form altogether or an exit to the array portion.

Return values:
0 Only vaueto return.

The aafter subsection userexit isinvoked as alast step before leaving the array portion of the screen form.
Return values:

<0 Block exit from the array.
0 Exit from the array normally.

Screenflex 3-10
3-10

BEFOREROW

The beforerow userexit is invoked after the screen header fields have been displayed but before you begin cursor
addressing them.

Return values:
0 Only vaue to return.

The abefor er ow userexit isinvoked after a screen array row has been displayed but just before you cursor address it.
Return values:

<0 Exitthe array portion of the screen form.
0 Takeno specia action.

ROW

Therow userexit is not implemented at this time.

AFTERROW

The afterrow userexit is not implemented at thistime.

BEFOREDISPLAY

The beforedisplay userexit is invoked right before the screen form fields are displayed. Any assignments that you
make to the screen field variables at this time will be the values in the subsequently displayed fields.

Return values:
0 Only vaueto return.

BEFORESAVE

The beforesave userexit is invoked before the screen data is saved to the database. The save operation occurs when
the user presses the SAVE key and at least one screen field has been modified. The screen data will NOT have been
mapped to the Data base buffer when this userexit is executed.

Return values:
<0 Do not save data. Re-address the field from which the SAVE key was pressed. Also, restore the data
base buffer to what it was before entering the beforesave() userexit.
0 Proceed with the save procedure.

SAVE

The save userexit isinvoked in place of the default save procedure of the screen form. asave When save() userexit is
called, the screen data will have been mapped to the data base fields.

Return values:
<0 Do not invoke aftersave userexit and re-address the field from which the SAVE key was pressed.
Also, restore the data base buffer to what it was before entering the beforesave() userexit.
0 The save procedure was successful. Continue on to any after save userexit.
1 Usethe Default save routine for the screen data.

AFTERSAVE

The after save userexit isinvoked after the screen data is saved to the database. The save operation occurs when the
user presses the SAVE key and at |east one screen field has been modified.

Screenflex 311
3-11

Return values:

<0 Re-addresses the field from which the SAVE key was pressed. Also, restore the data base buffer to

what it was before entering the beforesave() userexit and reverse the update done by the default save
routine.

BEFOREDELETE

The befor edelete userexit isinvoked when the DEL function key has been pressed but before the associated database
record is deleted.

Return values:

<0 Do not delete record. Re-address the field from which the DEL function key was pressed.
0 Proceed with the delete procedure.

DELETE

The delete userexit isinvoked in place of the default database record delete procedure of the screen form.

Return values:

<0 Do not invoke afterdelete userexit and re-address the field from which the DEL function key was
pressed.

0 Thedelete procedure was successful. Continue on to any after delete userexit.

AFTERDELETE

The afterdelete userexit isinvoked immediately after the default delete procedure or a successful delete userexit.

Return values:

<0 Re-addresses the field from which the DEL function key was pressed.
Note that there is a dight complication when using the array version of the delete userexits (i.e. abeforedelete,
adelete, and aafterdelete). These userexits may be called in ADDMODE as well as CHANGEMODE. To determine

which of these modes (ADDMODE vs. CHANGEMODE) is active at the time these delete userexits are called perform
the following test.

if (flexmode == ADDMODE)

if (flexmode == CHANGEMODE)

WHEREFUNC

The wherefunc userexit isinvoked immediately after atable record isread via any of the function keys PREV, NEXT,
LAST, FRST. It enables the programmer to selectively view table records from the screen. By returning a -1 from this
routine you can reject the record causing the system to behave asif the record did not exist in the table. userexit.

Return values:
-2 End of range reached
-1 Reject record
0 Accept Record

Action Key Userexits

An action key is a keyboard key that invokes some operation on the screen form. Action keys include the function
keys, escape key, arrow keys, etc. A userexit may be invoked immediately before the default procedure of every
action key. The format for the Action key userexit isasfollows:

userexit (funcname, labelname)

The userexit is the userexit name for the action key (see list below). Funcname is the name of the C function to be

Screenflex 312
3-12

called upon pressing the action key. Labelname is optional and will overide the action key's default label name
displayed at the bottom of the screen.

The return value used from an action key userexit will allow you to control which logic will occur following the
userexit. The possible return values and their effect are discussed below.

Return values:
<=1
Do not do the default procedure for the action key. Re-addresses the field from which the action key

was pressed.
R_BREAK

Exit from the screen form if in the header portion. Return to header portion if in the array portion.
R_DEFAULT

Proceed with the default operation for the action key.
R_MREPA INT

Repaints and restores the screen to pre_userexit state from memory.
R_DREPAINT

Repaints and restores the screen to pre_userexit state from disk.
These are the userexit names and their label name:

Userexit name Keyboard label

enterkey RETURN
escapekey ESC
(ESC ESC on UNIX or XENIX)
backtabkey Back Space
uparrowkey)
downarrowkey !

Userexit name Function key label

savekey DONE or SAVE
jumpkey JUMP
modekey ADD or CHG
sear chkey SRCH
prevkey PREV
nextkey NEXT
firstkey FRST
lastkey LAST
printkey PRNT
delkey DEL
zoomkey ZOOM

user 1key USR1

user 2key USR2
helpkey HELP

User 1key and user 2key have no default procedure. They are fully userexit driven.
The zoomkey userexit will override the zoomscreen parameter.
The helpkey userexit will override the helpscreen parameter.

Note that pressing any of the action keys while addressing a screen form field will also execute the enter key userexit.

Screenflex

3-13
3-13

Flow Chart

Thefollowing isaflow chart to illustrate when each userexit (emboldened) isinvoked during the screen form activity:

| beforesection |
| beforesubsection |

| Read database record | ===============
| Assign to screen | - | afterdelete |
| field variables | S==============
------------------------ 1 1
L |
================= | Record | ==========
| beforedisplay | | deleted | | delete |
! 1 1
| Screen fields displayed | | delkey
—————————————————————————— | beforedelete
l e s s s s s s
=== T
| beforerow | ----------------
============= | DEL function |
! | key is |
———————————————— | pressed |
| Cursor on to | -------5 ------oaoon
- | field |
| ________________ - -, T=E============ *
| ================= | beforedit
| | other action | | afteredit |-----
| | key userexits | | afterfield |
! ================= ============== |
! !
| ESC key is | | DONE key is pressed |
| pressed | = -e--em----oaaaaoaaoo
______________ l
| ===
| | savekey |
| | beforesave
| ===
| ! !
| e e e e e e e e . — - —=======
| | Record saved | | save |
| e e e e e e e e . — - —=======
! ! !
| aftersubsection | «------- | aftersave |
| aftersection | =============

* The field userexits are beforedit, afteredit, and afterfield. These are described in the next chapter, FIELD
ATTRIBUTES.

Screenflex 314
3-14

3.6 ATTRIBUTES SECTION

Overview

The ATTRIBUTES section defines the mapping of table fields to screen form fields and specifies the attributes for

each field.
Syntax
ATTRIBUTES
[fieldtag[(alttag)] = { table . field
| displayonly type dtype
} [,attributes] ;
]
[REPEAT(n)
{ fieldtag[(alttag)] = { table . field
| displayonly type dtype
} [,attributes] ;
ENDREPEAT
]
END
Description

ATTRIBUTES isarequired keyword.

fieldtag isafield label or name from afield of the SCREEN section.

alttag isan optional aternate field label or name.

() is the required parenthesis around the optional alttag and around the n parameter of the optional
REPEAT clause.

= isrequired punctuation after the field tag name specification.

table is a database table name.
isrequired punctuation between table and field.

field is the database field to which fieldtag maps.

displayonly isakeyword used in place of table.field.

type isakeyword required with the displayonly keyword.

dtype isthe field' s data type specification required with adisplayonly field.

attributes are the optional attributes for afield.

, isthe commathat must separate the attributes.

; isthe required punctuation at the end of the field specification.

REPEAT isan optiona keyword specifying the beginning of a screen array definition block.

n is a number parameter of REPEAT. It specifies the number of a screen array rows to display in the
form.

ENDREPEAT isakeyword to mark the end of the REPEAT block, if there isone.

END isarequired keyword to mark the end of the ATTRIBUTES section.

Screenflex

3-15
3-15

Notes

The ATTRIBUTES section must have one fieldtag specification for each field in the SCREEN section. The
order in which fieldtags appear determines the order the cursor will advance through the corresponding fields of
the screen form.

The use of alttag is recommended where the fieldtag is too short a name, such as a single character, to convey
much meaning. Any other reference to this field in the ATTRIBUTES section or in any INSTRUCTIONS
section will used the alttag.

Those fields of the header portion of the screen form that have a table field of the primary table of the SELECT
section will automatically display the contents of selected database records for those screen form fields. Several
function keys will select records during run-time: FRST, LAST, PREV, and NEXT. When adding or modifying
screen form records, the same primary table related fields will be effected.

Those fields of the array portion of the screen form that have a table.field of the joined table of the SELECT
section will automatically display the contents of selected database records for those screen form fields.

For dtype see Chapter 8, DATABASE DATA TYPES.

The fieldtags within the REPEAT/ENDREPEAT block represent all the fields of a single row of the screen form
array. A single screen form array row may occupy more than one line of the video display.

Where there is a screen form array, there may be header fields following the array portion of the form.
An array-only screen form will have no fieldtags outside of the REPEAT/ENDREPEAT block.

There are numerous possible attributes. The next chapter, FIELD ATTRIBUTES, will be dedicated to this
subject.

The specia screen fieldtag modemsg reserved for displaying the current input mode is define in the
ATTRIBUTES section as follows:

modemsg = displayonly type character, noupdate, noentry, reverse, retain;

Screenflex

3-16
3-16

Example 1

The following example is a complete screen form source listing, to demonstrate how all the sections interrelate:

TABLES
bkmaster
bkdetai l
tbven

END

SELECT
bkmaster (bkno)
EXTRACTALL
bkdetail (bkno) bkmaster(bkno)
EXTRACTALL
END

SCREEN bkinput

BOOKING ENTRY SCREEN

Booking #: <[bkno]> Name <[bclient 1>
Sup- Ship
plier Name Description

[bsup |bship |bdesc]

}
END
ATTRIBUTES
bkno = bkmaster.bkno, right;
bclient = bkmaster.name, upshift, required;
REPEAT(3)
bsup = bkdetail.supplier, required, upshift,
lookup(tbven.tbvenkey,
bkinput.bdesc = tbven.desc);
bship = bkdetail.ship, upshift, left;
bdesc = displayonly type char;
ENDREPEAT
END

Screenflex

3-17

Example 2

Thisisasource listing for an array-only screen:

TABLES
bkdetai l
tbven
END
SELECT
bkdetail (bkno)
EXTRACTALL
END

SCREEN bkinput

BOOKING ENTRY SCREEN

Sup- Ship
plier Name Description

[bsup |bship |bdesc]

}
END
ATTRIBUTES
REPEAT(3)
bsup = bkdetail.supplier, required, upshift,
lookup(tbven.tbvenkey,
bkinput.bdesc = tbven.desc);
bship = bkdetail.ship, upshift, left;
bdesc = displayonly type char;
ENDREPEAT
END
Screenflex

3-18

3-18

3.7 RUNNING THE SCREEN FORM

Overview

Thistopic will describe the command line arguments and the many run-time features of the Infoflex screen form.

Syntax

{ flex|prog} filename [-f layout] [modes [flags]]

Description
flex isthe default run-time screen form driver.
prog isthe custom run-time driver used when a screen form has an INSTRUCT I ONS section.
filename isrequired and is the base name of the compiled screen form file filename.pic.
-f isan optional argument prefixing a screen name within screen form file.
layout isthe name of a screen as specified in a SCREEN section of the screen formfile.
modes isan optiona run-time modes specification for the screen form.
flags isan optional run-time behavior flags specification for the screen form.
Notes

You may use the dash character ’-' for the modes and flags arguments to indicate the default value isto be used.

If there is more than one screen form defined in filename.pic use the -f argument to invoke a screen form other
than the first one. There must be at least one space between -f and layout. Without the -f argument, the first
screen of the screen form file is invoked.

The modes argument is in the form of a sequence of letters, either upper or lower case. Each letter represents a
mode;

-Add

- Change
- Delete

- Search

- Query

- Prompt
- View

<TOWVWUOO >

The first letter of the sequence represents the initial mode of the screen form. Subsequent letters indicate other
modes that are accessible from the form. If the form has an array portion, you may specify a second set of mode
letters separated by adash, -. The default modes are CDSQA-CDSQA.

For example:
flex filename ACDQ

will bring up a screen form in ADD mode, with CHANGE, DELETE, and QUERY modes also accessible.
The flags argument is a sequence of Y’sand N’s, indicating yes or no for the following screen form behaviors.
1) Repesat the screen form after the SAVE key. With a multi-screen form, JUMPKEY advances to the

next screen form in sequence or loops back from the last screen to the first screen. ESC will exit the
screen form. Where thisflag is set to N, pressing the SAVE key will exit the program.

Screenflex

3-19
3-19

2) Unlock the header record upon exiting the screen.

3) Clear the screen form fields when initially entering the screen.

4) Clear the video display upon exiting the screen form.

5) Clear the screen form fields when the SAVE key is pressed while in CHANGE mode.

6) Clear the screen form fields when the SAVE key is pressed whilein ADD mode.

7) Clear the array region upon exiting the screen form.

8) Use’'F toautomatically position to first record or 'L’ to position to last record. This option is only
effective if the initial modeis CHANGE.

The default sequence of flags is YYYYNYY . The default sequence for recursively called screens (i.e.
zoomscreens and popups) iISNYYYNYYY.

. If you specify aflags argument, you must specify a modes argument.

. If a screen form has an INSTRUCTIONS section, then the final result of compilation, prog is an executable
module that is used in place of the flex program. See Chapter 2, DEVELOPMENT PROCEDURES, for how to
build your custom prog.

Example 1

flex bkinput ACD NYYYYY

Example 2
In this example, custscr.flx hasan INSTRUCTIONS section which resultsin custscr replacing flex:

custscr tbemp -f commiss

Screenflex 3-20
3-20

CHANGE Mode

Once into an Infoflex screen form. CHANGE mode allows a user to select database records and modify the screen
form field data.

. In CHANGE mode the function key ruler at the bottom of the video display is:

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 Fl14 F15 F16
SAVE HELP - ADD - QRY PREV NEXT FRST LAST - DEL -

. The key fields of the screen form are those fields that are mapped in the source file ATTRIBUTES section to the
sortfields of the database table mastertable (see syntax for SELECT section under Topic 3.3). Upon entering
CHANGE mode the cursor will address the first key field of the screen form.

. The FRST key will select and display the first record of the mastertable ordered by the sortfields index.

. LAST will select the last record. Entering some value to the key field and pressing NEXT will bring up the next
record in ordered sequence by the sortfields index. For example, assuming that the key field maps to the first
field of sortfields, which has consecutive values of AA and AC, entering AA or AB and pressing NEXT will
bring up the record for AC. PREV works similarly but selects previous records. Entering a value to the key
field and pressing

. With arecord displayed, the SAVE option will update the database record with any changes the user has made in
the screen form.

. For a screen form with an array, SAVE from the header portion of the form will display in the array the detail
records joined to the header and position the cursor on the first field of the first row, if the initial mode for the
array is CHANGE mode.

. In the screen array, the database is updated when the user cursors off an array row or presses SAVE. The SAVE
key, in addition to saving the record, will also clear the array display and return the cursor to the key field of the
screen form header.

. In ascreen array, NEXT will display the next page of records, where a page is the number of records that can fit
on one screen. PREV will display the previous page of records. FRST will display the first page, LAST the last
page. Up and down arrows move up and down rows of the array.

. DEL will delete the record. Since DEL is such a destructive action, it will prompt the user to confirm the
deletion.

. In the screen array, the DEL key will delete the current row and pull up rows below to close the gap.

. At any time during CHANGE mode, the ADD key will switch the form to ADD mode.

. In the screen array, pressing the ADD key or cursoring off the end of the array will open anew line at the end of
the array and invoke ADD mode.

. The HELP or HELP option provides on-line help. The help subsystem is sufficiently elaborate that we will
addressit in Chapter 11, THE HELP SYSTEM.

. ESC will abort and exit the screen (ESC ESC on UNIX or XENIX systems). If there are changes that would be
lost with this exit, the user isfirst asked if he wishes to save the record.

. The next chapter will describe individua field behavior as aresult of the different field attributes.

ADD Mode

While running an Infoflex screen form, ADD mode allows a user to insert a new record into the database.

. In ADD mode the function key ruler at the bottom of the video display is:

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16
SAVE HELP CHG

. While on a screen array, if the initial mode is ADD mode, a new line will be opened at the end of the array, and
the cursor will address the first row of ablank array area.

. The SAVE key will attempt to create a mastertable record with the screen form fields that map to mastertable
fields (see use of mastertable in the syntax of the SELECT section under Topic 3.3).

Screenflex 321

321

. The CHG key will switch the form to CHANGE mode.

. The HEL P option provides on-line help. The help subsystem is sufficiently elaborate that we will address it in
Chapter 11, THE HELP SY STEM.

. ESC will abort and exit the screen (ESC ESC on UNIX or XENIX systems). If the user has input data to any
fields that would be lost with this exit, heisfirst asked if he wishes to save the record.

. The next chapter will describe individua field behavior as aresult of the different field attributes.
PROMPT Mode

While running an Infoflex screen form, PROMPT mode allows a user to enter information that is not related to any
database.

. Screen not having a SELECT section will be runin PROMPT mode.

QUERY Mode

QUERY mode allows the user to locate records on any field or combination of fields on the screen. Values can be
specified with wildcard or relational operators. The User Guide hasafull explanation of the QUERY mode features.

VIEW Mode

VIEW mode allows the user to View information from a screen but NOT change it. The screen will behave like
CHANGE mode but without the editing capabilities.

Screenflex 3-22
3-22

4. FIELD ATTRIBUTES

A screen form field may have one or more of the following attributes:

AFTEREDIT

Afteredit is a userexit that specifies an INSTRUCTIONS section C function to be called immediately after data has been
entered to the field for the first time or after data has been modified in afield. The syntax for this attribute is:

afteredit(funcname)

Returning 0 from funcname allows the cursor to advance to the next field. Returning -1 causes the cursor to re-address the
current field. Returning -2 causes the cursor to re-address the current field and restore the original value.

AFTERFIELD

Afterfield isauserexit that specifiesan INSTRUCTIONS section C function to be called upon moving off the field. Itisin
invoked after any afteredit userexit. The syntax for this attribute is:

afterfield(funcname)
Funcname should always return O.

AUTOHELP

Autohelp attribute causes the attribute helpscreen() or helpselect() to be executed if the field is not entered correctly.

AUTONEXT

Autonext causes the cursor to automatically advance to the next field upon entering a character to the last character
position of the field. In this case the user is not required to press RETURN to move on to the next field. The next field is
determined by the order of the fieldsin the ATTRIBUTES section.

BEFOREDIT

Beforedit isauserexit that specifiesan INSTRUCTIONS section C function to be called immediately upon cursoring on to
thefield. The syntax is:

beforedit(funcname)

Returning 0 from funcname allows the cursor to address the field. Returning -1 causes the field to be skipped and advances
the cursor to the next field. Returning 4 causes the field to be processed as if the user edited the field. Thisis useful if you
pre-fill the field and you want to make sure all of the editing checks are done.

CENTER

This attribute centers the value within the field. The default isto have the contents of the field left-justified.

Field Attributes 4-1

CLEAR

This attribute will cause the field to be cleared when the first key is pressed. Numeric fields have this attribute by default.

COMMENTS

This attribute will display a message at the bottom of the video display when the cursor is positioned to the field. The
syntax is:

comments = "message"
where message is any character string.
DEFAULT

This attribute assigns a default value to the field. The syntax is:
default = value

where value may be a constant or an SQL field name. If value isa constant it must be enclosed in double quotes.

To default to the current date, use the keyword today in place of value. To default to the current time, use the keyword
time.

DEFAULTNEXT

This attribute causes the value entered on the previous field to be automatically assigned to this field. Note that the fields
should be of the same type.

DEFAULTON,DEFAULTOFF

This attribute can be placed at the screen level or field attribute level. Only fields that have defaulton will be saved by the
control D key feature. The control D key saves the current screen values for defaults when in ADD MODE.

All report selection screen fields are are assumed to have defaulton. All Data entry screens fields are assumed to have
defaultoff. Using defaulton at the screen level sets all fields to defaulton.

DOWNSHIFT
Downshift converts uppercase letters in character fields to lowercase.
FORMAT

The format attribute is used with DECIMAL, SMALLFLOAT, FLOAT, MONEY, or DATE fields to contral the display
format. The syntax is:

format = "format-string"

Format-strings for DECIMAL, SMALLFLOAT, FLOAT, MONEY data types may consist of a pound sign, comma, period, a
leading B character, or leading O character. The pound sign (#) is a placeholder for digits. A comma in the format-string

Field Attributes 4-2

indicates the number is to be formated with commas. The period indicates where the decimal point should appear. For
example, the format-string "## ##.##" will display two digits to the right of the decimal point. A leading B placed in the
format-string will cause a blank to be displayed whenever the value of the number is zero. A leading O placed in the
format-string will cause leading zeros to be displayed.

For DATE data types there are a number of special formating symbols that may be used. For example, the following format
format="Mmm dd, yyyy Ddd" will display the date as"Jan 23, 1998 Tue'. The formating symbols are described below.

Format | Description
mm displays atwo digit representation of the month

mmm displays athree letter abbreviation of the month

dd displays atwo digit representation of the day
ddd displays athree letter abbreviation of the day
vy displays atwo digit representation of the year

yyyy displays afour digit representation of the year

FORMATFIELD

Formatfield attribute allows you to specify a C function to format the screen or report field. The syntax for this attribute is:

formatfield(funcname)

Unlike other userexits, the for matfield userexit passes arguments to your userexit C function.

INSTRUCT IONS

funcname(fieldbuffer, displaybuffer, length, mode)

char *fieldbuffer;

char *displaybuffer;

int length;

int mode;

{ /* formats a social security number with dashes */

if (mode == 0) { /* Move data from field buffer to display buffer */

memcpy (displaybuffer, fieldbuffer, 3);
displaybuffer[3] = "-";
memcpy (&displaybuffer[4], &fieldbuffer[3], 2);
displaybuffer[6] = "-";
memcpy (&displaybuffer[7], &fieldbuffer[5], 6);
displaybuffer[13] = ' ";
}

if (mode == 1) { /* Move data from display buffer to field buffer */
memcpy (fieldbuffer, displaybuffer, 3);
memcpy (&fieldbuffer[3], &displaybuffer[4], 2);
memcpy (&fieldbuffer[5], &displaybuffer[7], 6);
memcpy (&fieldbuffer[11], " ", 2);
fieldbuffer[13] = ' *;
}

return(0);

END

The formatfield function arguments are defined as follows:

fieldbuffer

Thisargument is a pointer to the internal "C" representation of of the field. This buffer will be passed in when the
mode argument is 0.

Field Attributes 4-3

displaybuffer

This argument is a pointer to the displayable representation of the field. This buffer will be passed in when the
mode argument is 1.

length
Thisinteger argument is passed in and represents the length in bytes of displaybuffer.

mode

Thisinteger argument is passed in and indicates which direction to convert. When the mode is 0, the formatfield
function should convert the contents of fieldbuffer to displaybuffer. A mode of 1 will be just the reverse.

Returning 0 from funcname allows the cursor to advance to the next field. Returning -1 causes the cursor to re-address the
current field.

HELPKEY

Helpkey is a userexit that specifiesan INSTRUCTIONS section C function to be called upon pressing the HEL P function
key. The syntax is:

helpkey (funcname)

The helpkey userexit specified in the ATTRIBUTES section will override one specified in the SCREEN section. Upon
returning from a helpkey, the screen will automatically refresh.

HELPSCREEN

Helpscreen calls up another screen upon pressing the HEL P function key. The syntax is:

helpscreen("scrcommand")

Scrcommand is a command line for running a screen that will be helped to. The helpscreen command line begins with the
layout parameter as described in Topic 3.7. The screen specified in Scrcommand must exist in the same .flx source file as
the calling screen. A helpscreen specified in the ATTRIBUTES section will override one specified in the SCREEN
section. Upon exiting from a helpscreen, the calling screen will automatically redisplay.

HELPSELECT

The helpselect attribute is used to provide a popup list of valid codes from another table. The user is able to search and
select avalid code while on the popup list. Usualy this attribute is used in conjunction with the lookup attribute.

The syntax is:

helpselect(screenname)

Screenname is the name of the Infoflex screen that will display the popup list. The User Guide contains an explanation and
example on how to use helpselect.

Field Attributes 4-4
4-4

INCLUDE
Include defines acceptable values for the field in terms of ranges and lists. The user will not be allowed to cursor off the

field until an acceptable value isentered. The syntax is:
include(valuelist)
where valuelist iseither alist of individual values:

valuel, value2, value3,

or arange of values:
valuel TO value2

or acombination of both separated by commas.

LEFT
This attribute left justifiesthe value in the field. Thisisthe default

LINENO
The lineno attribute is used to automatically assigh sequential numbers from a header screen field to an array screen field.

This attribute is specified on the array field holding the sequential number and has the following syntax:

I ineno(screenname.tagname)
The screenname.tagname parameter refers to a tagname in the header portion of the screen that holds the last assigned
sequential number. The sequential number is defined as an integer in the database.

Below is an example of lineno's usage:

ATTRIBUTES
invho = pomaster.invno;
mlinenum = pomaster.nextlineno,

noentry, noupdate, nodisplay;
REPEAT (6)
I inenum = podetail.lineno,
noentry, noupdate, lineno(poscreen.mlinenum);
invenno = podetail.invenno,
END
END
LOOKUP

L ookup searches for the field value in the specified database table. The syntax is:

sourcefieldl,

lookup(table.key, destfieldl =
destfield2 = sourcefield2,

)
45

Field Attributes

Tablekey is the database index name used to search by. The index receives its value from the screen field for which lookup
is an attribute. The database field making up the index must be identical in type and length to the screen field. The
destfields and the sourcefields each have the form table.field or screen.field. Typically, a destfield is a displayonly field of
the screen form that receives its value from sourcefield, typically afield of the table record that is retrieved in the look-up.

NOCLEAR
Noclear turns off clear option for field.

NODISPLAY

The nodisplay attribute is used when you wish to store information in a screen field but do not wish it displayed in the
screen form.

Non-displayable fields may be below line 20 of the video display and must have the attributes: nodisplay, noentry,
noupdate.

NOENTRY

Noentry prevents data entry in afield while in ADD mode.
NOUPDATE

Noupdate prevents data entry in afield whilein CHANGE mode.
PHONE

This attribute will make sure a valid phone number is entered (7 or 10 digits) and then format the number appropriately.
Fields using the phone attribute must be character type.

REQUIRED

This attribute requires data to be entered into the field. The user will not be alowed to cursor off the field as long asiit is
blank.

RETAIN
Retain prevents the screen field from being cleared.
RIGHT
This attribute right justifiesthe value in the field. The default isto have the contents of the field left-justified.
REVERSE
Rever se causes the field to be displayed in reverse video.
SEARCHBY

The sear chby attribute allows you to specify alternate search indices for retrieving records from a screen form.

Field Attributes 4-6

. The syntax for this attribute is:

searchby(tableindex)

. Index is the name of an index of table. The associated field must be al or part of the index.

. At run-time when the user presses the SRCH key, he enters SEARCH mode, and those fields with the sear chby
attribute will be underlined, and only those fields can be cursor addressed.

. When in SEARCH mode the FIND, PREV, NEXT, FRST, and LAST keys are available and make their record
selections base on the index specified by the searchby parameter. For the general description of how these keys
work, see the Subtopic, CHANGE Mode, under Topic 3.7.

. EXIT will exit SEARCH mode and return to CHANGE mode with the selected record.
SEQUENCE

The sequence attribute causes ADD mode to insert array records between existing records rather than at the end. This
attribute is useful when inputing notes where the user will want to insert anote line between previously entered lines.

To implement this feature, an integer field must be defined in the array’s table. This field will be used by the program to
maintain the order of the array. This integer field must also be the part of the array’s index (see SELECT) that
immediately follows the joined portion. Lastly, the sequence attribute must be placed on the screen field corresponding to
this special integer field.

Below is an example of the sequence attribute in use:

SELECT
pomord(invno)
EXTRACTALL
pomnote(invno, segno) pomord(invno)
EXTRACTALL
END
SCREEN ponote popup box window(6, 15)
{
Notes [invno]
[seqno |note]

}

END

ATTRIBUTES
invho = pomord.invno;

REPEAT (5)
seqno = pomnote.seqno, sequence,

noupdate, noentry, nodisplay;

note = pomnote.note;

ENDREPEAT

END

There are a couple of pre-programmed userexits that may prove useful when using the sequence attribute. These userexits
are fxreseq and fxseqdel. These are specified as Function key userexits:

auserlkey(fxreseq) adelkey(fxseqdel)

Fxreseq will resequence the array. This function israrely needed and if so will be requested by the insert routine. Fxseqdel
will prompt the user for a range of array records to delete. The range is specified in terms of the specia integer field used
for ordering the array.

Field Attributes 4-7

SETCOL

The setcol attribute is used to ater the col position of a screen field when the screen is pre-processed (fxpp). Thisis usually
done to overlap fields or move fields to a position outside the boundary of the painted screen. The syntax of this attribute is
asfollows:

setcol (colnum)
The colnum parameter isis added to the column calculated by the pre-processor. Colnum may be negative.
SETROW

The setrow attribute is used to alter the row position of a screen field when the screen is pre-processed (fxpp). This is
usualy done to overlap fields or move fields to a position outside the boundary of the painted screen. The syntax of this
attribute isasfollows:

setrow(rownum)

The rownum parameter isis added to the row calculated by the pre-processor. Rownum may be negative.
TOTAL

This attribute will display atotal for an screen array field into a header screen field. The syntax is:

total (screen.field)

TRUNCATE
Same as clear attribute keyword.
ULOOKUP

UL ookup attribute allows you to specify a C function to lookup the screen field. The syntax for this attribute is:

ulookup(funcname)

UPSHIFT
Upshift converts lowercase letters in character fields to uppercase.
ZOOMKEY

Zoomkey is a userexit that specifies an INSTRUCTIONS section C function to be called upon pressing the ZOOM
function key. The syntax is:

zoomkey (funcname)

Field Attributes 4-8

The zoomkey userexit specified in the ATTRIBUTES section will override one specified in the SCREEN section. Upon
returning from a zoomkey, the screen will automatically refresh.

ZOOMSCREEN

Zoomscr een calls up another screen upon pressing the ZOOM function key. The syntax is:

zoomscreen("scrcommand")

Scrcommand is a command line for running a screen that will be zoomed to. The zoomscreen command line begins with
the layout parameter as described in Topic 3.7. The screen specified in Scrcommand must exist in the same .flx source file
as the calling screen. A zoomscreen specified in the ATTRIBUTES section will override one specified in the SCREEN
section. Upon exiting from a zoomscr een, the calling screen will automatically redisplay.

Field Attributes 4-9

Field Attributes

4-10

4-10

5. REPORTFLEX

REPORTFLEX isthe specia language of Infoflex report writing.
5.1 SECTION ORGANIZATION

A REPORTFLEX source file is an ordinary text file of the form filename.flx. Its content is subdivided into sections. The
organization of these sections has certain ordering rules.

TABLES Section

The TABLES section is arequired section and must be the first section of the report source file. Topic 5.2 contains a
full description of the REPORTFLEX TABLES section.

SCREEN Section

The SCREEN section immediately follows the TABLES section. It is not a required section of report source file.
Topic 5.3 contains afull description of the REPORTFLEX SCREEN section.

ATTRIBUTES Section for SCREEN

The ATTRIBUTES section for the SCREEN section immediately follows the SCREEN section. This section is
required if there is a SCREEN section, otherwise it is not used. Topic 5.4 contains a full description of the
REPORTFLEX ATTRIBUTES section.

SELECT Section

The SELECT section is required and immediately follows the ATTRIBUTES section for the SCREEN section. If
there isno SCREEN section, then the SELECT section immediately follows the TABLES section. Topic 5.5 contains
afull description of the REPORTFLEX SELECT section.

There can be more than one SELECT section. A SELECT section can create a temporary database table that a
subsequent SELECT section may access. With multiple SELECT sections, the sections are arranged consecutively.

REPORT Section

The REPORT section isrequired and immediately follows the SELECT section. Topic 5.6 contains a full description
of the REPORTFLEX REPORT section.

ATTRIBUTES Section for REPORT

The ATTRIBUTES section for the REPORT section is required and immediately follows the REPORT section.
Topic 5.7 contains afull description of the REPORTFLEX ATTRIBUTES section.

INSTRUCTIONS Section

The INSTRUCTIONS section is an optional last section of the report source file. It contains your C language
functions called by any userexits of the report. Chapter 7 contains afull description of the INSTRUCTIONS section.

Reportflex 51

5.2 TABLES SECTION

Overview

The TABLES section lists the names of any tables referenced in the report source file.

Syntax
TABLES
tablename [tableparms |
END
Description
TABLES isarequired keyword.
tablename is adatabase table name.

tableparms are optional and may be any one of the following: open, read, alias aliasname. Open parameter will
open the file upon starting the program. Read parameter will open the file, read the first record, and
close the file upon starting the program (usefile for control files). The alias aliasname parameters will
alow you to open the file under a different name.

END isarequired keyword.

Notes

. All therules for the TABL ES section of the screen form definition file, Topic 3.2, aso apply to the reports.

Reportflex 5-2

5.3 SCREEN SECTION

Overview

The SCREEN section defines the layout of a report prompting screen form. This form alows the user to specify
certain variable parameters of the report.

Syntax
SCREEN select
[WINDOW(row,col [,height,width)]]
[BOX | FRAME] [POPUP]
[userexit(funcname)] .
{
literals [fieldtag]
}
END
Description
SCREEN isarequired keyword.
select isthe required SCREEN name.
WINDOW isan optional keyword. The WINDOW clause specifies aternate video display coordinates where the
screen layout will be placed at run-time.
row Where there isa WINDOW clause, thisisthe top row coordinate. Thefirst row isrow O.
col Where thereisaWINDOW clause, thisisthe leftmost column coordinate. The first column is column
0.
height Where there isaWINDOW clause, thisisthe optional height or number of rows.
width Where there isa WINDOW clause, thisisthe optional width or number of columns.
BOX is an optional keyword that specifies that the screen region defined by WINDOW will have a single
line border.
FRAME is an optional keyword that specifies that the screen region defined by WINDOW will have a single
line border with an additional line separating atitle region at the top of the WINDOW.
POPUP isan optional keyword that specifies that the screen will overlay any pre-existing screen.
userexit isoptional and is a userexit name.
funcname is required with a userexit clause and is the name of a C function that you have written in the screen
form'sINSTRUCTIONS section. Userexit will pass program control to this function.
{1} are required brackets and enclose the screen layout. Each bracket must be on aline by itself.
literals isthat part of the screen layout that will display at run-time exactly asit is represented in the layout.
[are brackets actually used in the screen layout definition and define the position and length of a given
field.
fieldtag is alabel or name for an input or display field of the screen form. This is the name that is used to
reference the field in the subsequent ATTRIBUTES section.
END isarequired keyword.
Reportflex

5-3

Notes

Example

Without the height parameter for the WINDOW clause, the height of the window will extend from row to the
bottom of the screen display. Without the width parameter for the WINDOW clause, the width of the window
will extend from col to the right edge of the screen display. Without the WINDOW clause altogether,
WINDOW(0,0) is assumed.

Field brackets will not appear in the screen form at run-time.

You may only have literals and displayable fields on the first twenty lines of the video display. At run-time
REPORTFLEX reserves the bottom three lines for comments, function key labels, prompts, and messages.

The select screen recognizes special keyword fieldtags: rptdest, rptcopies, rpttitle, and rptnoprint.

The rptdest keyword fieldtag name indicates a field that will accept input that specifies the report destination.
Four inputs are meaningful:

S -screen

P - printer

D -disk

A -auxiliary port
O - standard out

Entering a P by itself will cause printer output to be routed to the default printer. To route output to alternative
printers the user would enter the printer’s device name suffix after the P.

The auxiliary port isaport leading out of many terminals.

The rptcopies keyword fieldtag name indicates a field that will accept input that specifies the number of report
copies to output. 1 to 10 copies can be specified.

The rpttitle keyword fieldtag name indicates a field that will accept input that indicates whether or not a title
page should be printed for the report. A report title page is simply a copy of the select screen itself with the
inputs that the user entered. The user entering Y to the rpttitle field will print the title page. Entering anything
else will not.

The rptnoprint fieldtag will allow you to selectively print report layouts based on a’Y or N answer. If aN is
entered only report layouts without the rptnoprint parameter are printed. A typical application of the
rptnoprint feature isto alow the user to select whether report detail is printed.

Any other fields of the select screen may reference any fields of any tables specified in the TABLES section.
The ATTRIBUTES section for the select screen, the next topic, will define what table fields are mapped to what
screen fields.

There can be any number of userexit clauses, and if more than two, they are space or newline separated. The
specific userexits available to the SCREEN section are taken up in the SCREEN USEREXITS topic in Chapter
3.

After the user makes his entries to the select screen, pressing DONE will start the report. ESC (ESC ESC on
UNIX or XENIX) from the select screen will exit the report.

The SCREEN section is an optional section of the report definition file. Without this section the user will not be
prompted, and one copy of the report will display to the screen. The SELECT section, a subsequent topic, will
define what records are selected for the report.

Reportflex

5-4
5-4

SCREEN select

{
REPORT SELECTION SCREEN
Sales by Agent
Report Destination: [d] (S=Screen, P=Printer,
D=Disk, A=Aux)

Report Copies: [c] (1 - 10)
Report Title Page: [t] (Y=Yes, N=No)
Agent: 1) [agen] [bempname]

2) [age2] [bempnam2]

3) [age3] [bempnam3]
Booking Date Range: [bdate] to [edate]
Supplier: [sup] [supname]
Sales Only: [s] (Y=Yes or leave blank)
}
END

Reportflex

5.4 ATTRIBUTES SECTION FOR SCREEN

Overview

The ATTRIBUTES section following the report SCREEN section defines the mapping of table fields to screen fields
and specifies the attributes for each field.

All the rules for the screen form ATTRIBUTES section, Topic 3.6 and Chapter 4, also apply to reports except for the
features described in the Notes below.

Syntax
ATTRIBUTES
{ fieldtag[(alttag)] = { table . field
| displayonly type dtype
} [,attributes] ;
}
END
Description

ATTRIBUTES isarequired keyword.

fieldtag isafield label or name from afield of the SCREEN section.

alttag isan optional alternate field label or name.

() isthe required parenthesis around the optional alttag.

= isrequired punctuation after the field tag name specification.

table is a database table name.

isrequired punctuation between table and field.

field is the database field to which fieldtag maps.

displayonly isakeyword used in place of table.field.

type isakeyword required with the displayonly keyword.

dtype isthe field' s data type specification required with adisplayonly field.

attributes are the optional attributes for afield.

, isthe commathat must separate the attributes.

; isthe required punctuation at the end of the field specification.

END isarequired keyword to mark the end of the ATTRIBUTES section.
Notes

. The use of alttag is recommended where the fieldtag is too short a name, such as a single character, to convey

much meaning. Any other reference to this field in the ATTRIBUTES section or in any INSTRUCTIONS
section will used the alttag.

. You must specify the rptdest keyword fieldtag as displayonly type character. The appropriate attributes for
therptdest field are:

upshift
required

Reportflex 56

REPORTFLEX does not assume these attributes.

You must specify the rptcopies keyword fieldtag as displayonly type smallint. The appropriate attributes for
the rptcopies field are:

required
include(1 to 10)

REPORTFLEX does not assume these attributes.

You must specify the rpttitle keyword fieldtag as displayonly type character. The appropriate attributes for
the rpttitle field are:

upshift
required
include(Y,N)

REPORTFLEX does not assume these attributes.

What database records are selected for areport can be controlled automatically by the data input to select screen
fields mapped to table.fields. To activate this feature, you must use this clause

WHERE whereselect

in the SEL ECT section (see the next topic).

When using this clause the selection logic is determined by the number of screen fieldtags defined for the same
table field.

To select database records with a specific value for a field, define a single fieldtag to that table.field. As an
example, for the fieldtag of agen in our select screen, we have this definition in our ATTRIBUTES section:

agen = bkmaster.agent,

When the user inputs avalue to the agen field and presses DONE, only the bkmaster record for that value of the
agent field will be selected for the report.

To select database records with a range of values for afield, define two fieldtags to the same table.field. In the
case of our agent field, all bkmaster records would be selected whose value for agent would be greater than or
equal to the value input to the first agent screen field and less than or equal to the value input to the second agent
screen field. If no value is entered to the first agent field, then the range would begin at the lowest valued agent.
If no value is entered to the second agent field, then the range would end at the highest valued agent.

To select database records with one of any number of specific values for afield, define three or more fieldtags to
the same table.field. If no values were input, then all records would be selected, one value, one record selected,
two values, two records selected, up to the number of screen fields mapped to the single table field.

Often the records selected for a report are based on some code field. In designing the select screen for such a
report, it would be a good practice to provide look-ups and table-help for such encoded fields. Refer to the
lookup and tablehelp attributes in the Chapter 4, FIELD ATTRIBUTES.

Reportflex

5-7

Example

Hereisthe ATTRIBUTES section to go along with the SCREEN section example under Topic 5.3:
ATTRIBUTES

d = displayonly type char, default = "S",
upshift, required, include(S, P, A);

¢ = displayonly type smallint, default =
required, include(1 to 10);

t = displayonly type char, default = "N",
upshift, required, include(Y, N);

myn

agen = bkmaster.agent, upshift,
lookup(tbhemp.tbempkey,
select.bempname = tbemp.lname),
tablehelp("flex tbemp ASDC",
tbemp. tbempkey, tbemp.code, tbemp.Iname);
age2 = bkmaster.agent, upshift,
lookup(tbemp.tbempkey,
select.bempnam2 = tbemp. lname),
tablehelp("flex tbemp ASDC",
tbemp. tbempkey, tbemp.code, tbemp.Iname);
age3 = bkmaster.agent, upshift,
lookup(tbemp.tbempkey,
select.bempnam3 = tbemp.lname),
tablehelp("flex tbemp ASDC",
tbemp. tbempkey, tbemp.code, tbemp.Iname);

bempname = displayonly type char, noupdate, noentry;
bempnam2 = displayonly type char, noupdate, noentry;
bempnam3 = displayonly type char, noupdate, noentry;

bdate = bkmaster.bookdate, default = today;
edate = bkmaster.bookdate, default = today;

sup = bkdetail.supplier, upshift,
lookup(tbven.tbvenkey,
select.supname = tbven.name),
tablehelp("flex tbven ASDC",
tbven.tbvenkey, tbven.code, tbven.name);
supname = displayonly type char, noupdate, noentry;

s = tbven.saleflag;

END

Reportflex

5.5 SELECT SECTION

Overview

The SELECT section defines how records are to be selected from the database. This section will specify the ordering
of the records and to join multiple tables.

Syntax
SELECT [{ userexit(ufuncname) } . . .]
primarytable (sortfields)
[{ tempfield [{ TYPE dtype [(dlength)] }
| = sourcethl . sourcefld
]
| al ifié | ds
]
[WHERE wherefunc(wfuncname)]
{ Relation }
[{ jointable(joinfields) prevtable (previields)
[{ tempfield [{ TYPE dtype [(dlength)] }
| = sourcethl . sourcefld
]
| al ifié | ds
]
[WHERE wherefunc(wfuncname)]
{ Relation }
} .
]
[WHERE [{ wherefunc(wfuncname)
[whereselect]
| whereselect
]
]
[ONINDEX temptable(tempindex)]
END
Description
SELECT isarequired keyword.
userexit isoptional and is a userexit name.
ufuncname is required with a userexit clause and is the name of a C function that you have written in the screen
form'sINSTRUCTI ONS section.
primarytable isthe required primary table from which records will be selected.
sortfields isthe field or fields that comprise an index of primarytable. The selected records are ordered by this
index. If there are two or more fields, sortfields is a comma separated list.
tempfield isoptional and isthe name of afield of temptable of the optional ONINDEX clause.
TYPE isakeyword used when specifying the data type of tempfield.
dtype isthe data type for tempfield.
dlength isan optional data length specification when tempfield isachar or decimal type.
= isused in place of the TY PE clause to map a database table field to tempfield.
sourcetbl is the database table of the field mapped to tempfield with =.
Reportflex 59

sourcefld
allfields

WHERE

wherefunc

wfuncname

Relation

jointable
joinfields

prevtable
prevfields

whereselect

isrequired punctuation between sourcetbl and sourcefld.
isafield of sourcetbl.
isakeyword to bring all fields of a selected table into temptable of the optional ONINDEX clause.

is a keyword of the optional WHERE clause. This clause is used to limit the records selected for the
report.

isakeyword and userexit name of the optional WHERE clause. It isrequired in the WHERE clause
attached to primarytable or a specific jointable. It isoptional in the final or global WHERE clause.

is a C function in the INSTRUCTIONS section. The wherefunc userexit passes control to this
function.

There are 7 possible Relational operators which can be used when joining two tables. They are:
OUTER

selects al records from prevtable and the first record that matches from jointable.
OUTERALL

selects al records from prevtable and all those that match from jointable.
SUBSET

selects only records from prevtable that match those from jointable. Only the first matching
record from jointable will be selected.

SUBSETALL

selects only records from prevtable that match those from jointable. All matching records from
jointable will be selected.

EXTRACT

This is a combination of OUTER and SUBSET. If any of jointable fields are used in the
WHERE clause then the relation will behave as SUBSET.

EXTRACTALL

Thisisacombination of OUTERALL and SUBSETALL. If any jointable fields are used in the
WHERE clause then the relation will behave as SUBSETALL.

REJECT

selects al records from prevtable where there is no match in jointable.

Note that the Relation operator for the primarytable, although required, has no meaning at this time.

isan optional table joined to the primary table.

is the field or fields that comprise the joined index of jointable. The selected jointable records are
ordered by thisindex. If there are two or more fields, joinfields is a comma separated list.

isprimarytable or an earlier jointable.
are the fields of prevtable that are joined to joinfields of jointable.

is a keyword of the optional final or global WHERE clause. It specifies that the report select
SCREEN may limit the records that are selected for the report. The whereselect clause may be used
by itself in the WHERE clause or in conjunction with awher efunc userexit.

select isthe keyword parameter of the wher eselect clause.
ONINDEX is a optional keyword and specifies a temporary table to be created from al the tempfields and/or
allfields.
temptable isthe temporary table of the optional ONINDEX clause.
tempindex is the index created for temptable. If there are two or more fields comprising the index, then
tempindex is a comma separated field list.
Reportflex

5-10
5-10

END

isarequired keyword delimiting the end of the SELECT section.

Reportflex

5-11

511

Notes

As a record is selected from prevtable, the value of its prevfields determines the values given to the
corresponding joinfields in selecting records from jointable. The data type of each field of prevfields must be the
same as the data type of the corresponding joinfields.

Unlike the SCREENFLEX SEL ECT section, there can be any number of jointable blocks.

The wherefunc userexit works differently depending on whether it is associated with a particular jointable or it
is associated with the entire SELECT statement. The wherefunc associated with a jointable has the following
return code possibilities:

0 Accepts the current jointable record for the report.

-1 Regectsthe current jointable record. The jointable will be read for the next record.

-2 Causes end-of-range condition for jointable. The prevtable will be read for the next record.

The wher efunc associated with the entire SELECT statement is located at the bottom of the SELECT statement
and isinvoked after all tables areread. Thiswherefunc has the following return code possibilities:

0 Accepts the current set of records for the report.

-1 Regectsthe current set of records. The primarytable will be read for the next record.

-2 Causes end-of-file condition. No more records will be read.

One of the Relational operators (OUTER, OUTERALL, SUBSET, SUBSETALL, EXTRACT, or
EXTRACTALL) must be specified for each jointable. OUTER, SUBSET, or EXTRACT is used where there is
a one-to-one relationship between jointable and prevtable (as in the case of a table lookup). OUTERALL,
SUBSETALL, or EXTRACTALL is used where there is a one-to many relationship between jointable and
prevtable.

If the whereselect clause is used in the global WHERE clause, there must be a select screen (see Topic 5.3),
where the user may specify selection criteria to reduce the scope of the report.

The optional ONINDEX clause is used to create the temporary table temptable with the index tempindex. This
table will be removed from the database at the point that the user |eaves the report.

Where a SELECT section has an ONINDEX clause, there will usually be another SELECT section
immediately following. Primarytable and primaryfields of that SELECT section must correspond to temptable
and tempindex of the ONINDEX clause.

The argument to TYPE is a data type expression of a form described in the Chapter 8, DATABASE DATA
TYPES.

There are five possible userexits. We will describe at what point in the table selection activity each userexit
would pass control to its ufuncname, which at this time must all return O.

beforesection. This userexit is called once before the selection process begins. You may return a -1 to
prevent further processing.

section. Thisuserexit is called in place of the selection process. Thisisthe SELECT section syntax when
using the section userexit:

SELECT section(ufuncname)
END

When using the section userexit, your data may be outputed thru the REPORT section layouts by calling
the C function

rptprint().
aftersection. This userexit iscalled once after the selection process has completed.

beforerow. Thisuserexit iscalled immediately before each record is read from primarytable.

Reportflex

5-12
5-12

afterrow. Thisuserexit iscaled immediately after any record is read from jointable, and where there is no
jointable, after arecord isread from primarytable record. Where thereisan ONINDEX clause, afterrow is
called before an temptable record is written.

Example

SELECT afterrow(compcoms)
bkmaster (bookdate, bkno)
agent
salamount
commiss TYPE money(7,2)
EXTRACTALL
bkdetail (bkno) bkmaster(bkno)
detsalamt = bkdetail.salamount
EXTRACTALL
WHERE whereselect
ONINDEX passag(agent)
END

SELECT
passag(agent)
WHERE wherefunc(lastchk)
EXTRACTALL
END

. The tempfields are agent, salamount, commiss, and detsalamt, and those will be the fields of the temporary
table passag.

. The data for agent and salamont comes from the bkmaster fields of the same names. The data types for these
fields in passag will be the same as the data types of the corresponding fields in bkmaster.

. We link the name detsalamt of passag to the salamount field of bkdetail because passag already has the field
salamount from the bkmaster field of the same name.

. The commiss field is not directly mapped to any selected table field. In our example we use the afterrow
userexit to derive the data for commiss. The C function compcomsis called right after abkdetail record isread
but before the passag record iswritten. In the compcoms function you can assign to the commiss field with:

$passag.commiss = value;

Reportflex 5-13
5-13

5.6 REPORT SECTION

Overview

The REPORT section specifies the layout of the report.

There are four subsections that make up a REPORT section: heading, detail, total, and footing.

Syntax
REPORT
[heading[suf] [breakon(indexfield,n)] [parameters] [userexits]
literals [fieldtag]
}
1. ..
[detail[suf] [parameters] [userexits]
literals [fieldtag]
}
[ioiai [suf] [breakon(indexfieldn)] [parameters] [userexits]
literals [fieldtag]
}
[%0(.)t | ng[suf] [userexits]
{
literals [fieldtag]
}
1 .
END
Description
REPORT isarequired keyword.
heading isarequired keyword of the heading subsection.
detail isarequired keyword of the detail subsection.
total isarequired keyword of the total subsection.
footing isarequired keyword of the footing subsection.
suf is asuffix for a subsection name after the first of that subsection. It isavalue that makes all subsection
names unique within a report source file.
breakon is an optional keyword used to specify afield of the sort index of the report. When the value changes
in thisfield or a higher order field of the index, the associated heading or total is output.
indexfield isafield of the sort index of the report. Indexfield is the parameter of the breakon clause and has the
form table.field.
parameters are one or more optional report format specifications. Where there are more than one, they are space
or newline separated. Parameters will vary for each subsection.
userexits are one or two optional userexit clauses. Where there are two clauses, they are space or newline
separated.
{1} are required brackets and enclose a subsection layout. Each bracket must be on aline by itself.
literals isthat part of a subsection layout that will display at run-time exactly asit is represented in the layout.
[] are brackets actually used in a subsection layout definition and define the position and length of a
given field.
Reportflex 5-14

5-14

fieldtag isalabel or name for a data field of a subsection. Thisisthe name that is used to reference the field in

END

Notes

the subsequent ATTRIBUTES section and optional INSTRUCTIONS section.
isarequired keyword.

General
Though each subsection is optional, areport must have at least one subsection of some kind.

When the same subsection is repeated more than once, a suffix of your choice must be appended to the
subsection name to maintain uniqueness within the subsection names.

A subsection with a breakon clause will output its layout each time its breakon index field or a higher order
field of the index changes value.

Character fields when used in the report index can be subindexed, so that you may construct breakons on a
certain number of initial characters of the field. For example:

breakon(bkmaster.agent, 3)

will output its layout when the value of the first three characters of the bkmaster.agent field changes.

Date fields when used in the report index can be subindexed, so that you may construct breakons for different
parts of the date. For example:

Bresks on
breakon(bkmaster.bookdate, 1) year
breakon(bkmaster.bookdate, 2) month
breakon(bkmaster.bookdate, 3) day
breakon(bkmaster.bookdate, 4) week

A userexit clause has the format:

userexit (- funcname)

There are two userexits available to every subsection. We will describe at what point in the report output
activity each userexit would pass contral to its funcname.

beforeprint. Thisuserexit is called before each printing of the associated subsection’s layout. If funcname
returns 0O, the associated subsection will output its layout. A return value of -1 prevents the output.

afterprint. This userexit is called after each printing of the associated subsection’s layout. Funcname
should always return O.

Beware that when using these userexits for atotal subsection, the database buffers will contain information for a
record beyond the scope of the total subsection’s breakon clause (otherwise the breakon condition would never
have been triggered).

To save space used by the field brackets, [], you may use the vertical bar | to mark the end of one field and the
beginning of another.

Field brackets or field delimiting vertical barswill not appear in the report output.

Heading

Without the breakon clause, a heading is output at the top of every page. To have breakon headings print at
the top of each, you will need to use the ever ypage paramter (see below).

Reportflex

5-15
5-15

Parameter s appropriate to the primary heading are:

pagelength(n) number of physical lines per page (default 66). Specifying a page length of 999 will
prevent the newpage condition (see below) from ever happening.

printlength(n) maximum number of print lines allowed per page (default 56)

printline(n) line number where subsection will begin printing
newpage break to anew page
everypage forces a breakon heading to print a the top of each new page as well as when the
breakon occurs.
compress prints in compressed mode on the output printer
pitch12 outputs 12 characters per inch instead of 10 (printer only, where supported)
nokill prevents the user from aborting the report durring execution.
Detail

The detail subsection outputs information as each record isread at the lowest level of the relation.

When there isaparallel one-many relation (the SELECT section has atable with more than one EXTRACTALL
table joined to it), a detail subsection is defined for each one of these paralel relations. As the report is
processed, the first parallel relation is completely read and outputted with the first detail subsection, then the
second parallel relation isread and outputted with the second detail subsection, and so on.

The printlineg() or printlength() parameters may be used for this subsection. The printlength parameter can be
used to limit the number of printed detail lines per page.

Total

All numeric fields are automatically totaled. Fields, such as numeric codes, that you do not want totaled should
have the nototal attribute in the ATTRIBUTES section.

Without the breakon clause, agrand total isoutput at the end of the report.
The printline() parameter may be used for the this subsection.

Footing
The footing subsection outputs at the bottom of each report page.

Reportflex

5-16
5-16

Example

REPORT
heading breakon(bkmaster.agent) pitchl2

SALES ANALYSIS REPORT

[bemp] [bempname]
Book Date Book No Name Amount
}
heading breakon(bkmaster.bkno) beforeprint(calc)
[bdate][bkno][bclient][bsalam]
}
detail afterprint(wrapup)
{
[bsup]J[bship |bdest |[dsalam]
}
total breakon(bkmaster.bookdate, 4)
{
* ok SUBTOTAL by Week *o¥ $[dsalam 1
}
total breakon(bkmaster.bookdate,?2)
{
* ok SUBTOTAL by Month * * $[dsalam 1
}
total breakon(bkmaster.agent)
{
* ok SUBTOTAL by Agent * * $[dsalam 1
}
total
{
*o¥ GRAND TOTALS *ox $[dsalam]
}
footing
{
PAGE [page]
}
END

Reportflex

5-17

5-17

5.7 ATTRIBUTES SECTION FOR REPORT

Overview

The ATTRIBUTES section following the report REPORT section defines the mapping of table fields to report fields
and specifies the attributes for each field.

Syntax
ATTRIBUTES
{ fieldtag[(alttag)] = { table . field
| displayonly type dtype
} [,attributes] ;
}
END
Description

ATTRIBUTES isarequired keyword.

fieldtag isafield label or name from afield of the SCREEN section.
alttag isan optional alternate field label or name.

() isthe required parenthesis around the optional alttag.

table is a database table name.

isrequired punctuation between table and field.

field is the database field to which fieldtag maps.

displayonly isakeyword used in place of table.field.

type isakeyword required with the displayonly keyword.

dtype isthe field' s data type specification required with adisplayonly field.
attributes are the optional attributes for afield.

, isthe commathat must separate the attributes.
; isthe required punctuation at the end of the field specification.
END isarequired keyword to mark the end of the ATTRIBUTES section.

Notes

. The ATTRIBUTES section must have one fieldtag specification for each field in the REPORT section.

. Those fields with fieldtags that are mapped to table.fields of a record selected in the report’s SELECT section
will automatically output the contents of those selected database fields.

. You may reuse the same fieldtag within different subsections of the REPORT section, aslong as you do not use
a fieldtag more than once within the same subsection. This eliminates redundant fieldtag definitions in the
ATTRIBUTES section.

. The use of alttag is recommended where the fieldtag is too short a name, such as a single character, to convey
much meaning. Any other reference to this field in the ATTRIBUTES section or in any INSTRUCTIONS
section will used the alttag.

Reportflex 5-18
5-18

. Three displayonly fields are frequently used in report headings, the date, the time, and the page number. These
fields are defined thisway in the ATTRIBUTES section:

tday = displayonly type date, default=today;
tim = displayonly type mtime, default=time;
page = displayonly type smallint;

The keyword today evaluates to today’s date. The keyword time evaulates to the current time or the time at
which the first heading of the report is generated. Page is a keyword field tag indicating the field in which the
page number will appear.

. For dtype see Chapter 8, DATABASE DATA TYPES.

. The report-only attribute nototal causes anumeric field of atotal subsection not to be totaled. At times you may
have anumeric field, such as a code, where generating atotal for it would be inappropriate.

. Only two other attributes have effect in reports. Right will right justify the data in the field. Format will allow
you to specify the representation of numeric fields (see Chapter 4, FIELD ATTRIBUTES).

Example
ATTRIBUTES
bemp = bkmaster.agent;
bempname = tbemp. Iname;
bdate = bkmaster.bookdate;
bkno = bkmaster.bkno, right;
bclient = bkmaster.name;
bsalam = bkmaster.salamount, format="#, ###. ##",
bsup = bkdetail.supplier;
bship = bkdetail.ship;
bdest = bkdetail.destination;
dsalam = bkdetail.salamount, format="#, ###. ##",
page = displayonly type smallint;
END

Reportflex 5-19

5-19

5.8 RUNNING THE REPORT FORM

Overview

Thistopic will describe the command line arguments and the many run-time features of the Infoflex report form.

Syntax

{ flex|prog} filename [dest] [copies] [title]

Description
flex isthe default run-time report form driver.
prog isthe custom run-time driver used when areport form has an INSTRUCTIONS section.
filename isrequired and is the base name of the compiled report form file filename.pic.
dest isan optional argument to specify the report output destination. The default is S (Screen) when a select
screen is specified or P (Printer) if no select screen is specified. Other destinations available are listed
under the REPORTFLEX Screen Section topic. When using destination P (Printer) or D (Disk) you
may specify the name of the printer or disk file by concatinating the name onto the destination
argument. For example, ' Drptfile€ will route the report to the disk file name 'rptfil€.
copies isan optional argument to specify the number of copies. The default is 1.
title isan optional argument to specify wether to print atitle page preceding the report. The title page isa
printout of the select screen. The default isN.
Notes
. If the report form does not include a select screen then the report will run immediately and will be sent to the
printer.

. If areport form has an INSTRUCTIONS section, then the final result of compilation, prog is an executable
module that is used in place of the flex program. See Chapter 2, DEVELOPMENT PROCEDURES, for how to
build your custom prog.

Example 1

flex tbemp P10N

Example 2

In this example, tbemp.flx has an INSTRUCTIONS section which results in tbemp replacing flex:

tbemp tbemp P10 Y

Reportflex 5-20
5-20

Reportflex 5-21
5-21

Reportflex 5-22
5-22

6. MENUFLEX

This chapter explains how to build menus .

Before developing menus, the fxmkapp utility, described under the Application Set-Up topic under Chapter 2,
DEVELOPMENT PROCEDURES, must be run in order to build the menu database and install a default run-time menu and the
cwmenu utility.

6.1 MENU BUILDING

Menu definitions are stored as data in the database. The cwmenu utility is an Infoflex screen form that allows you to
modify the menu database tables. To build menus, select the menu choice Design Menus on the Development Menu or
enter the following command.

cwmenu cwmenu?2

The following entry screen for building menus will appear.

cwmenu?2

INFOFLEX CHANGE MODE MENU BUI LDER DATE:
MenuCode: M Prev MenuCode: Template: actmenu
Titlel: Master Menu
Title2:
No.Columns: 0 format: top row: O col: O bottom row: O col: O
Description Password

[N

Accounts Receivable
M R

Accounts Payable

M P

General Ledger

M G

4 Payroll

M E

Bank Reconciliation
M B

N

w

(4]

F1

F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16

SAVE HELP ---- ADD ---- QRY PREV NEXT FRST LAST ---- DEL ---- ---- ---- MOVE

The menu builder screen behaves and adheres to the same rules as for any other Infoflex entry screen.

Below isadescription of each screen field.

Menu Code
This is the code name for a menu. We recommend that it be short, such as M for master menu or P for accounts
payable menu, though it can be up to 10 alphabetic characters in length. Do not use numbersin the menu code.

Previous Menu Code
Thisisthe code name for the menu that calls the menu you are defining. A main menu, of course, would not have
a previous menu.

Template
You may create custom menu formats called templates. The template name is the first parameter of a MENU
section in menu.flx The template name can be up to 18 characters in length. Where the template field is left
blank, the menu format will be automatically generated at run-time. For a technical discussion about creating
templates, please refer to your Infoflex-4GL manua Chapter 6.5.

No. of Columns

Menuflex

6-1

A menu can list its options in single or multi-column format. By default, the menu choices will be listed in a
single column. To organize menu choices into multiple columns you would specify the number of columns here.
Note that a 0 or blank for the number of columns is the same as 1. This value is ignored where a template has
been specified.

Title
There can be up to two lines of 76 characters each for the menu title.

Format
There are three format options for amenu. The default, which is no value for format, will display a frame around
amenu. Option N will not display the frame. Option O is for overlayed menus. An overlayed menu will display
in a bordered window.

Top Row, Coal, Bottm Row, Col
If you have specified a overlay format (previous field is set to *O") then you will need to provide the coordinates
for the overlay. The coordinates are entered as the row and column of the upper left corner and the row and
column of bottom right corner.

The array portion of the menu builder screen alows you to define each menu choices. Below is a description of each array
field.

Description
The option description or text can be up to 60 characters in length. If you define a menu template with shorter
fields or use atwo column format, your option text will be truncated.

Passwor d
The Password may be 8 characters in length and is used to restict access to a menu choice. A menu choice
having a password will require the user to enter the password in order to access the program specified in the
Execution Line (see below).

Execution Type
At run-time a menu option may invoke another menu, a program, or a function. The execution type is specified
withan M, P, or F.

Execution Line
For an execution type of M the execution line for the option is a menu code. For an execution type of P the
execution line is a program command, such as:

flex filename

For an execution type of F the execution line isafunction call. In the third case the menu.pic file must be invoked
by a custom Infoflex application program, that is, a program in which INSTRUCTIONS section C language
functions are linked (more on thisin the Infoflex-4GL manual Chapter 7, THE INSTRUCTIONS SECTION).

Clear Screen Flag
Entering Y to this field will cause the screen to clear when the menu option is invoked. Entering N or leaving it
blank will cause the screen not to be cleared. Note that Infoflex or Accountflex screens will automatically clear
without having to set the Clear Screen Flag equal to Y.

Before Option RETURN
If you enter Y to thisfield, the menu will require the user to enter RETURN before executing the option. Entering
N to thisfield or leaving it blank will result in the default behavior of not prompting.

After Option RETURN
If you enter Y to this field, the menu will require the user to enter RETURN upon returning to the menu after
executing the option. Entering N to this field or leaving it blank will result in the default behavior of not
prompting.

Menuflex 6-2

6.2 RUNNING THE MENU

Assuming the menu code for your main menu is M, the user would start the application with
flex menu M
This should then be the entry point of access to all screens, reports, and submenus of your application.
With a menu displayed, arrow keys will move the cursor over the menu options. The user may select an option by

positioning the cursor and pressing RETURN or by entering an option number in the option selection field and pressing
RETURN.

Pressing ESC (ESC ESC on UNIX or XENIX systems), e or b will exit the menu the user isin and return to the previous
menu or exit the program altogether if the user isleaving the main menu.

Pressing ! will allow the user to then type and execute an operating system command while still in the menu.

Pressing the F3 key will allow the user to chain to any option of any menu of the application. To the chain prompt, the user

must enter the menu code immediately followed (no spaces) by the option number. Pressing RETURN will invoke the
option.

Menuflex 6-3

6.3 MENU TEMPLATE ORGANIZATION

This topic describes the structure of the menu template. A template alows you customize a menu layout in a manner
similar to defining screen forms. Place your menu templates in a special file name menu.flx. Thisfile is an ordinary text
file and its content is subdivided into sections. The organization of these sections has certain ordering rules.

TABLES Section

The TABLES section is a required section and must be the first section of menu.flx. Topic 6.4 contains a full
description of the MENUFLEX TABLES section.

MENU Section

The MENU section is an optional section and immediately follows the TABLES section. Topic 6.5 contains a full
description of the MENUFLEX MENU section.

ATTRIBUTES Section

If there isa MENU section then there is an ATTRIBUTES section immediately following. Topic 6.6 contains a full
description of the MENUFLEX ATTRIBUTES section.

INSTRUCTIONS Section

The INSTRUCTIONS section is an optional last section of menu.flx. It contains your C language functions called by
any userexits of the menu. Chapter 7 contains afull description of the INSTRUCTIONS section.

Multiple Menu Definitions

More than one menu can be defined in menu.flx. The entire file would have a single TABLES section at the
beginning, and any number of the sequences of MENU/ATTRIBUTES sections. For example, this could be the
outline of a screen source file with three menu definitions:

TABLES section

MENU section
ATTRIBUTES section

MENU section
ATTRIBUTES section

MENU section
ATTRIBUTES section

Menuflex 6-4
6-4

6.4 TABLES SECTION

Overview

The TABLES section lists the names of any tables referenced in the menu source file.

Syntax

TABLES
sysfile
menuhead
menufield
menuuser
menuusty
menuperm
[tablename(s)]
END

Description

TABLES isarequired keyword.

sysfile isarequired table name in the TABL ES section.
menuhead isarequired table name.

menufield isarequired table name.

menuuser isarequired table name for menu security.
menuusty isarequired table name for menu security.

menuperm isarequired table name for menu security.

tablename isone or more optional database table names.
END isarequired keyword.
Notes
. Where there are no custom templates, the TABL ES section isthe only section in menu.flx.

Menuflex

6.5 MENU SECTION

Overview

The optional MENU section defines a custom layout of a menu. This user-defined menu layout is called a menu

template.

Syntax

MENU templatename [userexits]

{
literals

[opttag

[s]

END

Description

MENU

templatename

userexits

{}
[]

opttag

S

literals

Notes

isarequired keyword.

is the required name of the custom menu layout or template. It must represent a unique identifier
among all menus within menu.flx.

are one or two optional userexit clauses. Where there are two clauses, they are space or newline
separated.

are required brackets and enclose the menu layout. Each bracket must be on aline by itself.

are brackets actually used in the menu layout definition and define the position and length of a given
field.

isalabel or name for a menu option field. Thisis the name that is used to reference the field in the
subsequent ATTRIBUTES section and optional INSTRUCTIONS section.

isakeyword tag name for the field from which the user may specify an menu option during run-time.

is any part of the menu layout outside of []. This area will display at run-time exactly as it is
represented in the layout.

. Thetext of amenu option isdisplayed in afield tagged with opttag. The opttag name must be unique within the

template.

. At run-time the menu option number, the itemnum field of the menufield record, will display just left of the
option field.

. At run-time the value in the system name field of the sysfile table will display in the top left corner of the menu.
See option 6, Modify Central File, of the Development Menu, Chapter 2.

. At run-time the value in the company name field of the sysfile table will display in the top center of the menu.

. The userexits clause has the syntax:

userexit (- funcname)

Funcname is the name of a C function that you have written in the menu's INSTRUCTIONS section. We will

Menuflex

6-6

describe at what point in the menu activity each userexit would pass control to its funcname. Userexit is one of
the following:

beforesection. Thisuserexit is called once when the menu isfirst displayed.

aftersection. Thisuserexit iscalled at the point that a menu exit key is pressed.

Menuflex

6-7

Example

MEN
{

END

U bookmenu

Data Entry Programs: Reports:
[m1] [m11
[m2] [m12
[m3] [m13
[m4] [m14
[m5] [m15
[m6]
[m7] End of the Month:
[m8 |
[m9] [m16
[m17
Query On-Line: [m18
[m10]

Enter Selection > [s]

Menuflex

6-8

6.6 ATTRIBUTES SECTION

Overview

The ATTRIBUTES section following the MENU section simply maps the menu option fields to the itemdesc field of
the menufield table.

Syntax

ATTRIBUTES
opttag = menufield. itemdesc [, userexits];

s = displayonly type char;
END

Description

ATTRIBUTES isarequired keyword.

opttag isafield label or name from an option field of the M ENU section.
menufield isthe table associated with every option field.

itemdsesc isthe menufield field to which every option field is mapped.

userexits are one or two optional userexit attributes. Where there are two, they are comma separated.
S isthe required keyword field tag for the option selection field.
displayonly isarequired keyword for the sfield tag.
type isarequired keyword for the sfield tag.
char isarequired keyword for the data type of the sfield.
END isarequired keyword.
Notes
. The ordering of the menu options at run-time is determined by the value of the itemnum field of the menufield
record.

. The two userexit attributes befor edit and after edit are available with menu option fields. See Chapter 4, FIELD
ATTRIBUTES.

Menuflex 6-9

Menuflex

5-10

6-10

6. MENU SECURITY

This chapter describes the Infoflex menu security system. This chapter will show you how to (1) assign user passwords and (2)
control user access to menu choices. Both of these security options may be user specific.

There are 2 steps in setting up menu security. The first step isto define User Types and their respective menu permissions. The
second step is to define each User Account and assigh them their User Type.

The following sections will describe each of these stepsin greater detail.

6.1 Defining User Types

To define User Types, select the menu choice Define User Types on the Development Menu or enter the following
command.

cwmenu cwmenu? -f menuustytable

The screen below will appear.

menutype

INFOFLEX CHANGE MODE DEFINE USER TYPES AND PERMISSIONS DATE: 06/30/99

User Type Menu Name O M H Description
apclerk P N N

arclerk R N N

sales S N N

superuser M

sysadmin SA

Press PERM function key to assign MENU permissions

Enter User Type
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16
SAVE HELP ---- ADD ---- QRY PREV NEXT FRST LAST ---- DEL ---- PERM CLR COPY

Below isadescription of each field on the above screen.

User Type
Enter auser type. Define a user type for each group of usersthat will have like permissions.

Menu Name
Enter the menu name the user will start with. The menu name is the unique code assigned to each menu (also called
menu code). When running the menus, this code is displayed at the top of each menu within parenthesis. You may
pressthe HEL P key to select or search from a popup list of valid entries.

(0]
Enter 'N’ to NOT permit access to the Operating System.
M
Enter 'N’ to NOT permit menu jumping (F3 key from any MENU).
Menu Security 6-1

Enter N’ to NOT permit zoom access from within HELP, or enter *V" to permit zoom access but in VIEW mode only.
Zoom access from HEL P allows users to add new entries to the HEL P popup list by pressing the ZOOM function key.

Description
Thisisafreeform description field.

To specify menu permissions for a User Type, press the PERM Function key. Upon pressing the PERM key, the Menu
Permission screen will appear as shown below.

menuperml

— MENU PERMTSSTONS,

Master Menu
(User Type: superuser)

| RMISSIONS DATE: 06/30/99

Accounts Receivable
Accounts Payable
General Ledger
Payrol |

Bank Reconciliation
Inventory

Bill of Materials
Sales

Purchase Order

Job Cost
System-Wide Control
QUEUE

W~NOUOA®WNBR

PR e
N = O ©

Press PERM function key to assign MENU permissions

Enter '-' to deny perm, '=’' to not show, and 'V’ for View only

FL F2 F3 F4 F5 F6 F7 F8 F9

F10 F11 F12 F13 F14 F15 F16

SAVE HELP ---- --=- ---- QRY PREV NEXT FRST LAST ---- ---- ---- ZOOM ---- ----

This is a MULTI-RECORD screen listing the menu choices found on the User Typés starting menu. The column
preceeding each menu choice iswhere you will grant permissions. This column may be one of 4 values.

Value
blank

Description
allow permission to execute the menu choice.

deny permision to execute the menu choice.

do not show menu choice.

\Y

permit the menu choice but in view mode
only. Thisoption isapplicable if the menu
choice calls an Infoflex data entry program.

If amenu choice calls another menu, press the ZOOM key to bring up its Menu Permission screen. For example, pressing
ZOOM while cursored on the Accounts Receivable menu choice will bring up the following Menu Permission screen.

Menu Security

6-2

menuperm2

— MENU PERMISSTONS
I ___MENU PERMISSIONS ONS DATE: 06/30/99
| | Accounts Receivable
| | (User Type: superuser)
_l 1] I
| 2] 1 Enter Invoices
| 3] 2 Print Batches
| 4] 3 Post Batches
| 5] 4 Print Journal
| 6] 5 Enter Adjustments
| 7] 6 Print Batches
| 8] 7 Post Batches
| 9| 8 Print Journal
| 10] 9 Enter Receipts
| 11| 10 Print Batches
| 12| 11 Post Batches
______ | 12 Print Journal
Press PERM function key to assign MENU permissions
Enter '-’ to deny perm, '=' to not show, and 'V’ for View only
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 Fl12 F13 Fl14 F15 F16
SAVE HELP ---- ---- ---- QRY PREV NEXT FRST LAST ---- ---- ---- Z0OM ---- ----

If the menu choice does not call another menu but instead executes a program, the following Menu Permission screen will
appear.

menuperm3

— MENU PERMISSTONS
I ___MENU PERMISSIONS ONS DATE: 06/30/99
| | Accounts Receivable
| | (User Type: superuser)

I
I
_l 1] I
| 2] 1 Enter Invoices
| 3] 2 Print Batches
| 4] 3 Post Batches
| 5] 4 Print Journal
| 6] 5 Enter Adjustments
| 7] 6
| 8] 7 Enter Invoices
| 9| 8 | (User Type: superuser)
| 10] 9 | I
| 11| 10 |Permission List:
| 12| 11 |Overide Conmand: |

______ | 12 |Default Conmand: arflex arinv

Press PERM function key to assign MENU permissions

Enter Special Permission codes (specific to program)
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16
SAVE HELP ---= =-ce e oo oo oo e mme mme emee meee eeee meee e

Thefollowing isadescription of each field on the above screen.

Permission List
This field is for listing permission keywords that will be passed to the program executed by this menu choice.
Permission keywords are used to provide program specific security. For example, if you do not want to show the
Social Security Number when accessing the employee entry screen you would specify the permission keyword
NOSSN.

Overide Command
You may specify acommand to be executed when this menu choice is selected. This command will overide the default
command which is displayed below.

Default Command
This is the command that will be executed when this menu choice is selected unless the Overide Command is
specified above. Thisisaview only field.

Menu Security 6-3

Besides the PERM function key, there are two other important functions keys available when defining User Types: CLR
and COPY. The CLR function clears previous menu permission settings. THe COPY key copies menu permissions from
one User Typeto another. Each of these functions is shown below.

When you press the CL R function key, the following screen will appear.

menuc | r

INFOFLEX CHANGE MODE DEFINE USER TYPES AND PERMISSIONS DATE: 06/30/99

User Type Menu Name O M H Description
apclerk P N N

arclerk R N N

sales S N N

superuser M

Clear permissions for User Type:

Press SAVE function key to clear
Press ESCAPEKEY to abort

Press PERM function key to assign MENU permissions

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 Fl14 F15 F16
SAVE HELP ---- cccc cecc cein cicn cecn cccn ceen meee meee meee seee meee maae

To clear a specific User Type, enter the User Type in the prompt provided. To clear ALL User Types leave the prompt
empty.
When you press the COPY function key, the following screen will appear.

menucopy

INFOFLEX CHANGE MODE DEFINE USER TYPES AND PERMISSIONS DATE: 06/30/99

User Type Menu Name O M H Description
apclerk P N N

arclerk R N N

sales S N N

superuser M

sysadmin

Copy permissions for User Type: sysadmin
to User Type:

Press SAVE function key to copy
Press ESCAPEKEY to abort

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 Fl14 F15 F16
SAVE HELP ---- cccc cecc cecn cicn cecn coen meee meee meee meee seee maee —aae

To copy permissions from one User Type to another, fill in the for and to User Types on the above screen.

6.2 Defining Users

To assign users their User Type permissions, select the menu choice Define Users on the Development Menu or enter the
following command.

Menu Security 6-4

cwmenu cwmenu?2 -f menuusertable

The following screen will appear.

menuuser

INFOFLEX CHANGE MODE DEFINE USERS DATE: 06/30/99
User Account User Type Password Description

DEFAULT sales sparrow

janis arclerk canary

john superuser eagle

mark sysadmin hawk

peggy superuser condor

sharon apclerk robin

Enter User Name or Login Name
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16
SAVE HELP ---- ADD ---- QRY PREV NEXT FRST LAST ---- DEL ---- ==-- ==-- -=--

Below isadescription of each field on the above screen.

User Account

Enter avalid user account or sometimes called user login. User accounts are created from within UNIX or NT and are

prompted for at login (refer to your operating system s System Administration guide for further information).

Note that there is a special user account called DEFAULT which may be optional entered. The DEFAULT account

will be used for any undefined user accounts accessing the system.

User Type

Enter avalid user type to assign to this user account. You may press the HEL P key to select or search from a popup

list of valid entries.

Password

Enter a password for this user account. Thisisan optional entry and, if entered, will require the user account enter this

password prior to bringing up Infoflex.

6.3 Change Password

This choice will also allow you to change user passwords but for the currently logged on user account only. Select the

menu choice Change Password on the Development Menu or enter the following command.

cwmenu cwmenu? -f chgpassword

If you would like usersto change their own passwords you can place this choice on the main menu.

The screen for changing passwordsis as follows.

Menu Security

6-5

menupassword

I —

___Change Password for_gerard

Enter New Password:
Verify Password:

Enter Password
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 Fl12 F13 Fl14 F15 F16
SAVE HELP ---- --ce mmme mmme mme mme mmee mmee mmme mmee mme mmee e e

Menu Security

7. THE INSTRUCTIONS SECTION

Overview

The INSTRUCTIONS section is where you may write C language functions to alter the default logic of a screen form,
report, or menu template. The C functions will be called from userexits that you specify in other sections of your source
files.

Chapter 9, TOOLFLEX, briefly describes the C function library available to your INSTRUCTIONS section code.

Syntax

INSTRUCT IONS

ufuncname ()

{
Ccode
@variables
Ccode
$variables
Ccode
return(n);

END

Description

INSTRUCTIONS isarequired keyword.

ufuncname isaC function name that isthe parameter of a userexit of an earlier section of the source file.
{1} are the required brackets that enclose the C function body.
Ccode is C language code.

@variable is an Infoflex structure variable embedded in the C code.

$variable isan Infoflex value variable embedded in the C code.
return isarequired statement in a userexit C function. A userexit C function must return avalue even if it is only
0.
n isthe required return value of the userexit C function.
END isarequired keyword.
Notes
General

. For every C function called from a userexit there must be a C function defined in the INSTRUCT I ONS section.

. A Cfunction called from a userexit cannot have parameters.

Field Value Variables

Instructions Section 7-1

. Anywhere within Ccode you may access values from or assign values to database fields or screen form, report, or
menu fields by embedding a special Infoflex variable syntax usage:

database table $table.field
screen form $screen.fieldtag
report subsection $subsect.fieldtag
menu template $template.fieldtag

In the future we will refer to one of these variables as a$variable.

. You can assign a value to any $variable that is not associated with a character field. Here is an example using a
database field:

$bkmaster.bkno = 10;

Note that, reading this statement without the $, the syntax is equivalent to a C assigment to a structure element.

. Further, you can assign the value in a$variable to a conventional C variable. For example:

booknum = $bkmaster.bkno;

. You can also do arithmetic interchanging the two kinds of variables:

$customer.total =
$customer.sale + ($customer.sale * taxrate);

. Money fields are stored in units of cents. Therefore, to print amoney field in units of dollars, you must first divide the
value by 100. When assigning a value to an Infoflex money field, be sure to the units are in cents.

. The use of $variables with character fields is somewhat different. Here the value is actually the address in memory of
the contents of the field. You will not want to assign to this $variable because you will lose the address of the field
data. Character field $variables should never change their value. What can change is the character string stored at
the address. This example will change the contents of a character field:

strcpy($bkmaster.agent, "John Smith");

Since character $variables are null terminated, this works well, but the source string, "John Smith" in our example,
must be the exact length of the destination field. When copying strings from and to Infoflex character fields, we
recomment that you use the TOOLFL EX function move which will take care of any length mismatch problems for
you.

. A substring syntax is available with character $variables. For example, with a database field it is:

$table. fild(start, length)

Sart isthe position of the first character of the substring. Thefirst character of thefield isin position 0. Length isthe
length of the substring.

. A screen form array $variable may be subscripted to specify the row of the associated array field. Here is an
example of two array variables, the second is a substringed character field:

$bkdetail.bkno[0]
$bkdetail.bdesc[5](10,5)

If the subscripting is omitted, the $variable applies to the current array row.

Structure Variables

Instructions Section 7-2

. Many of the functions of TOOL FLEX (see Chapter 10) use one or more parameters that are database tables, screen
forms, report layouts, or menu templates, or fields of any of these. These structure variables have a specia Infoflex
variable syntax. Thisisthe syntax for structures above the level of the individual field:

database table @table
screen form @ screen
report subsection @ subsect
menu @template

For anindividual field, of a database table for example, the syntax is:
@tablefield

In the future we will refer to one of these variables as an @variable.

. The length of any character field, whether it be the field of a database table, screen form, report subsection, or menu
template, is available through an @variable. For example, with a screen form field it would be:

@ tablefield.fxlength

Instructions Section 7-3

Example

INSTRUCT IONS

befdelete()

{
move(@slImaster.bkno, @sldetail.bkno);
move(NULL, @sldetail.recno);
if (0> fmfind(@sldetail, @sldetail.sldbkno, ISGTEQ))
return(0);
if ($sImaster.bkno == $sldetail.bkno) {
msggerr("@Cannot delete");
return(-1);
}
return(0);
}
ae_bkdate()
{
if ($slinput.bkdate < curdate) {
msggerr("Date may not be prior to current date");
return(-1);
}
return(0);
}
END

Move, fmfind, and msggerr are functions of the TOOLFLEX function library (see Chapter 10).

Instructions Section

7-4

7-4

8. DATABASE DATA TYPES

These are the valid data types for fields of an Infoflex database table:
CHAR

A character string can have a length of 1 to 32767 characters. When assigning a character type to a field, the length n is
specified by this form: CHAR(n).

SMALLINT or SHORT
Thisis awhole number between -32,767 and 32,767.
INTEGER or LONG
Thisisawhole number between -2,147,483,647 and 2,147,483,647.

DECIMAL

This is the machine independent representation of the decimal number of up to 32 digits of precision. In the form
DECIMAL(mn) m is the total number of digits in the number, n is the number of digits right of the decimal point.
DECIMAL without parameters defaults to DECIMAL (16).

SMALLFLOAT

Thisisthe data type corresponding to the float C data type on your machine.
FLOAT or DOUBLE

Thisisthe data type corresponding to the double C data type on your machine.
MONEY

The MONEY data type has the structure as the DECIMAL type except that a money field in a screen or report will by
default display with adollar sign. The MONEY type is parameterized the same way as the DECIMAL, except MONEY (m)
isequivaent to DECIMAL (m,2), and MONEY without parameters is equivalent to DECIMAL(16,2).

SERIAL

Each newly inserted record with a value of O for the SERIAL field will receive a value 1 greater than the SERIAL field of
the previous record inserted. By default the SERIAL field of thefirst record inserted is 1. If the SERIAL field was assigned
with SERIAL (n), then the first record will have the value n. There can be at most one SERIAL field per table record. The
maximum serial is2,147,483,647.

DATE

In atable a DATE is stored as the number of days since December 31, 1899. It has equivalent size to the INTEGER type.
By default, dates are displayed to screen and report fields in the form of mnvdd/yy. They can beinput to screen fields in the
same format.

Database Data Types 81

TIME or MTIME

Inatable TIME or MTIME is stored as the number of elapsed seconds. It has equivalent size to the LONG type. By defaullt,
time fields are displayed to screen and report fields in the form of HH:MM:SS. By default, mtime fields are displayed to
screen and report fields in the military (24 hour clock) form of HH:MM:SS. They can be input to screen fields in the same
format. TIME or MTIME field types may not be used within the SQLflex cammands but may be used within Screen or

Report forms.

Database Data Types 8-2

9. ENVIRONMENT VARIABLES

An environment variable is a variable that maintains its definition between programs or operating system commands. This
chapter describes each of the environment variables that are used by the Infoflex system. The Application Set-Up topic in
Chapter 2 describes the fxsetenv utility used for automatically setting up these variables for Infoflex development.

FXDIR
FXDIR isthe full path name for the base directory of the Infoflex development system.

FXBIN

FXBIN isthe full path name of the directory containing the binary .pic files that define the screen and report formats of an
Infoflex application. The special file sysmsg.flx that contains all the standard messages of any Infoflex application must
also reside in this directory. The fxmkapp utility, described in The Application Set-Up topic in Chapter 2, will install

sysmsg.flx.

FXDATA

FXDATA isthe full path name of the Infoflex database directory.
FXHELP

FXHELP isthe full path name of the directory containing the application help files.
FXEDIT

FXEDIT defines the name of the editor program used in editing Infoflex source files from the Infoflex Development Menu.
It will also be the editor used by the Infoflex prntflex utility.

Initially FXEDIT is undefined, in which case the vi editor will be used on UNIX/XENIX systems and the e editor on DOS
systems.

FXPRINT

FXPRINT defines the printer control file to be used when printing. Refer to the Printer Setup chapter for further
explanation.

FXPRT
FXPRT controls printer configuration. Refer to the Printer Setup chapter for further explanation.

FXDATE

FXDATE defines the date format used throughout the screens and reports of an Infoflex application. In the format
definition MM represents the month, DD represents the day of the month, and Y'Y represents the year. MM/DD/YY isan
example of adefinition for FXDATE.

Initially FXDATE is not defined, and the default format of MM/DD/YY is used.

Environment Variables 9-1

Environment Variables

9-2

10. TOOLFLEX

10.1 Overview

This chapter describes all of the special C language functions available to your INSTRUCTIONS sections. These
functions provide the following general capabilities:

. Table management for adding, changing, or deleting database records.

. Screen management for prompting and displaying on avariety of terminal types.
. Data flow management between and among screen and table data buffers.
. Branching to external programs.

Thefirst three topics within this chapter, Buffer Usage, Global Variables, and Function Arguments, provide a good overview
before dealing with the specific functions of the TOOLFLEX library.

Toolflex 10-1
10-1

10.2 Data Buffers

To better understand TOOLFLEX functions, a brief explanation about Infoflex’s data buffersis essential. There are two data
buffers used when moving data between the video display and the database. These are the screen buffer and the table buffer
and are pictorially shown below:

Screen Buffer Table Buffer
L L
| SF1 | <----> | TF1 |
: SF2 : <----> : TF2 :
CRT <---> : SF3 : <----> : TF3 : <---> DISK
: SF4 : <----> : TF4 :
I I I I

SFn represents a screen field. TFn represents a database table field.

Screen Buffer

The screen buffer holds data for all fields belonging to a single screen image. Fields in this buffer are stored one after
another in a continous string and are in C internal format. Also, character fields are null terminated. Datais displayed
from or saved to this buffer whenever you use a screen management functions described later in this chapter.

Table Buffer

The table buffer holds data for all fields belonging to a single database table. Fields in this buffer are stored one after
another in a continous string and are in C-1ISAM format (see C-ISAM manual section V). Also, character fields are
null terminated. Data from a database table is written from and read to the table buffer whenever you use the table
management functions descibed later in this chapter.

How data entered on the screen is saved in the database and vice versainvolves a series of steps:

1) Thescreen prompts for the data using a screen management function (see the topic Screen/Report Management
Functions).

2) Datais moved from the screen buffer to the table buffer using a data flow management function (see the topic
Data Flow Management Functions).

3) Data is written to a database table using a table management function. (see the topic Table Management
Functions).

On the other hand, to display data on the screen that is stored in a database table, the reverse flow takes place. In this case
the program performs the following steps:

1) Dataisread from adatabase table using atable management function.
2) Datais moved from the table buffer to the screen buffer using a data flow management function.
3) Dataisdisplayed using a screen management function.

Toolflex 10-2
10-2

10.3 Global Variables

This topic describes the globa variables that you may use in your INSTRUCTIONS section C code. Most of these
variables are informational and must not be changed by the user. The variables that are user definable will be indicated as

such.
General
int flexmode
has the value of the current mode, which is one of these defines:
ADDMODE
CHANGEMODE
SEARCHMODE
HELPMODE
int flexkey

has the value of the last action key pressed (see the the include file fxcrt.h for possible key values).

long curdate
isto the current date. It isthe number of days since December 31, 1899.

char msgbuf[200]

isabuffer available for user definable messages. You may assign values to this buffer.
int *global.gargc

is the number of arguments in the program command line.

char *global.gargv(]
points to the program command line argument list.

Toolflex 10-3
10-3

Database Pointers

DBHEAD *global.gdbhead
points to the table associated with the current screen portion, header or array, as defined in the SELECT section.

DBINDEX *global.gdbindex
points to index of the table associated with the current screen portion, header or array, as defined in the SELECT
section.

DBFIELD *global.gdbfield
points to the table field associated with the current screen field. Accessable from field level userexits (i.e.
beforedit, afteredit, etc.).

Screen Pointers

SCRHEAD *global.gscrhead
points to the current screen portion, header or array.

SCRFIELD *global.gscrfield
points to the current screen field. Accessable from field level userexits (i.e. beforedit, afteredit, etc.).

Toolflex 10-4
10-4

10.4 Function Arguments

In following topics, some conventions are used with function argument names. The following is a brief description of these

conventions:

pscrhead

pscrfield

pdbhead

pdbindex

pdbfield

pfield

phead

is a pointer into an array of screen header structures of type SCRHEAD. The SCRHEAD structure
contains information about a screen.

is a pointer into an array of screen field structures of type SCRFIELD. The SCRFIELD structure
contains information about a screen field.

is a pointer into an array of table header structures of type DBHEAD. The DBHEAD structure
conatins information about atable.

is a pointer into an array of table index structures of type DBINDEX. The DBINDEX structure
contains information about a table index.

is a pointer into an array of table field structures of type DBFIELD. The DBFIELD structure
contains information about a table field.

is a pointer into an array of screen or table field structures of type FIELD. The FIELD structure
contains information about a screen or table field.

is a pointer into an array of screen or table header structures of type HEAD. The HEAD structure
contains information about a screen or table.

For functions requiring any of the above arguments, you should use the @variables as described in the Chapter 7, THE
INSTRUCTIONS SECTION. For run-time efficiency the @variables are converted to structure pointers by the Infoflex

pre-processor.

Toolflex

10-5
10-5

10.5 Table Management Functions

This topic describes the file management functions. These functions will enable you to read and write fixed length records
from and to a database table.

Below isalist of file management functions and a brief description of each. Note the correspondence between the C-1ISAM
set of functions and the ones listed below. For a more detailed description of these functions, refer to the TOOLFLEX
FUNCTION REFERENCE MANUAL.

In general, these functions will not effect the system catal ogs (database dictionary). To alter the system catal ogs, you should
use SQLFLEX.

fmaddindex(pdbhead, pdbindex)
adds an index to atable.

fmbldall(pdbhead)
builds atable and all itsindices.

fmbuild(pdbhead, pdbindex, mode)
creates atable.

fmclose(pdbhead)
closes atable.

fmcurchk(pdbhead)
tests if the read cursor of atable is positioned on arecord.

fmcurclr(pdbhead)
Clears the read cursor of atable.

fmdelcurr(pdbhead)
deletes the current record.

fmdelete(pdbhead)
deletes arecord. Fmdelete will only work with tables created with the fmbuild function. 1t will not work with
an SQLFLEX created table.

fmdelindex(pdbhead, pdbindex)
removes an index.

fmdelrec(pdbhead, recno)
deletes arecord from the table identified by its physical record number.

fmdictinfo(pdbhead, pdictinfo)
gets table parameters.

fmerase(pdbhead)
removes atable.

fmerrmsg(pdbhead)
displays an error message based on the last file management call.

fmfind(pdbhead, pdbindex, mode)
finds arecord based on mode and index. Does a combination of fmstart and fmread.

fmflush(pdbhead)
flushes data and indexes to disk.

fmindexinfo(pdbhead, pdbindex, pkeydesc)
gets information about atable sindices.

fmload(tablelist)
dynamically loads table information into memory.

fmlock(pdbhead)
Creates alock on the entire file.

Toolflex 10-6
10-6

fmopen(pdbhead, mode)
opens atable.

fmread(pdbhead, mode)
reads arecord into the table buffer.

fmrelease(pdbhead)
unlocks atable record.

fmrename(oldname, newname)
renames atable.

fmrewcurr(pdbhead)
rewrites the current record from the table buffer.

fmrewrec(pdbhead, recno)
rewrites arecord from the table identified by its physical record number.

fmrewrite(pdbhead)
rewrites a record from the table buffer. Fmrewrite will only work with tables created with the fmbuild
function. It will not work with an SQLFLEX created table.

fmsave(pdbhead)
saves the record defined in the table buffer. Fmwrite is called if the last fmfind cal was unsuccesful.
Fmrewcurr iscaled if the last fmfind call was successful.

fmsetserial(pdbhead)
sets the serial number in the table buffer.

fmsetunique(pdbhead, recnum)
sets the value of the internal unique identifier.

fmstart(pdbhead, pdbindex, keylength, mode)
positions the read cursor in atable.

fmstructview(pdbhead, pdbview, vwnum, vwstruct)
maps a set of database fields to a structure for future table management calls.

fmuniqueid(pdbhead, recnum)
gets the next unique number for atable.

fmunlock(pdbhead)
Unlocks afile previously locked with fmlock().

fmwrcurr(pdbhead)
writes atable record and move the table cursor.

fmwrite(pdbhead)
adds arecord to atable. SERIAL type fields are automatically incremented.

fxasave()
isthe default function for saving an array screen line to atable.

fxssave()
isthe default function for saving a non-array screen datato atable.

lookup(pdbhead, pdbindex)
looks up in atable based on the specified index.

Toolflex 10-7
10-7

10.6 Screen/Report Management Functions

Thistopic describes the screen management functions. These functions will enable you to:

1) Initialize your Infoflex program to handle different terminal types.
2) Prompt for data from the screen.

3) Display data on the screen.

4) Display literals and messages to the screen.

5) Set-up function key validation

Below isalist of the screen management functions subcategorized by the above capabilities with a brief description of each
function. For a more detailed description of these functions, refer to the TOOLFLEX FUNCTION REFERENCE

MANUAL.
Program Initialization and Termination

flexload(picname)
initializes the terminal and loads a .picfile.

flex(argc, argv)
same as flexload() plus runs the flex program.

flexemd(command)
same as flex().

fxabort(status)
exits a Infoflex program gracefully.

fxinit()
initializes an Infoflex program for a particular terminal type.

Data Prompting

fxaccept(pscrfield)
prompts for a screen field defined in the SCREEN section.

getkey()
prompts for asingle key press.

inyesno(row, col, msg)
promptsfor aY or N response.

prompt(row, col, length, dec, type, attr, fmt, buffer)
prompts for data from any position on the screen (not into afield variable).

Data Display

getxypos(pscrfield, prow, pcol)
gets the CRT row and starting column position of a screen field.

scrollpage(mode)
scrolls the array portion of the screen.

tclrall(pscrhead)
clears all screen fields for the screen header or array.

telrfld(pscrfield)
clears a screen field.

tclrrec(pscrhead)
clears all screen fields for the screen header or the current row of the array.

Toolflex

10-8

10-8

tclrrng(pscrfield, pscrfield)
clears arange of screen fields.

tmapfld(pscrfield)
displays a screen field from the screen buffer.

tmaprec(pscrhead)
displays all screen fields from the screen buffer.

tmaprng(pscrfield, pscrfield)
displays arange of screen fields from the screen buffer.

Literal and Message Display

bflush()
Flush interna 1/0O buffer to the terminal screen.

boxline(urow, Icol, brow, rcol)
displays abox using asingle line border. Bflush must be called for this function to take effect.

boxrev(urow, Icol, brow, rcol)
displays abox with areverse attribute background. Bflush must be called for this function to take effect.

bshow(msg, attr)
buffers a message to display on the screen.

bshowxy(row, col, msg, attr)
buffers amessage to display at any position on the screen.

clrbox(urow, Icol, brow, rcol)
clears abox. Bflush must be called for this function to take effect.

clreol()
clears to the end of the current screen line. Bflush must be called for this function to take effect.

clreos(row, col)
clears to the end of the screen. Bflush must be called for this function to take effect.

clrpage(pscrhead)
clears a screen form region. Bflush must be called for this function to take effect.

clrrng(row, nlines)
clears arange of screen rows.

clrser()
clears the entire screen. Bflush must be called for this function to take effect.

gotoxy(row, col)
positions the screen cursor to the specified row and column. Bflush must be called for this function to take
effect.

graphout(row, col, length, graphmacro)
draws a horizontal or vertical line.

message(row, col, msg, attr)
clears aline and displays a message on the screen.

msgcomment(msg)
displays a message to the comment line.

msgerr(msg)
displays a message to the error line.

msggerr(msg)
displays a message to the error line and waits for akey press.

msgstat(msg)
displays a message to the status line.

Toolflex 10-9
10-9

msgwait(msg)
displays a blinking message to the status line.

page(pscrhead)
displays all screen literals.

putkey(row, col, key)
displays a single character on the screen. Bflush must be called for this function to take effect.

repaint()
repaints the screen literals and fields.

setcursor(mode)
Turn the screen cursor on or off.

show(msg, attr)
displays a message on the screen.

showxy(row, col, msg, attr)
displays a message at any position on the screen.

skipto(pscrfield)
specifies the next screen field to take input.

Function Key Validation

keychglabel(key, label)
changes a function key label.

msgfunc(msg)
displays a message to the function key label line and makes that the new function key label.

msgnfunc()
displays the function key number label: F1 F2 F3...

Toolflex 10-10
10-10

Reports Only

rptline(buffer)
outputs alinefeed character to areport.

rptprint()

outputs arecord according to the REPORT section.
rptgetline()

returns current report line number.

rptineed(n)
reguests a number of report output lines for the page.

rptformfeed()
outputs the new page character to areport.

Miscellaneous

chkent(pscrfield)
check if afield is data enterable.

modoffrng(pscrfirst, pscrlast)
turns off the modify flag for arange of screen fields.

modonrng(pscrfirst, pscrlast)
turns on the modify flag for arange of screen fields.

nodisplay(pscrfield)
sets the nodisplay flag for a screen field.

nolookup(pscrfield, type)
sets the nolookup flag for a screen field.

sfswap(pscrfield, pscrfield)
swap two screen fields.

skip(pscrfield)
marks afield so it is skipped during data entry.

unnodisplay(pscrfield)
turns the nodisplay flag off for a screen field.

unskip(pscrfield)
marks afield so it isnot skipped during data entry.

Toolflex

10-11

10-11

10.7 Data Flow Management Functions

This topic describes the data flow management functions. These functions will enable you to move data between and
among the screen and table buffers as well as move data between the buffers and C variables. The Data Bufferstopic in this
chapter describes these buffersin detail.

Below is a list of data flow management functions and a description of each. For a more detailed description of these
functions, refer to the TOOLFLEX FUNCTION REFERENCE MANUAL.

Screen Buffer

buftostr(s1, s2, type, length, dec, fmt)
converts a value to a string.

getsf(pvalue, pscrfield)
gets the field value from the screen buffer.

SCRFIELD *getsfp(pscrhead, name)
gets a screen field pointer.

SCRHEAD *getshp(name)
gets the pointer to a screen header.

putsf(pvalue, pscrfield)
puts avalue into afield of the screen buffer.

sclrfld(pscrfield)
clears afield in the screen buffer.

sclrrec(pscrhead)
clears all fields in the screen buffer.

sclrrng(pscrfirst, pscrlast)
clears arange of fields in the screen buffer.

strtobuf(s1, s2, type, length, fmt)
converts astring to avalue.

Toolflex 10-12
10-12

Table Buffer

dclrfld(pdbfield)
clears afield in the table buffer.

dclrrec(pdbhead)
clears al fields in the table buffer.

dclrrng(pdbfield, pdbfield)
clears arange of fields in the table buffer.

getdf(pvalue, pdbfield)
gets afield value from the table buffer.

DBFIELD *getdfp(pdbhead, name)
gets atable field pointer.

DBHEAD *getdhp(name)
gets the pointer to atable header.

putdf(pvalue, pdbfield)
puts afield value into the table buffer.

General Buffer/Variable

datestr(datenum, datestr, format)
converts a number of days since December 31, 1899 to date string format. The format is specified by a format
string.

dmapfld(pdbhead, pscrfield)
copies afield from the screen buffer to itsrelated table buffer field.

dmaprec(pdbhead, pscrhead)
copies al fields from the screen buffer to their related table buffer fields.

dmaprng(pdbhead, pscrfield, pscrfield)
copies arange of fields from the screen buffer to their related table buffer fields.

double fxround(value, places)
rounds a value to the specified number of places.

gettime(numtime)
gets the current time in number of seconds since midnight.

gettoday(humdate)
gets today’ s date in days since December 31, 1899.

isempty(pfield)
tests for a0 or null value in afield.

ismodfld(pfield)
testsif afield has been modified.

ismodrng(pfield, pfield)
tests if arange of fields has been modified.

isnull(pfield)
returns 1 if the field value is null.

iszero(pfield)
returns 1 if the field value is zero.

move(pfield, pfield)
copies the data of onefield to another. Thisfunction will convert data types if necessary. In addition, one of the
arguments may be a pointer to a C variable provided it is of the same type and length.

rdatestr(datenum, datestr, type)
converts a number of days since December 31, 1899 to date string format. The format is specified by a macro.

Toolflex 10-13
10-13

rstrdate(datestr, datenum, type)
converts a date format string to the number of days since December 31, 1899. The format is specified by a
macro.

rstrtime(s, secs, type)
converts astring to an internal time format.

rtimestr(secs, s, type)
converts an internal time format to a string.

setnull(pfield)
sets the value of field to null.

setzero(pfield)
sets the value of field to 0.

smapfld(pdbhead, pscrfield)
copies afield from the table buffer to its related screen buffer field.

smaprec(pdbhead, pscrhead)
copies al fields from the table buffer to their related screen buffer fields.

smaprng(pdbhead, pscrfield, pscrfield)
copies arange of fields from the table buffer to their related screen buffer fields.

strcenter(s, totlen)
centers a string within a given length.

char *strcompress(s)
deletes leading and trailing white space from a string.

strdate(datestr, datenum, format)
converts a date format string to the number of days since December 31, 1899. The format is specified by a
format string.

char *strfind(s, t, comp)
finds a substring within a string.

char *strltrim('s, c)
trims a character from the left of a string.

char *strscan(s)
skips leading white space.
char *strtrim('s, c)
deletes atrailing character from a string.

sysdate(buffer)
gets the system date.

systime(buffer)
gets the system time.

Toolflex 10-14
10-14

10.8 Program Branching

fxcallv(argc, argv)
calls another program using main-like parameters. The calling program isreturned to.

fxchain(argc, argv)
chains to another program. The calling program is not returned to.

fxsystem(command)
does a system call.

Toolflex 10-15
10-15

10.9 Main Function

When creating an Infoflex program, a default main function is automatically provided to you. If you choose to write your
own main function, you will need to do the following:

. The flexload function (under the Screen Management Functions) must be called prior to using any other TOOL FLEX
function. Flexload sets up the terminal and loads .pic file information.

. The fxabort function (under the Screen Management Functions) must be called at the end of your program to restore
terminal settings and close any open files.

Example

INSTRUCT IONS

main(argc, argv)

int argc;

char *argv[];

{
flexload(argv([1l]); /* argv[l] is the .pic file */
Rest of program

fxabort(0);

END

Toolflex 10-16
10-16

10.10 Error Codes

When an error condition arises in the execution of a standard C function or a TOOLFLEX function, the global variables
errno and/or iserrno, may be set to an error code.

Iserrno will be set whenever an error occurs with the file management routines (functions which start with fm). A listing of
the possible values for iserrno and there meanings can be found in chapter E-Runtime Errors.

Toolflex 10-17
10-17

Toolflex 10-18
10-18

11. THE HELP SYSTEM

11.1 Overview

The Infoflex on-line help facility provides information at many levels, from the most general help down to field specific
help.

The help files are simple text files that are created in an editor of your choice. The FXHEL P environment variable defines
the directory in which the help files of your application reside.

The following topics show how to properly name and format these files so they can be appropriately accessed at runtime.

11.2 Levels of Help

The Help facility displays twenty lines of help file text at atime. The other 4 available lines are used for titles and function
key labels. To control the page breaks of the help text, you will use the specia character % placed at the begining of aline.

The following are the different levels of help and how they are set up.

Application Wide

Help information about the application asawhole is placed in the file helpgen.hlp.

Module Wide

Help information that applies to a group of source files (or module) is placed in afile called xxgen.hlp, where xx are
the first two characters of the source filenames. To use this help level effectively, source filenames belonging to the
same modul e should begin with the same two characters.

Source

Source help is the help information that applies to a single source file. Help information about al screens and their
fields are placed in this file. The name of the help file will be the same name as the source file with the extension .hlp.

There are a couple of simple rules governing the organization of the source level help file. This organization will
alow you to provide help text for an unlimited number of screens and fields within any source file.

The screen level help within your help file is designated by placing the specia character ! in the first position of aline
followed by the screen name. The help text for this screen should follow on the next line and may be any number of
lines.

Thefield level help will come after the screen level help. To designate where the help text begins for a field, you will
place an @ in the first position of aline followed by the screen’s tagname. The field level help text should start on the
next line.

Below isasimple example of a source help file:

The Help System 11-1
11-1

lcustscreen
This screen is for entering customer

%

information. This screen will
you to update, delete, or add.
providing you have the proper
authorization.

@custcode

This is the Customer code.
This code is required and
must be numeric and no more
than 10 characters in length.

@custname

This is the Customer name.
The name is alphanumeric and

al low
Customers

should always be entered in uppercase.

@custphone
The phone number should include

the area code.

Action Keys

This help information is as general as the application wide help and can be accessed from any screen form of the
application. This help provides instruction as to the genera function of all the special keys of the application,
including cursor move keys and function keys. A canned helpfunc.hlp file is supplied with every distribution of the

Infoflex Development System. You may modify thisfile in the help directory of your particular application.

User Notes

User notes help information is any screen form specific notes that anyone may want to add to the file source.not, where
source is the name of the source file.

The Help System

11-2

11-2

11.3 Help At Run-Time

Here are the run-time features of the Infoflex help system:
. The help subsystem is accessed by pressing the HEL P key while in a screen form.
. First any help information is displayed for the specific form field that was cursor addressed at the time that the HEL P

key was pressed.
. With a help screen displayed, the function key ruler at the bottom of the video display is:
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16
EXIT JUMP PREV NEXT -

. Pressing the NEXT key pages through the help available screens. From the field specific help it will move on to the
action key help, then to the user notes, then to the application wide, module wide, and finally screen help before it
loops back to the field specific help again. The PREV key reverses the direction of the help paging.

. The JUMP key displays a prompt that allows the user to select the type of help he wants.

. At the time that the HEL P key was pressed if the cursor addressed a screen form field that has a tablehelp attribute,
then a table help screen is additionally available through the JUMP prompt. See the next chapter for a full
description of the tablehelp attribute.

. EXIT or ESC (ESC ESC on UNIX or XENIX systems) returns to where the user left off in the calling screen form.

The Help System 11-3
11-3

The Help System 11-4
11-4

12. SQLFLEX

SQLFLEX is the Infoflex language and procedure for creating and modifying the structure of your Infoflex databases and
querying their contents.

To execute an SQLFLEX operation you must create atext file script.sql which contains statements in the language of SQLFLEX.
You then invoke script.sql from your operating system prompt with:

fxsgl script
The database effected is the one defined by the FXDATA environment variable.
Every SQLFLEX statement in script.sql must be terminated with a semicolon, ;.

Below isalist of al the SQLFLEX statements and brief description of each. Each statement will be described in detail in the
subsequent topics of this chapter.

alter table changes the file structure of atable.
create database creates a database.
create index creates an index for atable.

create table creates atable.

delete delete records from atable.

drop database removes adatabase.

drop index removes an index from atable.

drop table removes atable from a database.

info provides info about the structure of a database.
insert insert arecord into atable.

load load data into atable from atext file.

rename column changes the name of atable field.
rename table changes the name of a database table.

select gueries data from one or more tables.
unload unload data from atable into atext file.
update update data of recordsin atable.
SQLflex 12-1

12-1

12.1 ALTER TABLE

Overview

The alter table statement modifies the field structure of a table. You may add fields, remove fields, or change their
data type.

Syntax

alter table table

{ add(newfield newdtype [before oldfield], . . .)
| drop(oldfield, . . .)
| modify(oldfield newdtype [not null 1, . . .)
Yoo
Description

alter table are required keywords.

table isthe required name of atable of the current database.
add isakeyword used to add a new field to table.
newfield isthe name of the field to be added.
newdtype isnewfield’ s data type specification or, for modify, oldfield’s new data type specification.
before isan optional keyword that specifies the existing field of table before which newfield will be inserted.
Without a befor e clause, newfields are added to the end of the sequence of fields.
oldfield isthe name of an existing field of table.
drop isakeyword used to remove an oldfield.
modify isakeyword used to change the data type or length of an oldfield.
not null are optional keywords specifying that afield may never have anull value.
Notes
. You may use any number of add, drop, or modify clauses and in any order. Separate the clauses with commas.

The actions are performed in the specified order, and if any fail, the entire operation is canceled.
. You may not add a serial field to atable with records.
. You cannot modify afield to not null if existing records have null valuesin that field.
. Character to numeric data type conversions will lose non-numeric information in the original character fields.

. For newdtype see Chapter 8, DATABASE DATA TYPES.

Example

alter table bkmaster
add(agent char(4) before status),
drop(comamount, refamount),
modi fy(postdate date not null);

SQLflex 12-2
12-2

12.2 CREATE DATABASE

Overview

The cr eate database statement creates a database.

Syntax

create database dbname

Description

create database are required keywords.

dbname isarequired name of the database to be created.
Notes

. This statement will create the database directory dbname.dbs in the current directory. All the initia system
catalog tables will be created.

Example

create database trvagen

SQLflex 12-3
12-3

12.3 CREATE INDEX

Overview

The create index statement creates an index for atable.

Syntax
create [unique] index indexname
on table(field [asc | desc] [, . . . 1)
Description

create index

unique

indexname
on

table

field

are required keywords.

is an optional keyword which prevents more than one record from having the same value for
indexname.

isarequired name of the index. There must be a unique identifier for every index of a database.
isarequired keyword.
isthe name of the table for which the index is being created.

is the name of afield of table that is used in the index. The index may be made up of one or more
fields of table. If more than one, the fields are comma separated.

isan optional keyword to specify an ascending ordered field. Thisisthe default condition.
isan optional keyword to specify a descending ordered field.

SQLflex

12-4
12-4

Example

create index bkmagent
on bkmaster(agent, bookdate desc, bkno);

SQLflex 12-5
12-5

12.4 CREATE TABLE

Overview

The create table statement creates atable in the current database.

Syntax

create table tablename
(field dtype [not null

I o)

Description

create table arerequired keywords.

tablename isthe name of the database table being created.
field isthe name of afield of table.
dtype isthe data type of field.
not null are optional keywords specifying that afield may never have anull value.
Notes
. Table names must be unique within a database.
. Field names must be unique within atable, but the same field name can be used in different tables.

. If there is more than one field in atable, the field specifications are separated by commas.

. A table can have no more than one serial type field.

. For dtype see Chapter 8, DATABASE DATA TYPES.

Example

create table bkmaster (

bkno serial (50),
name char (20),
bookdate date,

passno integer not null,
reference char (6),

agent char (4),
status char (1),
postdate date not null,
salamount money,
comamount money,
refamount money

SQLflex

12-6

12-6

12.5 DELETE

Overview

The delete statement del etes one or more records from a database table.

Syntax

delete from table
[where wcondition]

Description

delete from arerequired keywords.

table isthe name of the table from which to delete records.
where is an optiona keyword for a clause that specifies selection criteria that may reduce the scope of the
records deleted.
wcondition is the boolean expression of the wher e clause.
Notes

. A delete statement without a wher e clause will delete all records of table. In this case the user is asked if heis
sure he wants to delete all records of the table.

. The syntax for weondition is exactly the same as for the select statement.

. The delete statement locks table from other users modifications during the delete operation.

SQLflex 12-7
12-7

Example

delete from alltypes
where fint = 1000;

SQLflex 12-8
12-8

12.6 DROP DATABASE

Overview

The drop database statement removes a database.

Syntax

drop database dbname

Description

drop database arerequired keywords.

dbname is the name of the database to be removed.
Notes
. WARNING: all data within the database will be deleted with this statement.
. This statement removes the directory dbname.dbs from the current directory. On UNIX and XENIX systems

you must own the directory to remove it.

Example

drop database bkmagent;

SQLflex 12-9
12-9

12.7 DROP INDEX

Overview

Thedrop index statement removes an index from the database.

Syntax

drop index indexname

Description

drop index are required keywords.

indexname is the name of index to be removed.

Example

drop index bkmagent;

SQLflex 12-10
12-10

12.8 DROP TABLE

Overview

The drop table statement removes atable and its associated indices from a database.

Syntax

drop table tablename [onerror [warning]]

Description

drop table are required keywords.
tablename is the name of the table to be removed.

onerror is an optional keyword where if tablename does not exist, drop table will not produce a fatal error
condition for the SQLFLEX script.

warning is an optional keyword that may be used with the onerror clause. A non-fatal warning message is
displayed if tablename does not exist.
Notes
. WARNING: al data within tablename will be deleted with this statement.

Example

drop table bkmaster;

SQLflex 12-11
12-11

12.9 INFO

Overview

Theinfo statement provides information about the database structure.

Syntax

info { tables
| columns for tablename
| indices for tablename

}

Description
info isarequired keyword.
tables isakeyword requesting alist of the tables of the database.

columns for are keywords regquesting alist of the column of field names for atable.
indices for are keywords requesting alist of the indices for atable.

tablename isthe name of the table for which field or index information is being requested.

Notes

. Information on afield will also provide the field type and whether anull value is permitted for the field.

. Information on an index will aso provide the table fields comprising the index and whether the index allows
duplicate values.

Examples

info tables
info columns for bkmaster;

info indices for bkdetail;

SQLflex 12-12
12-12

12.10 INSERT

Overview

Theinsert statement creates database table records.

acomma separated list of constant values that will be inserted into the corresponding fields of fieldlist.

a select statement used in place of the values clause to create records by selecting field values from

Syntax
insert into table [(fiddlist)]
{ values congantlist
| selectstmt
}
Description
insert into are required keywords.
table isthe name of the table in which to add records.
fieldlist an optional comma separated list of field names. Each field must be afield of table.
values isakeyword.
constantlist
selectstmt
other fields of the database.
Notes

. If fieldlist is omitted, then all fields of the created record will have values inserted and in the order that the

SQLFLEX info statement describes.

. The values of the values clause or those selected using the select statement must have compatible data types
with the corresponding fields being inserted.

. Decimal precision loss or string truncation may occur and is reported as warning messages when it does. The
warning messaging can be turned off with the -nw command line option to fxsgl.

. Numeric constants of constantlist can be represented as strings, that is, bracketed with quotation marks.

. A select statement used in an insert cannot have an into temp or order by clause.

. Serial type fields of inserted records will receive the next serial value for the table if the serial field is omitted
from fieldlist or, when it isincluded, the corresponding value in constantlist isO.

Examples
insert into alltypes (

fchar2, fsmallint, fshort, fint,
flong, fdec2, fdec3, fsmal [flt,
ffloat, fdouble, fmoney,
fdate, ftime, fmt ime

)

values (
A", 2, 3, 4,
50000, 12.34, 123.456, 123.4,
123456.789, 987654.321, 999.99,
"01/01/89", "08:17:45", "14:07:55"

)i

SQLflex 12-13

12-13

12.11 LOAD

Overview

The load statement loads data into a database table from a specially formatted ASCII text file. This is useful in
transfering information between computers or databases in a machine independent format.

Syntax

load from "loadfile"
insert into table [(fiddlist)]

Description

load from are required keywords.

loadfile isthe required absolute or relative path name of atext file containing the data to be loaded.

insert into are required keywords.

table isthe name of the table in which to load records.

fieldlist an optional comma separated list of field names. Each field must be afield of table.
Notes

. Each line of loadfile represents the data of a single record. The data of each field is terminated with the vertical
bar character, | . Fields do not have to be fixed width, and character strings are not quoted.

. If fieldlist is omitted, then al fields of the created record will expect values from loadfile and in the order that the
SQLFLEX info statement describes.

. The values of in loadfile must have compatible data types with the corresponding fields being loaded.

. Decimal precision loss or string truncation may occur and is reported as warning messages when it does. The
warning messaging can be turned off with the -nw command line option to fxsgl.

. Serial type fields of loaded records will receive the next serial value for the table if the serial field is omitted
from fieldlist and therefore loadfile, or, when it isincluded, the corresponding field in loadfile is 0.

Example

load from "alltypes.Id"
insert into alltypes (

fchar2, fsmallint, fshort,
flong, fdec2, ffloat,
fmoney, fdate, ftime

will successfully load the following file alltypes.ld:

A|2]3]50000|12.34|123456.789|999.99|01/01/89]|08:17p]|

SQLflex 12-14
12-14

12.12 RENAME COLUMN

Overview

The rename column statement changes the name of a database table field. Column is the standard SQL term for a

table field.

Syntax

rename column tableoldfield to newfied

Description

rename column are required keywords.

table isthe required name of the table of the field to be renamed.
oldfield isthe old name of the field to be renamed.
to isarequired keyword.
newfield isthe new name of the field to be renamed.
Example

rename column bkmaster.booknum to bkno;

SQLflex
12-15

12-15

12.13 RENAME TABLE

Overview

Therename table statement changes the name of a database table.

Syntax

rename table oldtable to newtable

Description

rename table are required keywords.

oldtable is the old name of the table to be renamed.

to isarequired keyword.

newtable is the new name of the table to be renamed.
Example

rename table bookmast to bkmaster;

SQLflex 12-16
12-16

12.14 SELECT

Overview

The select statement queries information from one or more tables of a database.

Syntax
select [all | unique | distinct] selectliss from tablelist
[where wcondition]
[group by grouplist]
[having hcondition]
[order by sortfield [desc 1 [, . . .] 1]
[into temp temptable]
Description
select isarequired keyword.
all isaoptional keyword that specifies the default selection result, all rows satisfying the where clause,
including any duplicate rows.
unique isaoptional keyword that will eliminate duplicate rowsin the query results.
distinct isaoptiona keyword and isa synonym for unique.
selectlist isalist of constant expressions and/or field expressions separated by commas. In the future we will
refer to a SQLFLEX field expression as afieldexp.
from isarequired keyword.
tablelist isalist of one or more table names separated by commas.
where is an optional keyword for a clause that specifies selection criteria that may reduce the scope of the
query results.
wcondition is the boolean expression of the wher e clause.
group by are optional keywords to produce a single row of results for selected records with the same values for
grouplist.
grouplist isalist of field names separated by commas.
having isan optional keyword that applies one or more qualifying conditions to groups.
hcondition is the boolean expression of the having clause.
order by are optional keywords that will allow you to sort your query results.
sortfield is a field of selectlist that will be sorted for the order by clause. Where there is more than one
sortfield, they will be separated by commas.
desc isan optional keyword to specify that the sort order of a sortfield be reversed.
into temp are optional keywords to specify that the results of the select should be output to a temporary table.
By default a select outputs to the screen.
temptable isthe name of the temporary table of the into temp clause.
Notes
General
. There are two general classifications of fieldexp. First, afieldexp can be afield or a calculation involving one or
more fields of a single record. This is called a single record fieldexp. The second kind of fieldexp involves
SQLflex 12-17

12-17

operations over a number of records of atable. Thisis called an aggregate expression and must use one or more
of the aggregate functions. These functions will be discussed in detail under alater topic, Aggregate Functions.

The boolean expression of wcondition or hcondition can involve comparisons with constant expressions as well
as fieldexps. A fieldexp in wcondition must be a single record fieldexp. A fieldexp in hcondition must be an
aggregate expression. Boolean expressions will be taken up in the next topic, Boolean Expressions.

SQLflex

12-18
12-18

When afield of type char isused in afieldexp, you may subscript the field name. For example,

bkmaster.agent[5,10]

only uses the fifth through tenth characters of the agent field.

Both constant expressions and fieldexps can involve arithmetic operations. These are the available arithmetic
operators:

Operator Operation

+ addition
subtraction

* multiplicaton

/ division

Multiplication and division have precedence over addition and subtraction. Where operators have equal
precedence, the precedence isleft to right. Use parentheses to override the default precedence rules.

The keyword rowid can be used anywhere that a fieldexp can be used. Rowid represents the physical record
number of a selected record. You may reference the rowid of a particular table with, for example:
bkmaster.rowid.

A date function can be used in expressions of the selectlist, wcondition, or hcondition. Each date function takes
a single parameter which must be a DATE type expression. Where the date expression is an integer, this is
interpreted as a number of days since December 31, 1899. These are the date functions and what they do:

day returns the day of the month, 1-31.
month returns the month of the year, 1-12.
weekday returns the day of the week, 1-7.
year returns the year, eg. 1988.

SQLflex

12-19
12-19

The keyword variable today can be used anywhere that a constant can be used. Today equates to the current
system date. Multiplication and division with today isinappropriate, but

today - bkmaster.bookdate

for example, will give use the number of days since bookdate.

The keyword variable user is recognized on UNIX and XENIX systems and can be used anywhere that a
constant can be used, though doing arithmetic with user is not appropriate. User equates to the current user's
log-in name.

Select Clause
To make afield name unambiguous, you may prefix the field with the table name, for example: bkmaster .bkno.

The selectlist of * will select all the fields of all tables of the from clause. A selectlist expression of table.*
will cause all fields of table to be selected.

You may add an alias to any constant expression or fieldexp in the selectlist. The expression and its alias are
separated by a space. Thisdlias is an identifier that would appear in the heading of the select output or would
become afield name of temptable if there isan into temp clause.

Theresults of selecting a date value is an expression with the format mm/dd/yyyy .

If the selectlist contains an aggregate expression as well as a single record fieldexp, then there must be a group
by clause and all table fields of the single record must be members of the grouplist.

From Clause

You may add an dlias to an table name in the tablelist. The table name and its aias are separated by a space.
This allows you to access the same table twice with unique away of specifying which access is being made:

select itin.fromcity, citl.name,
itin.tocity, cit2.name
from itin, city citl, city cit2
where itin.fromcity = citl.code and
itin.tocity = cit2.code

The outer keyword can be prepended to any table of the tablelist, except the first. The outer table must have a
join relationship to a parent table. If there are no rows from the outer table satisfying the join, the qualifying
rows of the parent or parents of the outer table will still be output in the select result. In a simple example we
have the table fields x.a and y.b that contain these values:

X.a y.b
1 2
2

Thefollowing select statement:

select * from x, y
where x.a = y.b

will produce:
2 2

However, if we add this outer relationship:

select * from x, outer y
where x.a = y.b

the result will be:
1 -
2 2

Digoint outer tables cannot be joined, such astablesb and cin:

SQLflex

12-20
12-20

select * from a, outer b, outer c

Here are some examples of hierarchical outer relationships:

select * from a, outer (b, outer c)

select * from a, outer (b, p, g, outer (c, vy, z))

Where Clause

The boolean expression of wcondition can involve comparisons with constant expressions as well as single
record fieldexps. There cannot be aggregate expressions in wcondition.

To make afield name unambiguous, you may prefix the field with the table name.

Group By Clause
All fields of the any single record fieldexpsin the selectlist must be included in the grouplist.

The group by clause allows you to construct a selectlist containing both single record fieldexps and aggregate
fieldexps. Without aggregate expressions in the selectlist, select unique will produce the same result as group

by.
Any aggregate expressions in the selectlist produce a separate result for each group.

Having Clause

The boolean expression of hcondition can involve comparisons with constant expressions as well as aggregate
properties of the group. There cannot be single record fieldexps in hcondition. Without a group by clause, all
the records selected comprise a single group.

Into Temp Clause

Temptable exists only for aslong as the SQLFLEX script that created it runs.

The names of the fields in temptable are the names of the fields in the selectlist. Where an expression in the
selectlist is other than a simple field name, in other words, a constant, an aggregate or date function, or any
arithmetic expression, then the expression must be followed by a space and an alias name. This aias name will
become the field name of the temptable.

The keyword constant null can be an element of selectlist and is the way to initialize the corresponding field of
temptable to null.

Examples

select agent, bookdate, salamount from bkmaster

where salamount > 1000
order by agent, bookdate desc;

select * from bkmaster, bkdetail

where bkmaster.bookdate = bkdetail.bookdate
into temp jointable;

select agent, sum(salamount) from bkmaster

group by agent
having sum(salamount) > 10000;

SQLflex

12-21
12-21

12.15 Boolean Expressions

Overview
A boolean expression evaluates to true or false.

There are seven different syntactical usages for the SQLFLEX simple boolean expression. These will be discussed
under the following six subtopics.

Syntax

expr relop expr

fieldname matches "wildstr"

fieldname |ike "wildstr"

expr between constant and constant

expr in (valueist)

expr in (selstnt)

expr selrelop { all | any | some } (selstnt)
exists (sestmt)

fieldname is null

Description
expr isafieldexp asdefined under the SELECT topic or a constant expression.
. The remaining syntax terms will be described under their related subtopic.
SQLflex 12-22

12-22

Notes

These are the available relational operators:

Operator Operation

= equal

I=or<> not equal

> greater than

>= greater than or equal
< less than

<= less than or equal

Any number of simple boolean expressions can be combined with the logical operators and or or to make
complex boolean expressions. The logical operator and has precedence over the operator or. Use parentheses
to override the default precedence rule.

Any boolean expression can be preceded by the boolean unary operator not. A complex boolean expression
must be enclosed in parentheses to apply anot toit.

For character data, uppercase letters have lesser value than lowercase letters. Thus, Z is less than a. Numbers
are lessthan letters. The collating sequence of all letters follows the ASCII character set.

For date expressions, greater than means later in time.
The keyword identifiers today and user may be used for expr s of type DATE and CHAR, respectively.
Date constants are quoted strings of the format mm/dd/yy.

Only the last simple boolean expression of a complex boolean expression can have a selstn.

SQLflex

12-23
12-23

SIMPLE COMPARISON

The simple comparison compares one expression to another using the standard boolean relational operators.

Syntax

expr relop expr

Description
expr isafieldexp asdefined under the SELECT topic or a constant expression.
relop isarelational operator.
Examples
status != "D"
agent = "Jones" and bookdate > today - 90

A table name prefix is only required in order to resolve ambiguities of like named fields in more than one table of the
select’ sfrom clause.

bkmaster.bookdate = bkmaster.postdate

bkmaster.comamount > 0.10 * bkmaster.salamount

This example uses the aggregate function max:

max (refamount) > 10000

SQLflex 12-24
12-24

WILDCARD STRING COMPARISON

The wildcard string comparison compares the value of a table field of type CHAR with a string pattern that contains
possible wildcard characters.

Syntax

fieldname matches "wildstr"

fieldname | ike "wildstr"

Description
fieldname isthe name of afield of atable in the select statement’ sfrom clause.
matches isarequired keyword that specifies that awildcard string comparison isto be done.
like isarequired keyword that specifies that awildcard string comparison isto be done.
wildstr isastring of characters that contains possible wildcard characters. The syntax of this wildcard string
for the matches operator differs from that for the like operator.
Notes
. These are the available wildcards and how they are used for wildstr of the matches operator:

? matches any single character.

* matches zero or more characters.

[c...] matches any of the characters enclosed in the brackets.

[a-z...] matches any of the characters between a to z. There can be any number of the range
specifications interspersed with individual characters within the brackets.

[(c...] matches any of the characters not enclosed in the brackets. There may also may be range
specifications interpersed with the characters. The . and * characters do not have wildcard
meaning inside brackets.

\ removes any wildcard meaning of the next character. \ can also be used within[]’s.

. These are the available wildcards and how they are used for wildstr of the like operator:
matches any single character.

% matches zero or more characters.

. Fieldname isa single field fieldexp, and therefore the wildcard string comparison cannot be used in the boolean

expression of ahaving clause.

Examples

This example will match athree character pattern of the letter A, followed by any letter, followed by a digit between 0
and2orat:

refno matches "A?[0-27]"

This example will match patterns not ending in son:

not agent matches "*son"

SQLflex 12-25
12-25

These are the corresponding examples using the like operator:

refno like "A_0" or refno like "A_1" or
refno like "A_2" or refno like "A_7"

not agent like "%son"

SQLflex 12-26
12-26

BETWEEN OPERATOR

The between operator allows you to test if an expression isin the inclusive range between two constant values.

Syntax

expr between constant and constant

Description
expr isafieldexp asdefined under the SELECT topic.
between isarequired keyword.
constant isaconstant of the same data type as expr .
and isarequired keyword.
Notes

. Date constants are quoted strings of the format mm/dd/yy.

. The keyword identifiers null, today, and user may be used as values in valudlist, but not in ranges.

Example

bookdate between "01/01/90" and today

SQLflex 12-27
12-27

LIST COMPARISON

A list inclusion expression compares the value of an expression to one or more constant values in alist of values.

Syntax

expr in (valudist)

Description
expr isafieldexp asdefined under the SELECT topic or a constant expression.
in isarequired keyword.
valuelist isacomma separated list of constants of the same data type as expr .
Notes

. Valuelist may include arange expression, which istwo values separated by a dash, -. Thefirst value of the range

must be less than the second value. If the second value of the range is a negative number, enclose the number in
parentheses.

. String constants in valuelist must be quoted.
. Date constants are quoted strings of the format mm/dd/yy.

. The keyword identifiers null, today, and user may be used as values in valuelist, but not in ranges.
Examples
state in ("CA", "NV", "AZ")
Thisisan example of avaluelist with ranges aswell asindividual values:

num in (-100-(-10), 10-100, 1000)

SQLflex 12-28
12-28

SUBQUERY COMPARISON

A subquery comparison compares an expression to the result of another select statement.

Syntax

expr in (selstnmt)

expr selrelop { all | any | some } (selstnt)
Description
expr isafieldexp asdefined under the SELECT topic or a constant expression.
in isarequired keyword.
selrelop isarelational operator.
all isakeyword that specifies a comparison test against all values returned by selstmt.
any isakeyword that specifies a comparison test against any value returned by selstmt.
some isakeyword that is synonymous with any.
selstmt isaselect statement.
Notes
. These are the available relational operators for the subquery comparison:
Operator Operation
> greater than
>= greater than or equal
< less than
<= less than or equal
. The selectlist of the selstmt must be a single expression. It cannot be a comma separated list of expressions.
. If the selstmt does not return a value, then any comparison with all (selstmt) will return true.
. If the selstmt does not return a value, then any comparison with any or some (selstmt) will return false.
. The selstmt can have a condition in its where clause that depends on a value in the current record of the outer
select. Thisiscalled acorrelated subquery.
. The selstmt cannot contain an order by clause.
Example

SQLflex

12-29

12-29

bkdetail.bkno
in (select bkno from bkmaster
where agent = "Jones")

bkdetail.bkno >
any (select bkno from bkmaster
where agent = "Jones")

bkmaster.bookdate <=
all (select bookdate from bkdetail
where bkno = bkmaster.bkno)

SQLflex

12-30

12-30

SUBQUERY EXISTENCE

A subquery existence test determines if a select statement has any results at all.

Syntax

exists (sestmt)

Description
exists isarequired keyword.
selstmt isaselect statement.
Example

exists (select 1 from bkmaster
where bookdate < "1/1/88")

Note that we are not interested in the value returned by the select, so we devise the ssimplest expression for the
subquery’s selectlist.

SQLflex 12-31
12-31

NULL TEST

The null test determines if the value of atable field is null.

Syntax

fieldname is null

Description
fieldname isthe name of afield of atable in the select statement’ sfrom clause.
is isarequired keyword.
null isarequired keyword.
Notes
. A field will have anull value if no value has ever been assigned to it or null has been assigned to it.
. Fieldname is a single field fieldexp, and therefore the null test cannot be used in the boolean expression of a

having clause.

Example

bkmaster.bookdate is null

SQLflex 12-32
12-32

12.16 Aggregate Functions

Overview

An aggregate function derives its value from an operation across multiple records of atable.

These are the aggregate functions:

avg returns the average for anumeric field.
count returns the number of records.

max returns the maximum value.

min returns the minimum value.

sum returns a sum for anumeric field.

Each aggregate function will be discussed under its separate subtopic.

SQLflex 12-33
12-33

AVG

The avg aggregate function returns the average of values from a numeric field.

Syntax
avg(fied)
Description
avg isarequired keyword.
field isanumeric field.
Notes
. Where there is a group by clause, avg, when used in a expression of the selectlist, returns the average for field
from records selected for a group.
. Null values for field are not included in the average. If all values for field are null, then avg(field) will return
null.
Example

select agent, avg(salamount) from bkmaster
group by agent

SQLflex 12-34
12-34

COUNT

The count aggregate function returns the number of records selected.

Syntax

count(* | distinct fied)

Description
count isarequired keyword.
* indicates that all records selected are to be counted.
distinct isakeyword used when counting the number of unique values for afield.
field isthefield of the distinct clause.
Notes
. Where there is a group by clause, count, when used in a expression of the selectlist, returns the number of

records selected for a group.

Examples

select count(*) from bkmaster;

select agent, sum(salamount) from bkmaster
group by agent
having count(*) > 100;

SQLflex 12-35
12-35

MAX

The max aggregate function returns the maximum value from afield.

Syntax

max (field)

Description

max isarequired keyword.
field isafield.

Notes

. Where there is a group by clause, max, when used in a expression of the selectlist, returns the maximum value
of field from records selected for a group.

. Where afield is of type CHAR, the maximum value is determined by the ASCI| collating sequence.

Example

This example would provide the most recent booking date for each agent:

select agent, max(bookdate) from bkmaster
group by agent

SQLflex 12-36
12-36

MIN

The min aggregate function returns the minimum value from afield.

Syntax
min(field)
Description
min isarequired keyword.
field isafield.
Notes
. Where there isagroup by clause, min, when used in a expression of the selectlist, returns the minimum value of

field from records selected for a group.
. Where afield is of type CHAR, the minimum value is determined by the ASCI| collating sequence.

. Null is considered the minimum value of any field.

Example

This example will select the alphabetical first agent:

select min(agent) from bkmaster;

SQLflex 12-37
12-37

SUM

The sum aggregate function returns the total of values from a numeric field.

Syntax

sum(field)

Description

sum isarequired keyword.

field isanumeric field.

Notes

. Where there isa group by clause, sum, when used in aexpression of the selectlist, returns the total of the values
from field from records selected for a group.
. If al values for field are null, then sum(field) will return null.

Example

select sum(salamount) from bkmaster;

SQLflex 12-38
12-38

12.17 UNLOAD

Overview

The unload statement writes selected data from a database table to a specially formatted ASCII text file. Thisis useful
in transfering information between computers or databases in a machine independent format.

Syntax

unload to "unloadfile" selectstmt

Description

unload to are required keywords.

unloadfile isthe required absolute or relative path name of atext file that will contain the data that is unloaded.
selectstmit aselect statement used to extract the database records for unloadfile.

Notes
. Each line of unloadfile will contain the data of a single row result of the select statement. The data of each field

of unloadfile is terminated with the vertical bar character, | .

. Selectstmt may be any legal select statement, but may not use an into temp clause.

Example

unload to "alltypes.unld"
select * from alltypes;

SQLflex 12-39
12-39

12.18 UPDATE

Overview

The update statement updates one or more records of database table.

Syntax
update table
set field = expr
[, field = expr]
[where wcondition]
Description
update isarequired keyword.
table isthe name of the table for which records will be updated.
set isarequired keyword.
field isafield of table.
expr isaconstant expression or afield expression.
where is an optional keyword for a clause that specifies selection criteria that may reduce the scope of the
records updated.
wcondition is the boolean expression of the wher e clause.
Notes
. An update statement without a wher e clause will update all records of table.
. The syntax for wcondition is exactly the same as for the select statement.
. Almost any expression that can be used to make up a selectlist expression of a select statement can be used in
expr. The exceptions are * and aggregates.
. The update statement locks table from other users modifications during the update operation.
. Decimal precision loss or string truncation may occur and is reported as warning messages when it does. The
warning messaging can be turned off with the -nw command line option to fxsgl.
. A select statement used in an update cannot have an into temp or order by clause.

. Serial type fields cannot be updated.

Examples

update alltypes
set fchar2 = "XY",
fsmallint = fsmallint + 1,
fdate = today
where fmoney < 10000;

SQLflex 12-40
12-40

13. TERMINAL SETUP

Overview

This chapter shows how to manage your terminals using the Terminal Control File The Terminal Contol File is required
in order to run Infoflex screens under UNIX operating systems only. The Terminal Control File is where you will define
your terminal’ s command sequences for such characteristics as video attributes and key recognition.

Terminal Control File

This section describes how to install and edit aterminal control file. The terminal control file contains command sequences
that are specific to your terminal model. These command sequences control terminal characteristics such as video attributes
and key recognition. The following 2 subsections describe how to Install and Edit the Terminal Control File.

Installing the Terminal Control File

Install the Terminal Control File by assigning the control file name to the environment variable FXTERM. Below is
the command to set FXTERM.

FXTERM=wyse60; export FXTERM

Normally you will not need to set FXTERM because it defaults to the value of TERM.

Editing the Terminal Control File
If the Terminal Control File must be modified or does not exist, you will need to edit/create it. To edit/create a
terminal control file, select Terminal Control on the Development Menu or enter the following command. Before
entering the command be sure to set the infoflex environment variables as per chapter 2.

flexterm

The following menu will appear:

Terminal Setup 13-1
131

SELECT TERMINAL TYPE

1. tvi9l0o : TeleVideo 910

2. tvi920 : TeleVideo 912C/920C

3. tvi925 : TeleVideo 925

4. vtb52 : DEC VT52

5. adm3a : LS| ADM 3A

6. viewpt : ADDS Viewpoint/3A Plus
7. altos3 : Altos I

8. altos4 : Altos IV

9. altos5 : Altos V

10. wyse © Wyse Wy-100

11. wyse50 : Wyse 50+
12. wyse60 : Wyse 60

13. pcunx : ISC UNIX 5.3

14. pcxnx : SCO XENIX

15. ansi : SCO XENIX V/386

Enter terminal number (a=add, gq=quit): 8

If the terminal is not on the menu, add it by entering an 'd to the above prompt. The system will prompt you for the
terminal name and then add it to the list of selectable terminals.

After selecting aterminal the following menu will appear:

TERMINAL SUPPORT M E N U (/usr2/fx/dev)

Assign CRT & ACTION KEY Settings.

Assign ACTION KEYS Settings via Keyboard.
Display CRT Settings.

Display ACTION KEY Settings.

Print Settings.

Test Settings.

Save Settings.

Save & Install Settings to /usr2/fx/dev.
Load Settings from TERMCAP file.

Quit.

QoOoo~Noulh~wNEPR

Select Menu Option #

The following subtopics discuss what each above menu option does.

1. Assign CRT & ACTION KEY Settings

You will be placed in an editor to assign control sequences. The control sequences are written in termcap style (eg.,
the ESC character is\E).

2. Assign ACTION KEYS Settings via Keyboard

In this mode, you can define the control sequence for a action key by simply pressing the action key at the keyboard.
Action keys are defined as non-data entry keys such as Function keys, Arrow keys, and Control keys.

3. Display CRT Settings

Terminal output control sequences will be displayed at the terminal. A * by the capability description indicates that
the capability isrequired by Infoflex. A ** indicates that the capability is desirable.

Terminal Setup 13-2
13-2

4. Display ACTION KEY Settings

Keyboard input control sequences for action keys will be displayed at the terminal.

5. Print Settings

Control sequences are printed.

6. Test Settings

Thisoption is not implemented at this time.

5. Save settings

This option saves the control sequence settings to the directory .../fx/src/term.

6. Save & Install settings to .../fx/dev

This option saves the control sequence settings to the directories .../fx/src/term and .../fx/dev. The version in .../fx/dev
will be used by Infoflex at run-time.

9. Load Settings from TERMCAP file

This option loads the control sequences definitions from your UNIX /etc/termcap file. Be sure that the terminal name
assigned in the termflex.dir file isthe same asthe onein termcap.

After loading from termcap, the A_TY PE capability may need to be updated. A_TYPE tells TERMFLEX how to set
avideo attribute. Thisflagissetto 1if theterminal sets attribute bytes before and after an output string. Theflagis0
if the terminal does not bracket the output string with attribute bytes. This setting corresponds to the sg# parameter of
termcap. TERMFLEX assumes that the terminal will use a consistent method for outputting video attributes. This
may not always be the case as termcap will alow a mixture of methods (eg.: sg#0, ug#l). To resolve this you will
want to use the specific attribute control sequences in your terminal manual to define attribute settings.

Q. Quit

The TERMFLEX program will terminate.

Defining a New Terminal Capability

This section describes how to define a new terminal capability. In order to use this section you must have the Infoflex-4GL
source code.

The steps for defining a new terminal capability are asfollows

1) Define a new macro name in the fxcrt.h header file in $FXDIR/include that represents the capability. For
example,

#define NBWMACRO 5000

2) Add an entry into the termflex.crt file located in the $FXDIR/src/term directory. This file defines each of the
macros and what they represent.

Terminal Setup 13-3
13-3

3) If your new macro was NOT appended to the end of the macro list in fxcrt.h then you will need to do the
following:

Recompile the entire Infoflex system using the flexmake -r command. The Programmer’s Guide describes
this process.

Also, you will need to reinstall each terminal capability file. To do this, run termflex menu selection #8 for
each terminal type.

Terminal Setup 13-4
13-4

14. PRINTER SETUP

Overview

This chapter shows how to manage your printers using the Printer Control File and the Printer Configuration File
(options 18 and 19 on the System Administration menu). The Printer Control File is where you will define your printer’s
command sequences for compressed print and pitch. The Printer Configuration File is where you will specify additional
parameters about each printer such as its identification name, printer control file name, character width, and page length.
Both of these printer files are optional and are only necessary if you require the control features offered by them.

Printer Control File

This section describes how to install and edit a printer control file. The printer control file contains command sequences
that are specific to your printer model. These command sequences control printer characteristics such as compressed print
and pitch levels. Thefollowing 2 subsections describe how to Install and Edit the Printer Control File.

Installing the Printer Control File
Install the Printer Control File by assigning the control file name to the environment variable FXPRINT. Below is
the command to set FXPRINT.

FXPRINT=hplaser; export FXPRINT

Editing the Printer Control File
If the Printer Control File must be modified or does not exist, you will need to edit/create it. To edit/create a printer
control file, select Printer Control on the Development Menu or enter the following command. Before entering the
command be sure to set the infoflex environment variables as per chapter 2.
flexprnt

The following menu will appear:

SELECT PRINTER TYPE

1. tosh351 : Toshiba P351/P321/P341
2. hplaser2 : HP Laserjet Series |1
3. ex800 : Epson EX-800

4. panl091 : Panasonic KX-P1091

5. nec2080 : Nec 2080

Enter printer number (a=add, g=quit):

If the printer is not on the menu, add it by entering an 'a to the above prompt. The system will prompt you for the
printer name and then add it to the list of selectable printers.

After selecting a printer the following menu will appear:

Printer Setup 14-1
14-1

PRI NTER SUPPORT M E N U (/usr2/fx/dev)

1 Assign settings.

2 Display settings.

3. Print settings.

4. Test settings.

5 Save settings.

6 Save & Install settings to /usr2/fx/dev.
Q

Quit.

Select Menu Option #

The following subtopics briefly describe what each above menu option does.

1. Assign settings

You will be placed in an editor to assign control sequences. The control sequences are written in termcap style (eg.,
the ESC character is\E).

2. Display settings

Control sequences will be displayed at the terminal.

3. Print settings

Control sequences are printed.

4. Test settings

Thisoption is not implemented at this time.

5. Save settings

This option saves the control sequence settings to the directory .../fx/src/term.

6. Save & Install settings to .../fx/dev

This option saves the control sequence settings to the directories .../fx/src/term and .../fx/dev. Theversion in .../fx/dev
will be used by Infoflex at run-time.

Q. Quit

The flexprnt program will terminate.

Printer Configuration File

Printer Setup 14-2
14-2

This section describes how to install and edit a Printer Configuration File. The Printer Configuration File allows you to
specify additional parameters about each printer such as its identification name, printer control file name, character width,
and page length. The following 2 subsections describe how to Install and Edit the Printer Configuration File.

Installing the Printer Configuration File
Installation of the Printer Configuration File consists of assigning the environment variable FXPRT the fullpath of
where the configuration file resides. A sample configuration file can be found in the directory .../fx/dev/pr config.
To set the FXPRT environment variable for the sample configuration file, enter the following command.
FXPRT=../fx/dev/prconfig; export FXPRT

Note that you should copy the sample prconfig file to a private area so any future updates will not overwrite your
changes.

Editing the Printer Configuration File

The next step after installing your printer configuration file isto customize it for your site.

To customize the configuration file, select Printer Configuration on the Development Menu or enter the following
command. Before entering the command be sure to set the infoflex environment variables as per chapter 2.

flexprc
Upon entering this command, you will be placed in an editor in order to modify the configuration file.

The sample configuration will appear as follows.

Infoflex OS Printflex Bottom End

Name Name Name Width Length Margin Feed Options

0 laserjet hplaser 80 60 2 Y

1 laserjet hplaser 80 60 10 Y -olandscape
2 laserjet2 hplaser 170 60

3 deskjet hplaser 170 60

disk Serial hplaser 80 60

Below isadescription of each field or column.
Infoflex Name
This is the name Infoflex uses to refer to the printer. To route an Infoflex report to this printer you would enter a
Report Destination of P followed by the Infoflex printer name. For example,
Report Destination: P1

If you enter a P without an Infoflex printer name, it will default to the Infoflex printer name O.

Note that users can have different default printers by assigning them different Printer Configuration Files.

OSName

Printer Setup 14-3
14-3

Thisisthe operating system's destination name for this printer. For Windows/NT use Iptl, Ipt2, etc..

Printflex Name
Thisisthe name of the Printer Control File that applies to this printer.

Width
Thisis the printer’s character width. If the report output exceeds this width it will automatically be compressed
(provided the compressed print sequences are defined in the Printer Control File).

Length
Thisisthe printer’slines per page. Thisisimportant for correctly aligning pages.

Bottom Margin
Not used at thistime.

End Formfeed
Enter "Y" if you would like aformfeed at the end of each report.

Options
These options are passed asisto the printers interface program. One popular option is the landscape option which
would be specified here as -olandscape. Thisfeature is not available on DOS/WINDOWS.

Defining a New Printer Capability

This section describes how to define a new printer capability. In order to use this section you must have the Infoflex-4GL
source code.

The steps for defining a new printer capability are asfollows

1) Define a new macro name in the fxcrt.h header file in $FXDIR/include that represents the capability. For
example,

#define NBEWMACRO 5000

2) Add an entry into the prntflex.prt file located in the $FXDIR/src/term directory. This file defines each of the
macros and what they represent.

3) If your new macro was NOT appended to the end of the macro list in fxcrt.h then you will need to do the
following:

Recompile the entire Infoflex system using the flexmake -r command. The Programmer’s Guide describes
this process.

Also, you will need to reinstall each terminal capability file. To do this, run termflex menu selection #8 for
each terminal type.

Printer Setup 14-4
0-4

APPENDIX

Sample SCREENFLEX Program with INSTRUCTIONS

TABLES
slmord
sldord
tbcust
inven
END

SELECT
slmord(invno)
EXTRACTALL
sldord (invno) slmord(invno)

EXTRACTALL

END

SCREEN slinv aaftersave(aaftsave) aafterdelete(aaftdelete)

{

ACCOUNTFLEX [modemsg 1 INVOICE ENTRY SCREEN DATE: [today

Invoice#:[invno] Customer:[custno|custname] Invoice Date:[entdate]

Qty/ | tem Unit Extended

Units x Unit = Qty Code Description Price Price

[unit]J[qunit][qor 1[ai] [adesc][uprice][eprice
Total:[totsale]

}

END

ATTRIBUTES

modemsg = displayonly type character, noupdate, noentry, reverse, retain;
today = displayonly type date, default=today, noupdate, noentry;

invho = slmord. invno, required, searchby(slmord.sIminvno),
beforedit(befinvno);

custno = slmord.custno, upshift, required, right, truncate,
searchby(slmord.sImcustno),
lookup(tbcust.tbcustkey, slinv.custname = tbcust.name),
tablehelp("flex tbcusts asdc", tbcust.tbcustname, tbcust.code, tbcust.name);
custname = displayonly type character, noupdate, noentry,
conments = "Enter Client Name"

entdate= sImord.entrydate, required, afterfield(aftentdate),
comments = "Enter Entry Date";

REPEAT (11)

unit = sldord.unit_ordered, default="1", afteredit(calcext);
qunit = sldord.qty_perunit, default="1", afteredit(calcext);

qor = sldord.qty_ordered, default = "1", required,
format="###", noupdate, noentry;
ai = sldord.inven_no, upshift, required, afterfield(ai_calcext),
lookup(inven.invenkey, slinv.adesc = inven.description)
tablehelp("flex invens asdc", inven.invenkey, inven.code, inven.description)

adesc = displayonly type character, noupdate, noentry;
uprice = sldord.unit_price, format="##.##", afteredit(calcext);
eprice = sldord.ext_price, format="##.##",

total(slinv.totsale);

ENDREPEAT

Appendix

totsale = slmord.totsale,

END

INSTRUCT |ONS

static int calcflag = NO;

static long gentdate;

aaftsave()

format="+#, ###. ##", noupdate,

{
if (calcflag) {
dmaprec(@slmord, @slinv);
if (fmrewcurr(@slmord) < 0)
msggerr("!Unable to save slmord file");
calcflag = NO;
}
return(0);
}

aaftdelete()

{
if (flexmode == ADDMODE)
return(0);
dmaprec(@slmord, @slinv);
fmrewcurr(@slImord);
return(0);
}

ai_calcext()

if (isempty(@slinv.uprice) == YES) {
$slinv.uprice = $inven.sale_price;
tmapfld(@slinv.uprice);

$slinv.qor = $slinv.unit * $slinv.qunit;

$slinv.totsale = $slinv.totsale - $slinv.eprice;

$slinv.eprice = $slinv.unit * $slinv.uprice;

$slinv.totsale = $slinv.totsale + $slinv.eprice;

if (isempty(@slinv.entdate) == YES) {

noentry;

/* so screen not saved unless other fields edited */

}
calcext();
return(0);
}
calcext ()
{
SLIST *pslist;
calcflag = YES;
tmapfld(@slinv.qor);
tmapfld(@slinv.eprice);
tmapfld(@slinv.totsale);
return(0);
}
befinvno ()
{
if (flexmode != ADDMODE)
return(0);
$slinv.entdate = gentdate;
gentdate = curdate
$slinv.entdate = gentdate;
}
tmapfld(@slinv.entdate);
setmodfld(@slinv.entdate, OFF);
return(0);
}

aftentdate()
{

Appendix

A-2

END

gentdate = $slinv.entdate;

return(0);

Appendix

A-3

Sample SCREENFLEX Program with MAIN function

TABLES
apmct| (open read)
apbinv (open)
apminv (open)
apdinv (open)
apminv (alias armalias open)
apbopen (open)
apmven (open)
glmcoa
END

SELECT
apbinv(module, source, batch)
EXTRACTALL
END

SCREEN apinv frame window(0,0,4,79) beforesubsection(beflsubsection)
beforedelete(befldelete)

{

ACCOUNTFLEX [modemsg] A/P Invoice Batch Entry DATE: [today]
Source:<[m]-[s]> Batch:<[batch]> Entry Date:[batdate] Total:[batchtotal]
}

END

ATTRIBUTES

modemsg = displayonly type character,noupdate, noentry, reverse, retain;
today = displayonly type date, default=today, noupdate, noentry, retain;

m(module) = apbinv.module, default=apmct!|.module, noupdate, noentry;
s(source) = apbinv.source, default="1", noupdate, noentry;
batch = apbinv.batch,
comments = "Enter Batch Number then press SAVE Function Key to enter Invoices";
batdate = apbinv.entdate, noupdate, default=today, afteredit(ae_batdate),
comments = "Press SAVE Function Key to enter lnvoices";
batchtotal = apbinv.amount, noupdate, noentry;
END
SELECT
apminv(module, source, batch, invno, venno)
EXTRACTALL
apdinv (module, source, batch, invno, venno) apminv(module, source, batch, invno,
EXTRACTALL
END

SCREEN apdist box window(5, 0) joinon(apbinv.apbinvbatch)
beforesubsection(befsubsection)
beforerow(befrow)
beforesave(befsave)
afterdelete(aftdelete)

abeforerow(abefrow)
aaftersave(aafsave)
aafterdelete(aafdelete)

{
[modemsg] [batchtotal]
Invoice:<[invno 1> Vendor:<[venno]>[venname]
Invoice Date:[trandate] Period Date:[perdate] [pdiv |div]
Discount Date:[discdate] Discount Allowed:[discallow]
Due Date:[duedate] Desc:[description
@
Account -# Account Title Amount
@
[glcode J[gldesc] [amount]
@
[m][s] [batch] Total:[totamount]
}
END
ATTRIBUTES

modemsg = displayonly type character,noupdate, noentry, reverse, retain,
setrow(-4);
m(module) = apminv.module, noentry, noupdate, nodisplay;

venno)

Appendix

A-4

s(source) = apminv.source, noentry, noupdate, nodisplay;
batch = apminv.batch, nodisplay, noentry, noupdate, nodisplay;
batchtotal = apbinv.amount, noupdate, noentry, retain, setrow(-2);

invno = apminv.invno, upshift, truncate, required, formatfield(vinvformat),
beforedit(be_autoinvno), afterfield(af_autoinvno)
searchby (apminv.apminvinvno);
venno = apminv.venno, upshift, truncate, required, formatfield(cusformat),
searchby(apminv.apminvvennoinvno),
lookup(apmven.apmvenvenno, apdist.venname = apmven.name),
tablehelp("", apmven.apmvenname, apmven.venno, apmven.name),
comments="Enter Vendor Code (press HELP key to see list)";
venname = displayonly type character, noupdate, noentry;

trandate= apminv.trandate, required, default = today, afteredit(ae_trandate),

comments = "Enter Transaction Date";

perdate = apminv.perioddate, required, default = today, afteredit(ae_perdate),
comments = "Enter Fiscal Period Date";

pdiv = displayonly type character, noupdate, noentry, retain;

div = apminv.divno, formatfield(divformat);

discdate = apminv.discountdate;

discallow = apminv.discountal low, format="#,###. ##",
duedate = apminv.duedate;

description = apminv.description;

REPEAT (5)

glcode = apdinv.glcode, required, formatfield(glformat),
lookup(glmcoa.glmcoaglcode, apdist.gldesc = glmcoa.description),

tablehelp("", glmcoa.glmcoaglcode, glmcoa.glcode, glmcoa.type, glmcoa.description),

comments="Enter G/L Account Code (press HELP key to see list)";
gldesc = glmcoa.description, noupdate, noentry;
amount = apdinv.amount, format="##.##", total(apdist.totamount);
ENDREPEAT

totamount = apminv.amount, format="#, ###.##", noupdate, noentry;

END

INSTRUCT |ONS

static double savetotamount;

main()
{
static char modearg[6];
for (5 ;)
if (ESCAPEKEY == flexcmd("flex apinv ACD NNNNNYY"))
break;

strcpy(modearg, "ACD");
if (compare(@apbinv.module, @apmct|.module) !'= 0 ||
isempty (@apbinv.postno) == NO)
strcpy(modearg, "V-V");
for (5 ;) {
sprintf(msgbuf, "flex apinv -f apdist %s", modearg);
if (ESCAPEKEY == flexcmd(msgbuf))
break;

}
smaprec(@apbinv, @apinv);
}

clrscr();

R s

AP I NV

|

static int beflsubsection()

{
popsavekey(7, 16, "Press SAVE function key to enter Invoices");
return(0);
}
/%
static int beflrow()
{
if (compare(@apbinv.module, @apmct|.module) == NO ||
isempty (@apbinv.postno) == NO)
altermode(VIBAMODE);
else
altermode(CHANGEMODE) ;
return(0);
}
*/

static int befldelete()

Appendix

A-5

if (flexmode == CHANGEMODE) {
if (*($apmct|.module) != *($apinv.module)) {
sprintf(msgbuf, "Batch may NOT be deleted because from different source (%s)",
$apinv.module);
msggerr(msgbuf);
return(-1);
}
move(@apbinv.module, @apminv.module);
move(@apbinv.source, @apminv.source);
move(@apbinv.batch, @apminv.batch);
if (0 > delchildren(@apminv, @apminv.apminvbatch,
@apminv.batch, NULLFUNC))
return(-1);

}

return(0);

}

static int ae_batdate()

{

return(-2);

}

R

APD I ST - Header

|

static int befsubsection()

{
move(@apbinv.amount, @apdist.batchtotal);
tmapfld(@apdist.batchtotal);
divprompt($apmctl.divexist, @apdist.pdiv);
return(0);

}

static int befrow()

(if (flexmode == ADDMODE) {
if (0> chkmdup())
return(-1);
}
return(0);
}

static int aftdelete()

{
updbatch($apdist.totamount * -1);
return(0);

static int befsave()
{

int rtn;

char sinvno[20];

if (0> chkmdup())
return(-1);

move(@apbinv.batch, @apdist.batch);
move(@apbinv.batch, @apminv.batch);
tmapfld(@apdist.batch);
if (flexmode == ADDMODE && isautoinvno(@apdist.invno)) {
rtn = getinvoice("apmctl", "invoice", "inv_prefix", sinvno);
putdf(sinvno, @apminv.invno);
putsf(sinvno, @apdist.invno);
tmapfld(@apdist.invno);
/*
sprintf(msgbuf, " unique %s", sinvno);
msggerr(msgbuf);
*/
return(rtn);
} /* end of ADDMODE */

return(0);

}

R s

APDI ST - Array

R Ty
static int abefrow()

{

savetotamount = $apdist.totamount

Appendix

return(0);

}
static int aafsave()
{
updbatch($apdist.totamount - savetotamount);
return(0);
}
static int aafdelete()
{
updbatch($apdist.totamount - savetotamount);
return(0);
}
static int updbatch(diffamount)
double diffamount
{
if (diffamount == 0.0)
return;
/%
sprintf(msgbuf, "updatebatch: %l f", diffamount);
msggerr(msgbuf);
*/
$apbinv.amount += diffamount
if (0> fmrewcurr(@apbinv)) {
fmerrmsg(@apbinv);
}
move(@apbinv.amount, @apdist.batchtotal);
tmapfld(@apdist.batchtotal);
/%
sprintf(msgbuf, "New total: %If", $apbinv.amount);
msggerr(msgbuf);
*/
}

static int ae_trandate()

{
if (chkrdate($apdist.trandate, $apmctl.daytolerance,
$apmct|.datereference, $apmctl.datemin, $apmctl|.datemax) < 0)
return(-1);
move(@apdist.trandate, @apdist.perdate);
tmapfld(@apdist.perdate);
return(0);
}
static int ae_perdate()
{
return(chkrdate($apdist.perdate, $apmct!|.daytolerance,
$apmct|.datereference, $apmctl.datemin, $apmct!|.datemax))
}
static int be_autoinvno()
{
return(beautoinvno(@apmctl.invoice, @apdist.invno));
}
static int af_autoinvno()
{
return(afautoinvno(@apmctl.invoice, @apdist.invno));
}
static int chkmdup()
{
if (isautoinvno(@apdist.invno))
return(0);
if (flexmode == ADDMODE) ({
move(@apdist.venno, @armalias.venno);
move(@apdist.invno, @armalias.invno);
if (fmstart(@armalias, @armalias.apminvvennoinvno, 0, ISEQUAL) == 0 &&
fmread(@armalias, ISCURR) == 0) {
sprintf(msgbuf,"@Invoice No. currently assigned in batch %ld",
$armalias.batch);
msggerr (msgbuf);
return(-1);
} /* end of find */
} /* ADDMODE */
move(@apdist.venno, @apbopen.venno);
move(@apdist.invno, @apbopen.invno);
if (fmstart (@apbopen, @apbopen.apbopenvennoinvno, 16, ISEQUAL) == 0 &&
Appendix

A-7

fmread(@apbopen, ISCURR) == 0) {

if (*($apbopen.source) != 'C") {
msggerr("@VMARNING: Invoice No. already exists");
return(-1);
return(0);
}
return(0);
}
END
Appendix

A-8

Sample SCREENFLEX Program using ZOOM

TABLES
apmct!| (read)
apmven
apmven (alias apmvenalias)
apstmnt
apbopen
apmopen
glmcoa
pomship
s Imtax
slmsale
simterm

END

SELECT
apmven(venno)
EXTRACTALL
apbopen(venno, trandate, invno) apmven(venno)
EXTRACTALL
END

SCREEN apveni frame azoomkey (azoomdetail) userlkey(agekey)
beforesubsection(befsubsection)

{

ACCOUNTFLEX [modemsg] Vendor Inquiry Screen DATE: [today

Vendor Code:[venno][name]

Contact:[contact] Tel:[phone

Terms:[tc][termdesc] Credit Code:[cred] Credit Limit:[credlimit]

Invoice Date Description Amount Due

@

[invno | trandate] [description] [amountdue

@

Last Post Date:[postdate][trandat2] Total Due:[curbalance]

Last Date MTD Last Month YTD Last Year Pending

Order:[orddate |orders_mtd |orders_Im |orders_ytd |orders_lyr |orders_pend]
Purch:[saledate|purch_mtd |sales_Im |purch_ytd |sales_lyr]

}
END
ATTRIBUTES

modemsg = displayonly type character, noupdate, noentry, reverse, retain;
today = displayonly type date, noupdate, noentry, default=today, retain;

venno= apmven.venno, upshift, truncate, formatfield(cusformat), required,
searchby (apmven.apmvenvenno),

tablehelp("", apmvenalias.apmvenname, apmvenalias.venno, apmvenalias.name),
comments = "Enter the Vendor’'s code (Press HELP key for list)";
name = apmven.name, searchby(apmven.apmvenname),
comments = "Enter Vendor's name";
contact = apmven.contact;
phone = apmven.phone, phone, comments = "Enter Phone number"
tc = apmven.termscode, upshift,
lookup(sImterm.sImtermtermcode, apveni.termdesc = sIlmterm.description)
tablehelp(" ",sImterm.sImtermtermcode,

sIimterm. termcode,sImterm.description)
conments="Enter Terms Code for this vendor";
termdesc = displayonly type character, noupdate, noentry;

cred = apmven.credit_code, upshift;
credlimit = apmven.credit_Iimit, format="#,###, ###. ##",
REPEAT (5)

invno = apbopen.invno, upshift, truncate, formatfield(vinvformat);
trandate= apbopen.trandate, required,
conments = "Enter Invoice Date";
description = apbopen.description;
amountdue=apbopen.amountdue, format="#,###. ##";

ENDREPEAT

curbalance = apmven.current_balance, format="#,###, ###. ##",
postdate = apmven. latest_postdate;

trandat2 = apmven. latest_trandate;

orddate = apmven.orders_lastdate

orders_mtd apmven.orders_mtd, format="#,###. ##";
orders_Im apmven.orders_prevmonth, format="#,###. ##",
orders_ytd apmven.orders_ytd, format="#,###. ##";

orders_lyr =apmven.orders_prevyear, format="#,###. ##";

Appendix

orders_pend = apmven.orders_pending, format="#,###. ##";
saledate = apmven.purch_lastdate

purch_mtd = apmven.purch_mtd, format="#,###. ##",;
sales_Im =apmven.purch_prevmonth, format="#,###. ##",
purch_ytd = apmven.purch_ytd, format="#,###. ##",;
sales_lyr = apmven.purch_prevyear, format="#,###. ##",
END
SELECT

apbopen(venno, invno, trandate)

EXTRACT

apmopen (venno, invno, trandate, tranrecno) apbopen(venno, invno)

EXTRACTALL

END

SCREEN apopen frame

{

ACCOUNTFLEX [modemsg] Vendor Inquiry Date: [today
Vendor:[venno |venname] Invoice:[invno] Date:[trandate]
Source:[m][s] Batch:[batch] Desc:[description

@

Date Source Batch Description Discount Amount
@

[atrandat] [M|S|BATCH |adescription |adiscount |aamount]
@

Invoices + Adjustments - Discounts - Checks = Due

[invamount] + [amountadj] - [discountpay] - [amountpay] = [amountdue
}
END
ATTRIBUTES

modemsg = displayonly type character,noupdate, noentry, reverse, retain;
today = displayonly type date, default=today, noupdate, noentry, retain;

venno = apbopen.venno, upshift, truncate, required, formatfield(cusformat),
beforedit(be_venno),
searchby(apbopen.apbopenvennoinvno),
lookup(apmven.apmvenvenno, apopen.venname = apmven.name),
tablehelp("", apmven.apmvenname, apmven.venno, apmven.name);
venname = displayonly type character, noupdate, noentry;
invno = apbopen.invno, upshift, truncate, formatfield(vinvformat),
searchby (apbopen.apbopeninvno);
trandate= apbopen.trandate, required,

conments = "Enter Invoice Date";
m = apbopen.module;
s = apbopen.source;
batch = apbopen.batch;

description = apbopen.description;

REPEAT (6)

atrandat= apmopen.trandate, required,

comments = "Enter Entry Date";
M = apmopen.module;
S = apmopen.source;
BATCH = apmopen.batch;
adescription = apmopen.description;
adiscount = apmopen.discountpay, format="#,###. ##"

aamount = apmopen.amount, format="#,###. ##",;
ENDREPEAT

invamount = apbopen.amount, format="#,###. ##";

amountadj = apbopen.amountadj, format="#,###.##";
amountpay = apbopen.amountpay, format="#,###. ##",;
discountpay = apbopen.discountpay, format="#, ###. ##",
amountdue = apbopen.amountdue, format="#,###. ##"
END

SCREEN agescreen popup frame window(6, 3) beforesubsection(befagesub)

{

Appendix A-10

A-10

AGED BALANCE

Balance [a0 |al |a2
[balamount |ageO |agel |age2

Press ESCAPEKEY to exit

}

END

ATTRIBUTES

a0 = displayonly type character, noupdate,
al = displayonly type character, noupdate,
a2 = displayonly type character, noupdate,
a3 = displayonly type character, noupdate,
a4 = displayonly type character, noupdate,
balamount = displayonly type money, format
age0 = displayonly type money, format
agel = displayonly type money, format
age2 = displayonly type money, format
age3 = displayonly type money, format
age4 = displayonly type money, format
w = displayonly type character

END

INSTRUCT | ONS

#include "act.h"

static long m_recno;
static long trandate;

static int azoomdetail ()

{
move (@apbopen.trandate, &trandate);
flexemd ("flex apveni -f apopen vs-vs");
return(0);

}

static be_venno()

|a3
|age3

[w]

noentry;
noentry;
noentry;
noentry;
noentry;

="H# HHH .

="b##, ###.
="b##, ###.
="b##, ###.
="b##, ###.
="b##, ###.

{
flexkey = SAVEKEY;
move(@apveni.venno, @apopen.venno);
move(@apveni.invno, @apopen. invno);
move(&trandate, @apopen.trandate);
tmaprec (@apopen);
return(-1);
}
static int befsubsection()
{
keychglabel (USER1IKEY, "AGE ");
return(0);
}
static agekey()
{
flexemd ("flex apveni -f agescreen P");
wpage(@apveni, NO);
funcmflag = NO;
return(0);
}
static int befagesub()
{
double totamount = 0.0;
agevendor () ;
totamount += $agescreen.age0 + $agescreen.agel;
totamount += $agescreen.age2 + $agescreen.age3;
totamount += $agescreen.age4;
move (&totamount, @agescreen.balamount);
tmaprec(@agescreen)
return(0);
}

#define ARCUSI

static char agesort[5];
static char agetype[5];
#include "apread.flx"

END

##"

H##"
H##"
H##"
H##"
##"

|ad
|aged

noupdate,
noupdate,
noupdate,
noupdate,
noupdate,
noupdate,

noentry;
noentry;
noentry;
noentry;
noentry;
noentry;

Appendix

A-11

A-11

Sample SCREENFLEX Program for PURGING

TABLES
slmaster
sldetai
sltrans

END

SCREEN select

{

T.A.M.S PURGE SALES RECORD BY DEPART DATE DATE: [today
This Purging program will delete all bookings where the Booking Number
and Departure Date are both less than or equal to the ones entered below:
Before Purging do the following:

1) Backup all data to tape and save perminently.
2) Be sure all Reciepts and Payments have been POSTED.
3) Make sure all bookings prior to the Booking Number and
Departure Date entered below are PAID !!!
Booking No: [bkno] Departure Date: [depart
After Purging do the following:
1) Run Reports for UNapplied Payments to see if all

}

END

ATTRIBUTES

today = displayonly type date, default = today, noupdate, noentry;

bkno = displayonly type integer, required;
depart = displayonly type date, required;
END

INSTRUCT | ONS

static FILE *fplog;
main(argc, argv)
int argc;

char *argv[];

{
flexemd ("flex slpurge -f select p");
if (flexkey == ESCAPEKEY)
fxabort (0);
logopen(argv[0]);
loghead(argv[0]);
doprocess(NO);

logclose();

fxabort (0);

doprocess(updateflag)
int updateflag;

{

int mode = |ISINOUT+I|SEXCLLOCK;

int count;

long bkno = OL;

long departdate;

postopen(@slmaster, @slmaster.sImbkno, mode);

postopen(@sldetail, @sldetail.sldbkno, mode);

postopen(@sltrans, @sltrans.sltbkno, mode) ;

/* clear joined fields */

for (5 ;) |
Jxxxxxxxxxxrxxr Eind NEXT MASTER Record *****x*xxxxx%%/
$sImaster.bkno = bkno;
if (0> fmfind(@sImaster, @sImaster.sImbkno, ISGREAT)) {

if (iserrno != 110 && iserrno != 111) {
Appendix

A-12

A-12

frmsgbuf (msgbuf, @sImaster);
logmsg(msgbuf);
break;
}
break;

}

bkno = $slmaster.bkno;

if (bkno > $select.bkno)
break;

[*rxxskxxxxkkix What's Latest Departure Date ****kxxxskxxxx/

$sldetail.bkno = $simaster.bkno;
$sldetail.recno = OL;

mode = |SGTEQ);

departdate = OL;

for (count = 0; ; ++count) {

J*rrxxskrxxxkx Find all matching DETAIL record ***#*xxskkxxsknxxs/

if (0> fmfind(@ ldetail, @ldetail.sldbkno, mode)) {
if (iserrno != 111 && iserrno != 110) {
frmsgbuf (msgbuf, @sldetail);
logmsg(msgbuf);
}
break;
}
mode = |SNEXT;
/* if detail’s join field(s) have changed then L*
if (compare(@slmaster.bkno, @sldetail.bkno))
break;
if ($sldetail.departdate > departdate)
departdate = $sldetail.departdate;
} /* end of Detail loop */
if (departdate > $select.depart)
continue;
dopurge(bkno, departdate);
} /* end of Master loop */
/* close CISAM files */
fmclose(@sImaster);
fmclose(@sldetail)
fmclose(@sltrans);
return(0);
}
dopurge(bkno, departdate)
long bkno;
long departdate;
{
char sdate[10];
long recno;
datestr(departdate, sdate, "MM/DD/YY"); bkno, sdate);
sprintf(msgbuf, "Purging slmaster Booking#: %ld - %s
logmsg(msgbuf);
if (0> fmdelcurr(@slImaster)) {
frmsgbuf (msgbuf, @sImaster);
logmsg(msgbuf);
fxabort (-1);
}
/*** DELETE SLDETAIL ***/
recno = OL;
for (:3)
$sldetail.bkno = bkno;
$sldetail.recno = recno;
if (0> fmfind(@ ldetail, @ldetail.sldbkno, ISGREAT)) {
if (iserrno != 111 && iserrno != 110) {
frmsgbuf (msgbuf, @sldetail);
logmsg(msgbuf);
}
break;
}
if (compare(&bkno, @sldetail.bkno))
break;
0
sprintf(msgbuf, "Purging sldetail Booking#: %ld - %ld
$sldetail.bkno, $sldetail.recno);
Appendix

A-13

A-13

logmsg(msgbuf);

if (0> fmdelcurr(@sldetail)) {
frmsgbuf (msgbuf, @sldetail);
logmsg(msgbuf);

recno = $sldetail.recno;
} /* end of Detail loop */

/*** DELETE SLTRANS ***/
dclrrec(@sltrans);
recno = OL;

for (;;) |
$sltrans.bkno = bkno;
$sltrans.voucher = recno;
if (0> fmfind(@sltrans, @sltrans.sltbkno, ISGREAT)) {
if (iserrno != 111 && iserrno != 110) {
frmsgbuf (msgbuf, @sltrans);
logmsg (msgbuf);
}
break;
}

if (compare(&bkno, @sltrans.bkno))
break;

sprintf(msgbuf, "Purging sltrans Booking#: %ld - %ld - %ﬂdo’
$sltrans.bkno, $sltrans.voucher, $sltrans.recno);
logmsg (msgbuf);
if (0> fmdelcurr(@ltrans)) {
frmsgbuf (msgbuf, @sltrans);
logmsg(msgbuf);

recno = $sltrans.voucher;
} /* end of Detail loop */

loghead(filename)
char *filename;

{

0, filename);
sprintf(msgbuf, "%s:

logmsg (msgbuf); 0):
logmsg("Booking Departure Date 0);
KoY 111 ST T G e T

logopen(logname)
char *logname;

{
char filename[20];
strcpy(filename, logname);
strcat(filename, ".log");
if (NULL == (fplog = fopen(filename, "w"))) {
sprintf(msgbuf, "error opening log file %s0, filename);
logmsg (msgbuf);
return(-1);
}
}
logclose()
{
fclose(fplog);
}

logmsg(postbuf)

char *postbuf;

{
fprintf(fplog, "%s", postbuf);
printf("%s", postbuf);

}

postopen(pdbhead, pdbindex, mode)
DBHEAD *pdbhead;
DBINDEX *pdbindex;

int mode;
{
/* Open File for posting - */
Appendix A-14

A-14

if (0> fmopen(pdbhead, mode)) {

if (iserrno == 107) {

sprintf(msgbuf, "File (%s) already in use - try again later",
getrtxt(pdbhead->dhName));

msggerr(msgbuf);
fxabort (0);
}

frmsgbuf (msgbuf, pdbhead);

logmsg(msgbuf);

fxabort (-1);

}

if (mode & |SOUTPUT)
return;

if (0> fmfind(pdbhead, pdbindex, ISFIRST)) {
if (iserrno != 110) {
frmsgbuf (msgbuf, pdbhead);
logmsg (msgbuf);
fxabort(-1);
}
}

fmread(pdbhead, ISPREV);

END

Appendix A-15
A-15

Sample REPORTFLEX Program

TABLES
apmct| (read)
apbinv
apminv
apdinv
apmven
glmcoa
END

SCREEN select frame

{

ACCOUNTFLEX A/P Invoice Batch Listing DATE: [today
Report Destination:[d] (S=Screen, Pn=Printer, Dn=Disk, A=Aux)
Report Copies: [c] (1 - 10)
Report Title Page: [t] (Y=Yes, N=No)
Report Detail: [n] (Y=Yes, N=No)
Source: [m]
Batch Range: [batchl] to [batch2
Invoice Range:[invnol] to [invno2
Vendor Range: [vennol] to [venno2]

[vennamel] [venname2]

}

END

ATTRIBUTES

today = displayonly type date, default = today,

d(rptdest) = displayonly type character, requir
c(rptcopies) = displayonly type smallint, requir
t(rpttitle) = displayonly type character, requir

n(rptnoprint) = displayonly type character, requi
include(Y, N);

m(module) = apminv.module, upshift,

noupdate, noentry;

ed, upshift;

ed, include(1 to 10);

ed, upshift, include(Y, N);
red, upshift, default="Y",

comments="Enter Source of Invoices to print (R=A/P,S=Sales, =ALL)";

batchl = apminv.batch,
lookup(apbinv.apbinvbatch),

tablehelp("", apbinv.apbinvbatch, apbinv.batch, apbinv.entdate, apbinv.amount)

comments="Enter Batch Number begin range";
batch2 = apminv.batch,
lookup(apbinv.apbinvbatch),

tablehelp("", apbinv.apbinvbatch, apbinv.batch, apbinv.entdate, apbinv.amount)

comments="Enter Batch Number end range";

invnol = apminv.invno, upshift, truncate, formatfi
lookup(apminv.apminvinvno),

eld(vinvformat),

tablehelp("",apminv.apminvinvno, apminv.invno, apminv.venno, apminv.amount),

comments="Enter Invoice begin range to print";
invno2 = apminv.invno, upshift, truncate, formatfi
lookup(apminv.apminvinvno),

eld(vinvformat),

tablehelp("",apminv.apminvinvno, apminv.invno, apminv.venno, apminv.amount),

comments="Enter Invoice end range to print";

vennol = apminv.venno, upshift, truncate, formatfi

eld(cusformat),

lookup(apmven.apmvenvenno, select.vennamel = apmven.name),
tablehelp("",apminv.apminvvennoinvno, apminv.venno, apminv.invno,apminv.amount),
comments="Enter Vendor Code begin range to print (press HELP key for list)";

venno2 = apminv.venno, upshift, truncate, formatfi

eld(cusformat),

lookup(apmven.apmvenvenno, select.venname2 = apmven.name),
tablehelp("",apminv.apminvvennoinvno, apminv.venno, apminv.invno,apminv.amount),

comments="Enter Vendor Code end range to print

vennamel = displayonly type character, noupdate,
venname2 = displayonly type character, noupdate,
END

SELECT

apminv(module, source, batch, invno, venno)
EXTRACTALL
apdinv(module, source, batch, invno, venno)

(press HELP key for list)";

noentry;
noentry;

apminv(module, source, batch, invno, venno)

Appendix

A-16

A-16

EXTRACTALL
apbinv(module, source, batch) apminv(module, source, batch)

EXTRACT

apmven(venno) apminv(venno)
EXTRACT

glmcoa(glcode) apdinv(glcode)
EXTRACT

WHERE whereselect

END

REPORT

heading breakon(apminv.batch) newpage everypage

{
ACCOUNTFLEX A/P Invoice Batch Listing Page: [page
Date: [today J[time]
Source:<[m]-[s]> Batch:[batch] Batch Date:[batdate] Total:[batchtotal]
Invoice-# Vendor Name Invoice Period Due Amount
}
heading breakon(apminv.venno) afterprint(aftmpostmsg)
{
[invno][venno |venname]J[trandate|perdate |duedate] [mamount]
[div]|description][discdate|discallow]
}
heading breakon(apminv.venno) rptnoprint
{
Account -# Description Amount
}
detail rptnoprint afterprint(aftdpostmsg)
{
[glcode |gldesc | amount]

}
total breakon(apminv.venno) rptnoprint
{

Invoice Total: [amount]
}
total breakon(apminv.batch)
{

Batch Total: [amount]
}
total
{

Grand Total: [amount]
}
END
ATTRIBUTES
today = displayonly type date, default=today;
time = displayonly type mtime, default=time;
page = displayonly type smallint
m = apbinv.module;
s = apbinv.source;
batch = apbinv.batch;
batdate = apbinv.entdate;
batchtotal= apbinv.amount, format="#,##,##.##";
invno = apminv.invno, formatfield(vinvformat)
venno = apminv.venno, formatfield(cusformat)
venname = apmven.name;
trandate = apminv.trandate;
perdate = apminv.perioddate;
div = apminv.divno;
duedate = apminv.duedate;
discdate = apminv.discountdate;

discal low
description

= apminv.discountal low;
= apminv.description;

mamount = apminv.amount, format="#,##.##";
glcode = apdinv.glcode, formatfield(glformat);
gldesc = glmcoa.description;

Appendix

A-17

A-17

amount = apdinv.amount, format="#,##.##";
END

INSTRUCT |ONS

static int aftmpostmsg()

{
if (isempty(@apminv.postno) == NO)
rptline("* * * POSTED D
return(0);
}
static int aftdpostmsg()
{
if (isempty(@apdinv.postno) == NO)
rptline("* * * POSTED D
return(0);
}
END
Appendix A-18

A-18

Sample REPORTFLEX Program for CHECK Printing

TABLES
apmct| (read)
apbchk
apmchk
aptchk
apbopen
apmven
apmreg
apcheck
glmcoa

END

SCREEN select frame

{
ACCOUNTFLEX Print Checks DATE: [today
@
| This program will print Checks for any batch of payments. Below |
| enter the Batch and Check number range to assign. These Check
| Numbers will automatically be assigned to all payments without
| Check Numbers. You may also enter a range of Check Numbers to VOID |
| should checks become destroyed by aligning printer or paper jams. |
I I
| Once You have made your selections
| Press the SAVEKEY to start or ESCAPEKEY to exit
Report Destination:[d] (S=Screen, Pn=Printer, Dn=Disk, A=Aux)
Source: [m]
Batch: [batchl] G/L:[glcodel |glcodedescl
Print Check Number Range:[chknofirst] to [chknolast]
VOID Check Number Range:[chknovl] to [chknov2]
}
END
ATTRIBUTES

today = displayonly type date, default = today, noupdate, noentry;
d(rptdest) = displayonly type character, required, upshift,
default=apmct!|.chkprinter;

m = apmchk.module, upshift, default=apmct|.module, required,
comments="Enter Source of Checks to print (P=A/P,0=Orders)";

batchl = apmchk.batch, required,

tablehelp("", apbchk.apbchkbatch, apbchk.batch, apbchk.entdate, apbchk.amount)

comments="Enter Batch Number (Press the HELP key to list batches)";

glcodel= displayonly type character, formatfield(glformat), noupdate, noentry,

lookup(glmcoa.glmcoaglcode, select.glcodedescl = glmcoa.description)
tablehelp(“"flex glmcoa asdc", glmcoa.glmcoaglcode,
glmcoa.glcode, glmcoa.type, glmcoa.description)
glcodedescl = displayonly type character, noupdate, noentry;
chknofirst = displayonly type integer, right,

comments="Enter First Check Number to print";

chknolast = displayonly type integer, right,
comments="Enter Last Check Number to print";

chknovl = displayonly type character, right, truncate,
comments="Enter First Check Number to VOID";

chknov2 = displayonly type character, right, truncate,
conments="Enter Last Check Number to VOID";

END

SELECT section(chkroutine)

apcheck(recno)
EXTRACTALL

END
REPORT
heading breakon(apcheck.recno) newpage everypage

pagelength(42) beforeprint(bp_heading)
{

Appendix
A-19

A-19

[chkno]

[chkdate]
[vendor] [chkamt]
[chkamountword]
[vendor] [venno]
[address1]
[address2]
[address3 |zip]
}
detail printlength(37)
{
[trandate] [invno] [amount] [discountpay] [amountpay]
}
total breakon(apcheck.recno) printline(39)
{
[chkdate] [chkno] [amount] [discountpay] [amountpay]
}
END
ATTRIBUTES

chkamountword = displayonly type character;

chkdate = apcheck.chkdate;

chkno = apcheck.chkno;
chkamt = apcheck.chkamount
venno = apcheck.venno;
vendor = apmven.name;

addressl = apmven.addressl;
address2 = apmven.address2;
address3 = apmven.address3;

zip = apmven.zip;

trandate = apcheck. invdate;

invno = apcheck. invno;

amount = displayonly type money, format="#,###. ##",
discountpay = apcheck.discountpay, format="#, ###. ##",
amountpay = apcheck.amountpay, format="#,###. ##"

END

INSTRUCT | ONS

#include "act.h"
static int voidflag;

static int bp_heading()

D ***kkxxkkkxxskkxxxkkxxx" @heading.chkamountword);

amountword, sizeof (amountword), 1);

{
char amountword[100];
if (voidflag) {
MOVeE ("% *kx sk xkxnxskxk \/ O |
$heading.chkamt = 0.0;
}
else {
money towrds ($apmchk . amount
move (amountword, @heading.chkamountword);
}
return(0);
}

moneytowrds (value, wordvalue, maxlen, flag)

double value;
char *wordvalue;
int maxlen;
int flag;
{
int i;

int arydollar[5];

char wordcents[3];

long longvalue;

long cents, dollars;
static char *singles[] =

{ , "One", "Two", "Three", "Four", "Five", "Six", "Seven",
"Eight", "Nine" };
static char *teens[] =
{"", "Eleven", "Twelve", "Thirteen", "Fourteen", "Fifteen",
"Sixteen", "Seventeen", "Eighteen", "Nineteen" };

static char *tens[] =

Appendix

A-20

A-20

(", "Ten", "Twenty", "Thifly", "FOle", "Fifly",

"Seventy", "Eighty", "Ninety" };

longvalue = value;

dollars = longvalue / 100;

for (i=(sizeof(arydollar)/sizeof(int)); i > 0; i--) {
arydollar[i-1] = dollars % 10;
dollars /= 10;
}

wordvalue[0] = " ';
if (arydollar[0] != 0 || arydollar[1] != 0) {
if (arydollar[0] == 0 && arydollar[1] != 0)
strcat (wordvalue,singles[arydollar[1]]);

else if (arydollar[0] > 0 && arydollar[1] == 0)
strcat (wordvalue, tens[arydollar[0]]);
else if (arydollar[0] == 1 && arydollar[1] > 0)

strcat (wordvalue, teens[arydollar[1]]);
else if (arydollar[0] > 1 && arydollar[1] > 0) {
strcat (wordvalue, tens[arydollar[0]]);

strcat (wordvalue, " ");
strcat (wordvalue,singles[arydollar[1]]);
}
strcat (wordvalue, " Thousand ");

}

if (arydollar[2] !=0) {
strcat (wordvalue, singles[arydollar[2]]);

strcat (wordvalue, " ");
strcat (wordvalue, "Hundred");
strcat (wordvalue, " ");

}

if (arydollar[3] != 0 || arydollar[4] !=0) {
if (arydollar[3] > 0 && arydollar[4] == 0)
strcat (wordvalue, tens[arydollar[3]]);

else if (arydollar[3] == && arydollar[4] > 0)
strcat (wordvalue, singles[arydollar[4]]);
else if (arydollar[3] == && arydollar[4] > 0)

strcpy (wordvalue, teens[arydollar[4]]);
else if (arydollar[3] > 1 && arydollar[4] > 0) {
strcat (wordvalue, tens[arydollar[3]]);

strcat (wordvalue, " ");
strcat (wordvalue, singles[arydollar[4]]);
}
strcat (wordvalue, " ");

}

strcat (wordvalue, "and ");
cents = longvalue % 100;
ultoa(cents, wordcents);

strcat (wordvalue, wordcents);

strcat (wordvalue,"/100");

if (flag) {
for (i = strlen(wordvalue); i < maxlen; i++)
wordvaluel[i] = "*";
}

static int trancount
extern double getunapplied();

static int chkroutine()

"Sixty",

{
int rtn;
fmclose(@apmchk); /* Opened by SELECT */
rtn = doprocess();
/* close all files in case error occurs in lower level function */
fmclose(@apbchk); /* One record per batch of checks */
fmclose(@apmchk); /* One record per check */
fmclose(@aptchk); /* One record per Invoice paid by check */
fmclose(@apmreg); /* Check Register file (one record per posted check) */
fmclose(@apmven); /* Vendor file */
fmclose(@apbopen); /* Open Invoice File */
return(rtn);
}

static int doprocess()

if (isempty(@select.chknofirst) == NO) {

Appendix

A-21

A-21

if (isempty(@select.chknolast) == NO)
sprintf(msgbuf,
"Are you sure you want to PRINT Checks %ld thru %ld(Y/N or Esc)?"
$select.chknofirst, $select.chknolast);
else
sprintf(msgbuf,

"Are you sure you want to PRINT Checks starting with %ld(Y/N or Esc)?"

$select.chknofirst);
if (chkprompt(msgbuf) < 0)
return(-1);
if (chkprint(1, "Verify Printing") < 0)
return(-1);
if (trancount > 0) {
if (chkprint(2, "Printing") < 0)
return(-1);
}
}

return(0);

chkprint (passflag, passname)
int passflag;
*passname;

char

{

int m_mode, d_mode;
long chkno;

char char_chkno[20];
double chkamount
long save_pageno;
long rptpageno();
double unapplied;

trancount = 0;

if

—

—

—

—

(fmopen(@apbchk, ISINOUT+ISEXCLLOCK) < 0) {
fmerrmsg (@apbchk) ;

msggerr(msgbuf);

return(-1);

}

(fmstart(@apbchk, @apbchk.apbchkbatch, 0, ISFIRST) < 0) {
if (iserrno != 110) {

fmer rmsg (@apmchk)

msggerr(msgbuf);

return(-1);

}
return(0);

}

(fmopen(@apmchk, |SINOUT+ISEXCLLOCK) < 0) {
fmerrmsg(@apmchk)
msggerr(msgbuf);
return(-1);
}
(fmstart(@apmchk, @apmchk.apmchkbatch, 0, ISFIRST) < 0) {
if (iserrno != 110) {
fmer rmsg (@apmchk)
msggerr(msgbuf);
return(-1);
}
return(0);

}

(fmopen(@aptchk, ISINOUT+ISEXCLLOCK) < 0) {
fmerrmsg(@aptchk);
msggerr(msgbuf);
return(-1);
}
(fmstart(@aptchk, @aptchk.aptchkbatch, 0, ISFIRST) < 0) {
if (iserrno != 110) {
fmerrmsg(@aptchk);
msggerr(msgbuf);
return(-1);
}
}

(fmopen(@apmreg, |SINOUT+ISEXCLLOCK) < 0) {
fmerrmsg (@apmreg) ;

msggerr(msgbuf);

return(-1);

}

(fmopen(@apmven, |SINPUT+ISMANULOCK) < 0) {
fmerrmsg (@apmven) ;

msggerr(msgbuf);

return(-1);

}

Appendix

A-22

A-22

if (fmstart(@apmven, @apmven.apmvenvenno, 0, ISFIRST) < 0) {
if (iserrno != 110) {
fmerrmsg (@apmven) ;
msggerr(msgbuf);
return(-1);
}
}

if (fmopen(@apbopen, ISINPUT+ISMANULOCK) < 0) {
fmerrmsg(@apbopen) ;
msggerr(msgbuf);
return(-1);
}
if (fmstart(@apbopen, @apbopen.apbopeninvno, 0, ISFIRST) < 0) {
if (iserrno != 110) {
fmerrmsg(@apbopen) ;
msggerr(msgbuf);
return(-1);

}
}
dclrrec(@apbchk);
move(@select.m, @apbchk.module);
move("C", @apbchk.source);

move(@select.batchl, @apbchk.batch);
if (fmread(@apbchk, ISEQUAL) < 0) {
if (iserrno != 110 && iserrno != 111) {
fmerrmsg (@apbchk) ;
msggerr(msgbuf);
return(-1);
}
sprintf(msgbuf, "@Invalid Batch: %s-1d", $apbchk.module, $apbchk.batch);
msggerr(msgbuf);
return(-1);

}

chkno = $select.chknofirst;
dclrrec(@apmchk);

move (@apbchk.module, @apmchk .module);
move (@apbchk.source, @apmchk .source) ;
move (@apbchk.batch, @apmchk . batch);

for (m_mode = ISGTEQ;;m_mode = ISNEXT) {
if (fmread(@apmchk, m mode) < 0) {
if (iserrno != 110 && iserrno != 111) {
fmerrmsg (@apmchk) ;
msggerr(msgbuf);
return(-1);
}
break;

}

if (compare(@apmchk.module, @apbchk.module) != 0)
break;

if (compare(@apmchk.source, @apbchk.source) != 0)
break;

if (compare(@apmchk.batch, @apbchk.batch) != 0)
break;

if (isempty(@apmchk.chkno) == NO)
break;

move (@apmchk.venno, @apmven.venno);
if (fmread(@apmven, ISEQUAL) < 0) {
if (iserrno != 110 && iserrno != 111) {
fmerrmsg (@apmven) ;
msggerr(msgbuf);
return(-1);
}
sprintf(msgbuf, "@Invalid Vendor Code: %s", $apmchk.venno);
msggerr(msgbuf);
return(-1);

}

chktoa(chkno, char_chkno);
move(char_chkno, @apmchk.chkno);
chkamount = 0.0;

voidflag = NO;

dclrrec(@aptchk);

move (@apmchk.module, @aptchk.module);

move (@apmchk.source, @aptchk.source);

move (@apmchk.batch, @aptchk.batch);

move (@apmchk.recno, @aptchk.m_recno);

for (d_mode=ISGTEQ; *($apmven.method_flag) == 'O’ ;d_mode=1SNEXT) {

if (fmread(@aptchk, d_mode) < 0) {
if (iserrno != 110 && iserrno != 111) {
fmerrmsg(@aptchk);
msggerr(msgbuf);
return(-1);
}

break;

Appendix A-23
A-23

}

if (compare(@aptchk.module, @apmchk.module) !

break;

if (compare(@aptchk.source, @apmchk.source) !

break;

if (compare(@aptchk.batch, @apmchk.batch) !=

break;

if (compare(@aptchk.m _recno, @apmchk.recno) !

break;

move(@aptchk.invno, @apbopen.
move (@apmchk.venno, @apbopen.

invno);
venno);

if (fmread(@apbopen, ISEQUAL) < 0) {

if (iserrno != 110 && iserrno

fmerrmsg (@apbopen);
msggerr(msgbuf);
return(-1);
}

sprintf(msgbuf, "@Invalid

Invoice

1= 111) {

(%s -%s)",

$aptchk.invno, $apmchk.venno);

msggerr(msgbuf);
return(-1);

}

chkamount += $aptchk.amountpay;

if (passflag == 2) {
save_pageno = rptpageno();

output();

if (save_pageno != rptpageno()) {
dclrrec(@apmreg);
move (@aptchk.module, @apmreg.
move (@aptchk.source, @apmreg.
move (@aptchk.batch, @apmreg.
move (@apbchk.glcode, @apmreg.
move (@apmchk.venno, @apmreg.
move ("V", @apmreg.

chktoa(chkno,

move (char_chkno,
move (&curdate,
$apmreg.amount = 0.0;

module);
source);
batch);
glcode);
venno);
status);

char_chkno);

@apmreg

.chkno);

= 0)
= 0)
0)

= 0)

@apmreg.trandate);

if (0> fmwrite(@apmreg)) {

if (iserrno != 100)

{

fmerrmsg(msgbuf, @apmreg);

return(-1);

}

/* must be VOID check already because
is already VOID",

sprintf(msgbuf, "@Check No(%s)

$apmchk.chkno);
msggerr(msgbuf);
}

++chkno;
}
} I* passflag == 2 */

voidflag = YES;
} /* end of aptchk loop */

++trancount;

if (passflag == 2 && *($apmven.method_flag)

dclrrec(@apbopen);
dclrrec(@aptchk);
move("BALPARD",
move (@apmchk.amount,
output();

}

if (*($apmven.method_flag) == 'O")
unapplied = getunapplied();
if (mnyround(unapplied) != 0.

sprintf(msgbuf, "@Check Amount

{ [/* Open

0) {

$apmchk . amountpay) ;

msggerr(msgbuf);
return(-1);

}

—

sprintf(msgbuf,

"@heck Amount (%8.21f) does NOT equal
$apmchk.amountpay, chkamount);

msggerr(msgbuf);
return(-1);
}

}

if (passflag == 2) {
if (fmrewcurr(@apmchk) < 0) {
fmerrmsg (@apmchk) ;
msggerr(msgbuf);
return(-1);

(mnyround($apmchk.amountpay)

= '8") {

@aptchk. invno);
@aptchk.amountpay);

recno =

I tem Vendor */

0 */

(%8.21f) NOT fully applied",

= mnyround(chkamount)) {

Invoice Amounts (%8.21f)",

Appendix

A-24

A-24

sprintf(msgbuf, "%s Check No: %s", passname,
msgstat (msgbuf);

++chkno;
if (isempty(@select.chknolast) == NO &&
chkno > $select.chknolast)
break;
}

fmc lose(@apbchk);
fmc lose(@apmchk) ;
fmclose(@aptchk);
fmclose(@apmreg);
fmclose(@apmven);
fmc lose (@apbopen)
return(0);

}

static int output()

{

dclrrec(@apcheck);

move (@apmchk.recno, @apcheck.recno);

move (@apmchk.venno, @apcheck.venno);

move (@apmchk.chkno, @apcheck.chkno);

move (@apmchk.trandate, @apcheck.chkdate);

move (@apmchk.amount, @apcheck.chkamount);

move (@apbopen.trandate, @apcheck. invdate);

move(@aptchk.invno, @apcheck. invno);

move(@aptchk.amountpay, @apcheck.amountpay);
move(@aptchk.discountpay, @apcheck.discountpay);

rptprint();

chktoa(chkno, char_chkno)
long chkno;
char *char_chkno;
{
char tempbuf[20];
int length;

ultoa(chkno, tempbuf);
/* right justify into 10 byte field */

length = strlen(tempbuf);

memset (char_chkno, ' ', 10);

strcpy(&har_chkno[10 - length], tempbuf);
char_chkno[10] = ' ";

static int chkprompt(msg)
char *msg;
{

int keyint;

msgstat(msg);
keyint = getkey();

$apmchk.chkno);

if (keyint != 'Y’ && keyint !="y")
return(-1);
if (keyint == ESCAPEKEY)
return(-1);
return(0);
}
static double getunapplied()
{
double unapplied = 0.0;
if (*($apmct!.module) == 'O’ || *($apmct|.module) == 'P') {
if (*($apmven.method_flag) == 'O")
unapplied = $apmchk.amount - $apmchk.amountgl - $apmchk.amountpay;
else
$apmchk.amountpay = $apmchk.amount - $apmchk.amountgl
}
else {
if (*($apmven.method_flag) == 'O")
unapplied = $apmchk.amount + $apmchk.amountgl - $apmchk.amountpay;
else
$apmchk.amountpay = $apmchk.amount + $apmchk.amountgl;
}
return(unapplied);
Appendix

A-25

A-25

END

Appendix A-26
A-26

Sample ISAMFLEX Program using dynamic file access

#include "flex.h"

[**x***%x SOL commands used to create the 'tbref’ file
create table tbref

(code char(6),
name char (15)
)i

create unique index tbrefkey
on thref (code);

*x A KKK

typedef struct {

char code[6 + 1]
char name[15 + 1]
} TBREF;

TBREF tbref;

[**x*x*%x SOL commands used to create the 'tbemp’ file
create table themp

(code char (4),
I name char (15),
fname char(10),
hire_date date,
socnho char(13),
raise_date date,
paymethod integer,
salary money ,
conmission float
)i

create unique index tbempkey
on tbemp (code);

*x AKX

struct dbview empview[] =
{

"code"},

"lname"},

"fname"},

"hire_date"},

"salary"}

[N N N

typedef struct {
char code[4 + 1]
char Iname[15 + 1]
char fname[10 + 1]
long hire_date;
double salary;
} TBEMP;

TBEMP tbemp;

main()

{
char tempdate[10];

fmload("tbref tbemp");

if (fmopen(getdhp("tbref"), ISINOUT+ISMANULOCK) < 0) {
fmerrmsg(getdhp("tbref"));
exit(1l);
}

fmstructview(getdhp(“tbref"), NULLCHAR, 0, (char *)&tbref);

for (5 5) {
if (fmread(getdhp("tbref"), ISNEXT) < 0) {
if (iserrno == 110) /* end-of-file */
break;
fmerrmsg(getdhp("tbref"));
exit(1l);

}

0, tbref.code, tbref.name);
printf("TBREF: code=%s, name=%s

}

if (fmclose(getdhp("tbref")) < 0) {
fmerrmsg(getdhp("tbref"));
exit(1l);
}

Appendix A-27
A-27

/* Use DBVIEW method for assingning data base fields to structures

if

fms

exit

(fmopen(getdhp("tbemp"), ISINOUT+ISMANULOCK) < 0) {
fmerrmsg(getdhp("tbemp"))

exit(1l);

}

tructview(getdhp("tbemp"), empview,
sizeof (empview)/sizeof(struct dbview), (char *)&tbemp);

(55

if (fmread(getdhp("tbemp"), ISNEXT) < 0) {
if (iserrno == 110) /* end-of-file */
break;
fmerrmsg(getdhp("tbemp"))
exit(1l);
}
0,
printf("TBEMP: code=%s, name=%s, %s
tbemp.code, tbemp.lname, tbemp.fname);

datestr(tbemp.hire_date, tempdate, NUBLCHAR);
printf(" hire=%s, salary=2%6.21If
tempdate, tbhemp.salary/100);

}

(fmclose(getdhp(“tbemp")) < 0) {
fmerrmsg(getdhp("tbemp"))
exit(1l);

}

(0);

*/

Appendix

D-28

A-28

ERRORS

Compiler Errors

When compiling Infoflex source files using the fxpp command, errors may result from using incorrect syntax or invalid
environment variables. Upon detecting an error, Infoflex will display a descriptive error message along with the source line
number responsible. Error messages resulting from an inablity to access the data base, may also display an error code. The
following topic contains atable describing these error codes.

Runtime Error

When running an Infoflex program using the flex command, errors may occur as a result of invalid data or invalid
environment variables. Upon detecting an error, Infoflex will display a descriptive error message on the bottom line of your
screen. These messages are contained in the file sysmsg.flx which islocated in the application bin directory. Sysmsg.flx isa
text file that you may edit in order to customize your messages. Error messages resulting from an inablity to access the data
base, may also display an error code. These error codes are as follows:

1 system error (see errno.h)
2 file not found (check environment variables)
3-99 system error (see errno.h)
100 duplicate record

101 file not open

102 illegal argument

103 illegal key description
104 too many files open

105 bad isam file format

106 exclusive access required
107 record locked

108 key already exists

109 isprimary key

110 end/begin of file

111 no record found

112 no current record

113 file locked

114 file name too long

115 cannot create lock file
116 cannot allocate memory
117 bad custom collating

201 NULL file pointer (pdbhead)
203 file not open

Errors

H-1

INDEX

Errors

E-1

Errors

E-2

| escape 6-3
#include 2-10
$variable 7-2
@variable 7-3, 10-5
adfterdelete userexit 3-12
adfterrow userexit 3-11
aaftersection userexit 3-10
abeforedelete userexit 3-12
abeforedisplay userexit 3-11
abeforerow userexit 3-11
abeforesave userexit 3-11
abeforesection userexit 3-10
ADD clause 12-2
ADD key 3-13, 3-21
ADD mode 3-19, 3-20, 3-21, 3-22, 4-6
adelete userexit 3-12
afterdelete userexit 3-12, 3-14
afteredit userexit 3-14, 4-1, 6-9
afterfield userexit 3-14, 4-1
afterprint userexit 5-15
afterrow userexit 3-11, 5-13
aftersave userexit 3-11, 3-14
aftersection userexit 3-10, 3-14, 5-12, 6-7
aftersubsection userexit 3-10, 3-14
aggregate functions 12-18, 12-20, 12-21, 12-24,
12-(33-38)
AVG 12-33, 12-34
COUNT 12-33, 12-35
MAX 12-24, 12-33, 12-36
MIN 12-33, 12-37
SUM 12-33, 12-38
goinon clause 3-8
dias 3-2, 5-2
ALL operator 12-29
alfields 5-9, 5-10
ALTER TABLE statement 12-1, 12-2
ADD clause 12-2
DROP clause 12-2
MODIFY clause 12-2
ANY operator 12-29
arow userexit 3-11
asave userexit 3-11
asc 12-4
ATTRIBUTES Section 3-1, 3-(15-18), 3-21, 4-(1-9), 5-1,
5-(6-8), 5-(18-19), 6-4, 6-9
aternate field tag 3-15, 3-16, 5-6, 5-18
ENDREPEAT 3-5, 3-(15-16)
field tags 3-(15-16), 5-(6-7), 5-(18-
REPEAT 3-5, 3-(15-16)
attributes
AFTEREDIT userexit 4-1
AFTERFIELD userexit 4-1
AUTOHELP 4-1
AUTONEXT 4-1
BEFOREDIT userexit 4-1
CENTER 4-1

INDEX

CLEAR 4-2

COMMENTS 4-2

DEFAULT 4-2

DEFAULTNEXT 4-2

DEFAULTOFF 4-2

DEFAULTON 4-2

DISPLAYONLY 3-15, 4-6, 5-(6-7), 5-(18-19)

DOWNSHIFT 4-2

FORMAT 4-2, 5-19

FORMATFIELD 4-3

FORMATFIELD userexit 4-3, 4-4

HELPKEY userexit 4-4

HELPSCREEN 4-4

HELPSELECT 4-4

INCLUDE 4-5

LEFT 4-5

LINENO 4-5

LOOKUP 5-7

NOCLEAR 4-6

NODISPLAY 4-6

NOENTRY 4-6

NOTOTAL 5-16, 5-19

NOUPDATE 4-6

PHONE 4-6

REQUIRED 4-6

RETAIN 4-6

REVERSE 4-6

RIGHT 4-6, 5-19

SEARCHBY 4-6

SEQUENCE 4-7

SETCOL 4-8

SETROW 4-8

TABLEHELP 5-7, 11-3

TOTAL 4-8

TRUNCATE 4-8

ULOOKUP userexit 4-8

UPSHIFT 4-8

ZOOMKEY userexit 4-8

ZOOMSCREEN 4-9
AUTOHEL Pattribute 4-1
AUTONEXT attribute 4-1
AVG function 12-33, 12-34
awherefunc userexit 3-12
azoomscreen clause 3-7
backspace key 3-13
backtabkey userexit 3-13
beforedelete userexit 3-12, 3-14
beforedisplay userexit 3-11, 3-14
beforedit userexit 3-14, 4-1, 6-9
beforeprint userexit 5-15
beforerow userexit 3-11, 3-14, 5-12
beforesave userexit 3-11, 3-14
beforesection userexit 3-10, 3-14, 5-12, 6-7
beforesubsection userexit 3-10, 3-14
BETWEEN operator 12-27
bflush() 10-9, 10-10

INDEX

bin, application 2-2, 2-3, 9-1

boolean expression 12-7, 12-17, 12-18, 12-21,

12-(22-32), 12-40
ALL 12-29
ANY 12-29
BETWEEN 12-27
EXISTS 12-31
IN 12-28, 12-29
IS 12-32
LIKE 12-25
MATCHES 12-25
NOT 12-23

relational operators 12-23, 12-29

SOME 12-29
string wildcards 12-25
subquery 12-23, 12-(29-31)
BOX 3-7, 5-3
boxling() 10-9
boxrev() 10-9
BREAKON clause 5-(14-17)
bshow() 10-9
bshowxy() 10-9
buftostr() 10-12
C compiler 2-1

Clanguage 2-1, 2-2, 2-3, 2-5, 2-7, 5-1, 5-9, 5-10, 6-4,

7-1, 10-1, 10-(3-17)
C-ISAM 2-1, 10-2, 10-6
CENTER attribute 4-1
centra file 2-4, 2-6, 6-6

CHANGE mode 3-19, 3-20, 3-21, 3-22, 4-6, 4-7

CHAR datatype 8-1
CHG key 3-22
chkent() 10-11
CLEAR attribute 4-2
clrbox() 10-9
clreol() 10-9
clreos() 10-9
clrpage() 10-9
clrrng() 10-9
clrser() 10-9
command line

flex 2-5, 2-6, 3-19, 3-20, 5-20, 6-1, 6-3

fxcl 2-5, 2-8

fxpp 2-5, 2-7, 2-9

fxsgl 2-6, 12-1
COMMENTS attribute 4-2
compilation 2-3, 2-5

combining programs 2-(7-8)

makefile 2-(8-9)

reducing processing time 2-7

COMPRESS 5-16
COUNT function 12-33, 12-35

CREATE DATABASE statement 12-1, 12-3
CREATE INDEX statement 12-1, 12-(4-5)
CREATE TABLE statement 12-1, 12-6

cwmenu 2-4, 2-6, 6-(1-2)
D-ISAM 2-1
datatypes, C

double 8-1

float 8-1

datatypes 8-(1-2)

char 8-1

date 8-1

decima 8-1

double 8-1

float 8-1

integer 8-1

long 8-1, 8-2

money 8-1

mtime 8-2

serial 8-1, 10-7, 12-2, 12-6, 12-13, 12-14, 12-40

short 8-1

smallfloat 8-1

smallint 8-1

time 8-2
database directory 2-2, 12-3, 12-9
DATE datatype 8-1
date functions 12-19, 12-21
datestr() 10-13
DBFIELD typedef 10-5
DBHEAD typedef 10-5
DBINDEX typedef 10-5
dclrfld() 10-13
dclrrec() 10-13
dclrrng() 10-13
DECIMAL datatype 8-1
DEFAULT attribute 4-2

TIME 5-19

TODAY 4-2, 5-19
DEFAULTNEXT attribute 4-2
DEFAULTOFF attribute 4-2
DEFAULTON attribute 4-2
DEL key 3-12, 3-13, 3-21
DELETE option 3-19
DELETE statement 12-1, 12-7

boolean expression 12-7

WHERE clause 12-7
delete userexit 3-12, 3-14
delkey userexit 3-13, 3-14
desc 12-4
DETAIL subsection 5-14, 5-16
development menu 2-2, 2-(3-4)

central file 2-4

compilation 2-3

editing source 2-3

modify menu 2-4

SQLFLEX 2-4

testing 2-4
DISPLAYONLY attribute 3-15, 4-6, 5-(6-7), 5-(18-19)
dmapfld() 10-13
dmaprec() 10-13
dmaprng() 10-13
DONEkey 3-13, 5-4, 5-7
DOUBLE datatype 8-1
down arrow key 3-13
downarrowkey userexit 3-13
DOWNSHIFT attribute 4-2
DROP clause 12-2
DROP DATABASE statement 12-1, 12-9
DROP INDEX statement 12-1, 12-10

INDEX

DROP TABLE statement 12-1, 12-11
eeditor 9-1
ENDREPEAT 3-5, 3-(15-16)
enterkey userexit 3-13
environment variables 2-2, 2-3, 2-5, 9-1
FXAPDIR 2-2
FXBIN 9-1
FXDATA 9-1, 12-1
FXDATE 9-1
FXDIR 2-2, 9-1
FXEDIT 2-3, 9-1
FXHELP 9-1, 11-1
FXPRINT 9-1, 14-1
FXPRT 9-1
FXTERM 13-1
error codes 10-17, E-1
errors
Compile-time E-1
Runtime E-1
ESCkey 3-13, 3-19, 3-21, 3-22, 54, 6-3, 11-3
escapekey userexit 3-13
EVERYPAGE 5-16
EXISTS operator 12-31
EXITkey 4-7, 11-3
EXTRACT 5-10, 5-12
EXTRACTALL 3-5, 5-10, 5-12
field tags, keyword
page 5-19
rptcopies 5-4, 5-7
rptdest 5-4, 5-6
rptnoprint 5-4
rpttitle 5-4, 5-7
s 6-9
FIELD typedef 10-5
fieldexp (field expression) 12-17, 12-19, 12-20, 12-21,
12-22, 12-24, 12-27, 12-28
firstkey userexit 3-13
flex() 2-8, 10-8
flex 2-5, 2-6, 3-19, 3-20, 5-20, 6-1, 6-3
flexemd() 10-8
flexload() 10-8
flexload 10-16
flexprnt 14-1
flexterm 13-1
FLOAT datatype 8-1
fmaddindex() 10-6
fmbldall() 10-6
fmbuild() 10-6, 10-7
fmclose() 10-6
fmcurchk() 10-6
fmdelcurr() 10-6
fmdelete() 10-6
fmdelindex() 10-6
fmdelrec() 10-6
fmdictinfo() 10-6
fmerase() 10-6
fmerrmsg() 10-6
fmfind() 10-6, 10-7
fmflush() 10-6
fmindexinfo() 10-6

fmload() 10-6
fmlock() 10-6
fmopen() 10-7
fmread() 10-6, 10-7
fmrelease() 10-7
fmrename() 10-7
fmrewcurr() 10-7
fmrewrec() 10-7
fmrewrite() 10-7
fmsave() 10-7
fmsetserial() 10-7
fmsetunique() 10-7
fmstart() 10-6, 10-7
fmstructview() 10-7
fmuniqueid() 10-7
fmunlock() 10-7
fmwrcurr() 10-7
fmwrite() 10-7
FOOTING subsection 5-14, 5-16
FORMAT attribute 4-2, 5-19
FORMATFIELD attribute 4-3
formatfield userexit 4-3, 4-4
FRAME 3-7, 5-3
FROM clause 12-17, 12-20
FRST key 3-13, 3-16, 3-21
function keys
ADD 3-13, 3-21
CHG 3-22
DEL 3-12, 3-13, 3-21
DONE 3-13, 5-4, 5-7
EXIT 4-7, 11-3
FRST 3-13, 3-16, 3-21
HELP 3-13, 3-21, 3-22, 4-4, 11-3
JUMP 3-13, 3-19, 11-3
LAST 3-13, 3-16, 3-21
NEXT 3-13, 3-16, 3-21, 11-3
PREV 3-13, 3-16, 3-21, 11-3
PRNT 3-13
SAVE 3-11, 3-12, 3-13, 3-19, 3-20, 3-21
SRCH 3-13, 4-7
USR1 3-13
USR2 3-13
ZOOM 3-7, 3-13, 4-8, 4-9
functions, data display
getxypos() 10-8
scrollpage() 10-8
tclrall() 10-8
tclrfld() 10-8
tclrrec() 10-8
tclrrng() 10-9
tmapfld() 10-9
tmaprec() 10-9
tmaprng() 10-9
functions, data prompting
fxaccept() 10-8
getkey() 10-8
inyesno() 10-8
prompt() 10-8
functions, function key validation
keychglabel() 10-10

INDEX

msgfunc() 10-10
msgnfunc() 10-10

functions, general buffer/variable

datestr() 10-13
dmapfld() 10-13
dmaprec() 10-13
dmaprng() 10-13
fxround() 10-13
gettime() 10-13
gettoday() 10-13
isempty() 10-13
ismodfid() 10-13
ismodrng() 10-13
isnull() 10-13
iszero() 10-13
move() 10-13
rdatestr() 10-13
rstrdate() 10-14
rstrtime() 10-14
rtimestr() 10-14
setnull() 10-14
setzero() 10-14
smapfld() 10-14
smaprec() 10-14
smaprng() 10-14
strcenter() 10-14
strcompress() 10-14
strdate() 10-14
strfind() 10-14
stritrim() 10-14
strscan() 10-14
strtrim() 10-14
sysdate() 10-14
systime() 10-14

functions, initialization/termination

finit() 10-8
flex() 10-8
flexemd() 10-8
flexload() 10-8
fxabort() 10-8

functions, literal/message display

bflush() 10-9, 10-10
boxling() 10-9
boxrev() 10-9
bshow() 10-9
bshowxy() 10-9
clrbox() 10-9
clreol() 10-9
clreos() 10-9
clrpage() 10-9
clrrng() 10-9
clrser() 10-9
gotoxy() 10-9
graphout() 10-9
message() 10-9
msgcomment() 10-9
msgerr() 10-9
msggerr() 10-9
msgstat() 10-9
msgwait() 10-10

page() 10-10
putkey() 10-10

repaint() 10-10
setcursor() 10-10
show() 10-10
showxy() 10-10
skipto() 10-10
functions, miscellaneous screen
chkent() 10-11
modoffrng() 10-11
modonrng() 10-11
nodisplay() 10-11
nolookup() 10-11
sfswap() 10-11
skip() 10-11
unnodisplay() 10-11
unskip() 10-11
functions, program branching
fxcallv() 10-15
fxchain() 10-15
fxsystem() 10-15
functions, report
rptformfeed() 10-11
rptgetling() 10-11
rptling() 10-11
rptineed() 10-11
rptprint() 10-11
functions, screen buffer
buftostr() 10-12
getsf() 10-12
getsfp() 10-12
getshp() 10-12
putsf() 10-12
sclrfld() 10-12
sclrrec() 10-12
sclrrng() 10-12
strtobuf() 10-12
functions, table buffer
dclrfld() 10-13
dclrrec() 10-13
dclrrng() 10-13
getdf() 10-13
getdfp() 10-13
getdhp() 10-13
putdf() 10-13
functions, table management
fmaddindex() 10-6
fmbldall() 10-6
fmbuild() 10-6, 10-7
fmclose() 10-6
fmcurchk() 10-6
fmcurclr() 10-6
fmdelcurr() 10-6
fmdelete() 10-6
fmdelindex() 10-6
fmdelrec() 10-6
fmdictinfo() 10-6
fmerase() 10-6
fmerrmsg() 10-6
fmfind() 10-6, 10-7

INDEX

1-4

fmindexinfo() 10-6
fmload() 10-6
fmlock() 10-6
fmlush() 10-6
fmopen() 10-7
fmread() 10-6, 10-7
fmrelease() 10-7
fmrename() 10-7
fmrewcurr() 10-7
fmrewrec() 10-7
fmrewrite() 10-7
fmsave() 10-7
fmsetserial() 10-7
fmsetunique() 10-7
fmstart() 10-6, 10-7
fmstructview() 10-7
fmuniqueid() 10-7
fmunlock() 10-7
fmwrcurr() 10-7
fmwrite() 10-7
fxasave() 10-7
fxssave() 10-7
lookup() 10-7

fxabort() 10-8

fxabort 10-16

fxaccept() 10-8

FXAPDIR 2-2

fxasave() 10-7

FXBIN 9-1

fxcallv() 10-15

fxchain() 10-15

fxcl 2-5, 2-8

FXDATA 9-1, 12-1

FXDATE 9-1

FXDIR 2-2, 9-1

FXEDIT 2-3, 9-1

FXHELP 9-1, 11-1

fxinit() 10-8

fxlength 7-3

fxmkapp 2-2, 2-3, 6-1, 9-1

fxpp 2-5, 2-7, 2-9
options 2-9

FXPRINT 9-1, 14-1

FXPRT 9-1

fxround() 10-13

fxsetenv 2-2, 2-5, 9-1

fxsgl 2-6, 12-1

fxssave() 10-7

fxsystem() 10-15

FXTERM 13-1

getdf() 10-13

getdfp() 10-13

getdhp() 10-13

getkey() 10-8

getsf() 10-12

getsfp() 10-12

getshp() 10-12

gettime() 10-13

gettoday() 10-13

getxypos() 10-8

gotoxy() 10-9
graphout() 10-9
GROUPBY clause 12-17, 12-20, 12-21, 12-34, 12-35,
12-36, 12-37, 12-38
HAVING clause 12-17, 12-21
HEAD typedef 10-5
HEADING subsection 5-14, 5-15, 5-19
HELPkey 3-13, 3-21, 3-22, 4-4, 11-3
help, on-line 2-2, 3-21, 3-22, 9-1, 11-(1-3)
action keys 11-2
application wide 11-1
field level 11-1
module wide 11-1
run-time features 11-3
screen level 11-1
source 11-1
user notes 11-2
helpfunc.hlp 11-2
helpgen.hlp 11-1
helpkey userexit 3-13, 4-4
HEL PSCREEN attribute 4-4
HELPSELECT attribute 4-4
IN operator 12-28, 12-29
INCLUDE attribute 4-5
INFO statement 12-1, 12-12
Informix-SQL 2-6
Informix 1-1
INSERT statement 12-1, 12-13, 12-14
SELECT statement 12-13
installation 2-1
INSTRUCTIONS Section 2-1, 2-3, 2-5, 2-(7-10), 3-1,
3-19, 3-20, 5-1, 5-6, 5-9, 5-10, 5-20, 6-4, 6-6,
7-(1-4), 10-1, 10-3
$variable 7-2
@variable 7-3
userexits 4-1, 4-3, 4-4, 4-8
INTEGER data type 8-1
INTO TEMPclause 12-17, 12-20, 12-21
inyesno() 10-8
IS operator 12-32
isempty() 10-13
ismodfld() 10-13
ismodrng() 10-13
isnull() 10-13
iszero() 10-13
joinon clause 3-7
joins, table 3-5, 5-9, 5-10, 5-12
JUMPkey 3-13, 3-19, 11-3
jumpkey userexit 3-13
key fields 3-21
keychglabel() 10-10
LAST key 3-13, 3-16, 3-21
lastkey userexit 3-13
LEFT attribute 4-5
LIKE operator 12-25
LINENO attribute 4-5
LOAD statement 12-1, 12-14
INSERT statement 12-14
LONG datatype 8-1, 8-2
LOOKUP éttribute 5-7

INDEX

lookup() 10-7

main() 10-16

makefile 2-(8-9)

MATCHES operator 12-25

MAX function 12-24, 12-33, 12-36

MENU Section 6-4, 6-(6-8)

Menu Security 6-1

menu template 6-(4-9)

menu.flx 6-4

menufield 6-5, 6-6, 6-9

MENUFLEX 2-1, 2-2, 2-3, 6-(1-9)
| escape 6-3
ATTRIBUTES Section 6-4, 6-9
chaining 6-3
cwmenu 6-(1-2)
INSTRUCTIONS Section 6-4, 6-6, 7-(1-4)
menu creation 6-(1-2)
MENU Section 6-4, 6-(6-8)
run-time 6-3
TABLES Section 6-4, 6-5
template 6-(4-9)
userexits 6-6, 6-7, 6-9

menuhead 6-5

message() 10-9

MIN function 12-33, 12-37

modekey userexit 3-13

modemsg 3-8, 3-16

modes, run-time 3-(19-22), 5-(20-3)
ADD 3-19, 3-20, 3-21, 3-22, 4-6
CHANGE 3-19, 3-20, 3-21, 3-22, 4-6, 4-7
default 3-19
PROMPT 3-19, 3-(22-
QUERY 3-19, 3-(22-
SEARCH 3-19, 4-7
VIEW 3-19, 3-22

MODIFY clause 12-2

modoffrng() 10-11

modonrng() 10-11

MONEY datatype 8-1

move() 7-2, 10-13

msgcomment() 10-9

msgerr() 10-9

msgfunc() 10-10

msggerr() 10-9

msgnfunc() 10-10

msgstat() 10-9

msgwait() 10-10

MTIME data type 8-2

NEWPAGE 5-16

NEXT key 3-13, 3-16, 3-21, 11-3

nextkey userexit 3-13

NOCLEAR attribute 4-6

NODISPLAY attribute 4-6

nodisplay() 10-11

NOENTRY attribute 4-6

NOKILL 5-16

nolookup() 10-11

NOT operator 12-23

NOTOTAL attribute 5-16, 5-19

NOUPDATE attribute 4-6

NULL value 12-27, 12-28, 12-32, 12-34, 12-37, 12-38

ONINDEX clause 5-(9-13)

open 3-2, 5-2

ORDER BY clause 12-17, 12-29

OUTERjoin 12-(20-21)

OUTER 5-10, 5-12

OUTERALL 5-10, 5-12

page field tag 5-19

page() 10-10

PAGELENGTH 5-16

PHONE attribute 4-6

PITCH12 5-16

POPUP 3-7, 5-3

PREV key 3-13, 3-16, 3-21, 11-3

prevkey userexit 3-13

Printer Setup 14-1

PRINTER SETUP 14-4

PRINTFLEX 2-1, 9-1

printkey userexit 3-13

PRINTLENGTH 5-16

PRINTLINE 5-16

PRNT key 3-13

prntflex.prt 14-4

prntflex 9-1

PROMPT mode 3-19, 3-(22-

prompt() 10-8

putdf() 10-13

putkey() 10-10

putsf() 10-12

QUERY mode 3-19, 3-(22-

rdatestr() 10-13

read 3-2, 5-2

REJECT 5-10

relational operators 12-23, 12-29

RENAME COLUMN statement 12-1, 12-15

RENAME TABLE statement 12-1, 12-16

repaint() 10-10

REPEAT 3-5, 3-(15-16)

REPORT Section 2-3, 5-1, 5-(14-17), 5-18
BREAKON 5-(14-17)
COMPRESS 5-16
DETAIL 5-14, 5-16
EVERYPAGE 5-16
field tags 5-14, 5-15
FOOTING 5-14, 5-16
HEADING 5-14, 5-15, 5-19
literals 5-14
NEWPAGE 5-16
NOKILL 5-16
PAGELENGTH 5-16
PITCH12 5-16
PRINTLENGTH 5-16
PRINTLINE 5-16
TOTAL 5-14, 5-16, 5-19
userexits 5-14, 5-15

REPORTFLEX 2-1, 5-(1-21)

ATTRIBUTES Section, REPORT 5-1, 5-(18-19)

ATTRIBUTES Section, SCREEN 5-1, 5-(6-8)
controlling destination 5-4
controlling number of copies 5-4

INDEX

INSTRUCTIONS Section 5-1, 5-6, 5-20, 7-(1-4)
REPORT Section 2-3, 5-1, 5-(14-17), 5-18
run-time 5-(20-
SCREEN Section 5-1, 5-(3-5)
select screen 5-(3-5), 5-10, 5-12
SELECT Section 5-1, 5-(9-13), 5-18
TABLES Section 5-1, 5-2
title page 5-4
REQUIRED attribute 4-6
RETAIN attribute 4-6
RETURN key 3-13
REVERSE éttribute 4-6
RIGHT attribute 4-6, 5-19
row userexit 3-11
ROWID 12-19
rptcopies field tag 5-4, 5-7
rptdest field tag 5-4, 5-6
rptformfeed() 10-11
rptgetling() 10-11
rptling() 10-11
rptineed() 10-11
rptnoprint field tag 5-4
rptprint() 5-12, 10-11
rpttitle field tag 5-4, 5-7
rstrdate() 10-14
rstrtime() 10-14
rtimestr() 10-14
sfield tag 6-9
SAVEkey 3-11, 3-12, 3-13, 3-19, 3-20, 3-21
save userexit 3-11, 3-14
savekey userexit 3-13, 3-14
sclrfld() 10-12
sclrrec() 10-12
sclrrng() 10-12
screen array 3-5, 3-6, 3-8, 3-10, 3-11, 3-16, 3-19, 3-21
screen buffer 10-2
SCREEN Section 2-3, 3-(7-14), 3-19, 5-1, 5-(3-5)
gjoinon clause 3-8
azoomscreen clause 3-7
BOX 3-7, 5-3
field tags 3-(7-8), 5-(3-4), 5-18
FRAME 3-7, 5-3
joinon clause 3-7
literals 3-(7-8), 5-(3-4)
POPUP 3-7, 5-3
userexits 3-(7-8), 3-(10-14), 5-(3-4)
WINDOW clause 3-(7-8), 5-3, 5-4
zoomscreen clause 3-7
SCREENFLEX 2-1, 3-(1-22), 4-9
ATTRIBUTES Section 3-1, 3-(15-18), 3-21, 4-(1-9)
INSTRUCTIONS Section 3-1, 3-19, 7-(1-4)
key fields 3-21
modemsg 3-8, 3-16
multiple screens 3-1, 3-(2-3), 3-8, 3-19
run-time 3-(19-22)
screen array 3-5, 3-6, 3-8, 3-10, 3-11, 3-16, 3-19,
321
screen clearing options 3-20
SCREEN Section 3-(7-14), 3-19
SELECT Section 3-1, 3-(5-6), 3-8, 3-16

TABLES Section 3-1, 3-(2-4)
SCRFIELD typedef 10-5
SCRHEAD typedef 10-5
scrollpage() 10-8
SEARCH mode 3-19, 4-7
SEARCHBY attribute 4-6
searchkey userexit 3-13
section userexit 5-12
SELECT clause 12-20
select screen 5-(3-5), 5-10, 5-12
SELECT Section 3-1, 3-(5-6), 3-8, 3-16, 5-1, 5-(9-13),
5-18
alfields 5-9, 5-10
EXTRACT 5-10, 5-12
EXTRACTALL 3-5, 5-10, 5-12
joins, table 3-5, 5-9, 5-10, 5-12
ONINDEX clause 5-(9-13)
OUTER 5-10, 5-12
OUTERALL 5-10, 5-12
REJECT 5-10
SUBSET 5-10, 5-12
SUBSETALL 5-10, 5-12
TYPE clause 5-9, 5-12
userexits 5-(9-13)
WHERE clause 5-7, 5-(9-12)
wherefunc userexit 5-9, 5-10, 5-12
whereselect 5-7, 5-9, 5-10, 5-12
SELECT statement 12-1, 12-13, 12-(17-38), 12-39, 12-40
aggregate functions 12-18, 12-20, 12-21, 12-24,
12-(33-38)
arithmetic operators 12-19
boolean expression 12-17, 12-18, 12-21, 12-(22-32)
date functions 12-19, 12-21
fieldexp 12-17, 12-19, 12-20, 12-21, 12-22, 12-24,
12-27, 12-28
FROM clause 12-17, 12-20
GROUPBY clause 12-17, 12-20, 12-21, 12-34,
12-35, 12-36, 12-37, 12-38
HAVING clause 12-17, 12-21
INTO TEMPclause 12-17, 12-20, 12-21
ORDER BY clause 12-17, 12-29
OUTERjoin 12-(20-21)
ROWID 12-19
SELECT clause 12-20
subquery 12-23, 12-(29-31)
substrings 12-19
TODAY 12-20, 12-23, 12-27, 12-28
USER 12-20, 12-23, 12-27, 12-28
WHERE clause 12-17, 12-21, 12-29
SEQUENCE attribute 4-7
SERIAL datatype 8-1, 10-7, 12-2, 12-6, 12-13, 12-14,
12-40
set-up, application 2-(2-3)
SETCOL attribute 4-8
setcursor() 10-10
setnull() 10-14
SETROW attribute 4-8
setzero() 10-14
sfswap() 10-11
SHORT datatype 8-1

INDEX

show() 10-10

showxy() 10-10

skip() 10-11

skipto() 10-10

SMALLFLOAT datatype 8-1

SMALLINT datatype 8-1

smapfld() 10-14

smaprec() 10-14

smaprng() 10-14

SOME operator 12-29

SQLFLEX 2-1, 2-4, 2-6, 10-6, 12-(1-38)
ALTER TABLE statement 12-1, 12-2
CREATE DATABASE statement 12-1, 12-3
CREATE INDEX statement 12-1, 12-(4-5)
CREATE TABLE statement 12-1, 12-6
DELETE statement 12-1, 12-7
DROP DATABASE statement 12-1, 12-9
DROP INDEX statement 12-1, 12-10
DROP TABLE statement 12-1, 12-11
INFO statement 12-1, 12-12
INSERT statement 12-1, 12-13, 12-14
LOAD statement 12-1, 12-14
RENAME COLUMN statement 12-1, 12-15
RENAME TABLE statement 12-1, 12-16

SELECT statement 12-1, 12-13, 12-(17-38), 12-39,

12-40
UNLOAD statement 12-1, 12-39
UPDATE statement 12-1, 12-40
SRCH key 3-13, 4-7
strcenter() 10-14
strcompress() 10-14
strdate() 10-14
strfind() 10-14
string wildcards 12-25
stritrim() 10-14
strscan() 10-14
strtobuf() 10-12
strtrim() 10-14
subquery 12-23, 12-(29-31)
correlated 12-29
SUBSET 5-10, 5-12
SUBSETALL 5-10, 5-12
SUM function 12-33, 12-38
sysdate() 10-14
sysfile 2-2, 2-6, 6-5, 6-6
sysmsg.fix 2-2, 9-1
systime() 10-14
table buffer 10-2
TABLE Section
dlias 3-2, 5-2
open 3-2, 5-2
read 3-2, 5-2
TABLEHELPattribute 5-7, 11-3
TABLES Section 3-1, 3-(2-4), 5-1, 5-2, 6-4, 6-5
tclrall() 10-8
telrfld() 10-8
tclrrec() 10-8
tclrrng() 10-9
termcap 13-2, 13-3
termflex.crt 13-3

TERMINAL SETUP 13-(1-4)
TIME datatype 8-2
TIME 5-19
tmapfld() 10-9
tmaprec() 10-9
tmaprng() 10-9
TODAY 4-2, 5-19, 12-20, 12-23, 12-27, 12-28
TOOLFLEX 2-1, 10-(1-17)
@variable 10-5
DBFIELD typedef 10-5
DBHEAD typedef 10-5
DBINDEX typedef 10-5
error codes 10-17
FIELD typedef 10-5
function arguments 10-5
functions, data display 10-(8-9)
functions, data flow management 10-(12-14)
functions, data prompting 10-8
functions, function key validation 10-10
functions, general buffer/variable 10-13
functions, initialization/termination 10-8
functions, literal/message display 10-(9-10)
functions, miscellaneous screen 10-11
functions, program branching 10-15
functions, report 10-11
functions, report management 10-(8-11)
functions, screen buffer 10-12
functions, screen management 10-(8-11)
functions, table buffer 10-13
functions, table management 10-(6-7)
global variables 10-(3-4)
HEAD typedef 10-5
main() 10-16
screen buffer 10-2
SCRFIELD typedef 10-5
SCRHEAD typedef 10-5
table buffer 10-2
TOTAL attribute 4-8
TOTAL subsection 5-14, 5-16, 5-19
TRUNCATE attribute 4-8
ulookup userexit 4-8
UNLOAD statement 12-1, 12-39
SELECT statement 12-39
unnodisplay() 10-11
unskip() 10-11
up arrow key 3-13
uparrowkey userexit 3-13
UPDATE statement 12-1, 12-40
boolean expression 12-40
SELECT statement 12-40
UPSHIFT attribute 4-8
userlkey userexit 3-13
user2key userexit 3-13
USER 12-20, 12-23, 12-27, 12-28
userexit
afteredit 4-1
formatfield 4-3
helpkey 4-4
ulookup 4-8
zoomkey 4-8

INDEX

userexits, action key 3-(12-13), 3-14
backtabkey 3-13
delkey 3-13
downarrowkey 3-13
enterkey 3-13
escapekey 3-13
firstkey 3-13
helpkey 3-13, 4-4
jumpkey 3-13
lastkey 3-13
modekey 3-13
nextkey 3-13
prevkey 3-13
printkey 3-13
savekey 3-13
searchkey 3-13
uparrowkey 3-13
userlkey 3-13
userzkey 3-13
zoomkey 3-13, 4-8
userexits
adfterdelete 3-12
adfterrow 3-11
adftersection 3-10
abeforedelete 3-12
abeforedisplay 3-11
abeforerow 3-11
abeforesave 3-11
abeforesection 3-10
adelete 3-12
afterdelete 3-12, 3-14
afteredit 3-14, 6-9
afterfield 3-14, 4-1
afterprint 5-15
afterrow 3-11, 5-13
aftersave 3-11, 3-14
aftersection 3-10, 3-14, 5-12, 6-7
aftersubsection 3-10, 3-14
arow 3-11
asave 3-11
awherefunc 3-12
beforedelete 3-12, 3-14
beforedisplay 3-11, 3-14
beforedit 3-14, 4-1, 6-9
beforeprint 5-15
beforerow 3-11, 3-14, 5-12
beforesave 3-11, 3-14
beforesection 3-10, 3-14, 5-12, 6-7
beforesubsection 3-10, 3-14
delete 3-12, 3-14
delkey 3-14
row 3-11
save 3-11, 3-14
savekey 3-14
section 5-12
wherefunc 3-12, 5-9, 5-10, 5-12
USR1 key 3-13
USR2 key 3-13
vi editor 9-1
VIEW mode 3-19, 3-22

WHERE clause, SELECT Section 5-7, 5-(9-12)
WHERE clause

DELETE statement 12-7

SELECT statement 12-17, 12-21, 12-29
wherefunc userexit 3-12, 5-9, 5-10, 5-12
whereselect 5-7, 5-9, 5-10, 5-12
WINDOW clause 3-(7-8), 5-3, 5-4
ZOOM key 3-7, 3-13, 4-8, 4-9
zoomkey userexit 3-13, 4-8
ZOOMSCREEN attribute 4-9
zoomscreen clause 3-7

INDEX

INFOFLEXU, INC

INFOFLEX-4GL

ToolFlex Function Guide

Infoflex software and this manual are copyrighted and all rights are reserved by INFOFLEX, INC. No part
of this publication may be copied, photocopied, transated, or reduced to any electronic medium or machine
readable form without the prior written permission of INFOFLEX, INC.

LIMITED WARRANTY: INFOFLEX warrants that this software and manual will be free from defects in
materials and workmanship upon date of receipt. INFOFLEX DISCLAIMS ALL OTHER WARRANTIES,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
SOFTWARE, THE ACCOMPANYING WRITTEN MATERIALS, AND ANY ACCOMPANYING
HARDWARE. IN NO EVENT WILL INFOFLEX OR ANY AUTHORIZED REPRESENTATIVE BE
LIABLE FOR ANY DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS OF PROFITS, BUSINESS INTERUPTION, LOSS OF BUSINESS INFORMATION)
ARISING OUT OF THE USE OR INABILITY TO USE INFOFLEX SOFTWARE OR ANY
ACCOMPANYING INFOFLEX MANUAL, EVEN IF INFOFLEX HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

GOVERNING LAWS: Thisagreement isgoverned by the laws of California.

U.S. GOVERNMENT RESTRICTED RIGHTS:. Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subdivision (b)(3)(ii) of The Rights in Technical Data and Computer
Software clause at 252.227-7013.

Infoflex isaregistered trademark of INFOFLEX, INC.

UNIX isatrademark of Bell Laboratories.

XENIX and M S-DOS are trademarks of Microsoft Corporation.
Informix isaregistered trademark of Informix Software, Inc.
C-ISAM isatrademark of Informix Software, Inc.

D-1SAM isatrademark of Byte Designs Ltd.

Copyright [] 1986-1999 INFOFLEX, INC.
Printed in U.S.A. on May 2000

BFLUSH(T) BFLUSH(T)

INFOFLEX Toolflex Functions 1
0-1

BFLUSH(T) BFLUSH(T)

Name

bflush - flush internal 1/O buffer to the terminal screen

Syntax
bflush()

Description

Bflush flushes to the terminal screen the internal 1/O buffer filled by one of these non-flushing output routines:

boxline
boxrev
bshow
bshowxy
clrbox
clreol
clreos
clrpage
clrscr
gotoxy

putkey

Example

gotoxy(0,3);
bshow(" Writing many lines ");
bflush();

Return Value

None.

2 Toolflex Functions INFOFLEX
0-2

BOX(T) BOX(T)
Name

box - display abox on the screen

Syntax

boxline(urow, Icol, brow, rcoal)
int urow, Icol, brow, rcoal;

boxrev(urow, Icol, brow, rcol)
int urow, Icol, brow, rcoal;

Description
Boxline displays abox using asingle line border.
Boxrev displays abox with areverse attribute background.

Urow, Icol, brow, and rcol define the upper row, left column, bottom row, and right column, respectively, of the border of
the box.

Return Value

None.

INFOFLEX Toolflex Functions 3
0-3

BUFTOSTR(T) BUFTOSTR(T)

Name

buftostr - convert avalue to astring

Syntax

buftostr(s1, s2, type, length, dec, fmt)
char *s1;

char *s2;

int type;

int length;

int dec;

int fmt;

strtobuf(s1, s2, type, length, fmt)
char *s1;

char *s2;

int type;

int length;

int fmt;

Description

Buftostr converts the value pointed to by sl to the character string s2.
Strtobuf converts the character string sl to avalue pointed to by s2.
Type isthe data type of the value and is defined in fxtypes.h:

CHARTYPE character string
SHORTTYPE short integer
INTTYPE integer
LONGTYPE long integer
DOUBLETYPE double-precision floating point number
DECTYPE decimal structure
MONEYTYPE money
SERIALTYPE serial long integer
DATETYPE date

TIMETYPE AM/PM style time
MTIMETYPE military time

Length is the length of the string buffer (s2 for buftostr or sl for strtobuf). length must be at least 1 byte less than the size
of the buffer for null termination. 1f necessary, s2 of type CHARTY PE will be truncated on the right to fit within length.

In buftostr dec isthe number of digits to the right of the decimal point for DOUBLETYPE, FLOATTYPE, or DECTYPE.
If dec isgreater than zero, s2 will be truncated on the left, if necessary, to fit the result within length.

Fmt isaformat flag. The format flags that are meaningful to buftostr are defined in fxcon.h:

F_BLANKFILL Blank fill s2if slisO.

F_RIGHT Right justify s2 within length. Thisalso worksfor strtobuf.

F LEFT Left justify s2 within length.

F_COMMA Comma separate groups of three digits left of a decimal point. This macro can be added in with

one of the justification macros.

In strtobuf if fmt has the value of F_PHONE and type is CHART Y PE, then sl is checked for valid telephone format.

4 Toolflex Functions INFOFLEX
0-4

BUFTOSTR(T) BUFTOSTR(T)

Return Value

-1 Conversion failed (strtobuf only).
0 Conversion successful.

INFOFLEX Toolflex Functions 5
0-5

CHKENT(T) CHKENT(T)

Name

chkent - check if afield is data enterable

Syntax

int chkent(pscrfield)
SCRFIELD *pscrfield;

Description

Chkent checks whether the screen field pointed to by pscrfield is data enterable according to the current mode. For
example, if the mode is CHANGE (flexmode = CHANGEM ODE) and the field has an attribute of noupdate, chkent will
return 1. If the mode is ADD (flexmode = ADDMODE) and the attribute noentry is in effect for the field, a 1 will be
returned.

Return Value

1 Field isnot enterable.
0 Field is enterable.

6 Toolflex Functions INFOFLEX
0-6

CLR(T) CLR(T)
Name

clr - clear parts of the screen display
Syntax

clrser()

clrpage(pscrhead)
SCRHEAD *pscrhead;

clreos(row, col)
int row, col;

clreol()

clrrng(row, nlines)
int row, nlines;

clrbox(urow, Icol, brow, rcol)
int urow, Icol, brow, rcoal;

Description
Clrscr clears the entire screen display.
Clrpage clears the screen region occupied by a SCREENFL EX screen image.
Clreos clears from the current cursor position, specified by row and col, to the end of the screen display.
Clreol clearsfrom the current cursor position to the end of the line.
Clrrng clears arange of screen rows starting at row and clearing nlines number of lines.

Clrbox clears a box region on the CRT. The area of the box is defined by urow, the upper row, Icol, the leftmost column,
brow, the bottom row, and rcol, the rightmost column. The region is cleared by overwriting blanks.

Example

To clear line n, use the following:

gotoxy(n, 0);
clreol();

or

clrrng(n, 1);

Return Value

None.

INFOFLEX Toolflex Functions 7
0-7

COMPARE(T) COMPARE(T)

Name

compare - compare data from one field to another

Syntax

compareg(pfieldl, pfield2)
FIELD *pfieldl, *pfield2;

Description

Compar e compares the contents of pfieldl and pfield2. This function will convert data types if necessary. Also, one of the
arguments may be a C language variable provided it is of the same type and length. The source and the destination can be
either a screen field, a database field, or a C variable. However, you cannot use it to compare a C variable to a C variable.

Examples
There are several ways to compare values into a screen or table field via user functions. A summary of the various ways are
shown below:
if ($table.fieldname == 14)
or

cnum = 14;
if (compare(&cnum, @table.fieldname) == 0)

Thefirst is more efficient when dealing with numerics. However, when dealing with character strings compare is the proper
method to use.

if (compare("teststring", @table.fieldname) == 0)
Note that money fields are stored in units of cents.

Limitation

Comparisons to a screen array variable can only be done when the screen is active (currently displayed).

Return Value

= 0 pfield1lisequal to pfield2.
> pfieldl is greater than pfield2.
< pfieldl isless than pfield2.

See Also

move, buftostr

8 Toolflex Functions INFOFLEX
0-8

DATESTR(T) DATESTR(T)

Name

datestr - convert date internal format to date display format

Syntax

datestr (numdate, sdate, format)
long numdate;

char *sdate;

char *format;

rdatestr (numdate, sdate, type)
long numdate;

char *sdate;

int type;

strdate(sdate, numdate, for mat)
char *sdate;

long *numdate;

char *format;

rstrdate(sdate, numdate, type)
char *sdate;

long *numdate;

int type;

Description

Datestr converts adate frominternal format, numdate, to display format, sdate. Internal format is the number of days since
December 31, 1899. The format argument determines the format for sdate. If format is null, then the environment variable
FXDATE determines the format. If FXDATE is undefined, then MM/DD/YYY is used. Other possible formats are described
below.

Rdatestr also converts a date from internal format, numdate, to display format, sdate. The type argument determines the
format of sdate and may be DATETYPE, EDATETYPE, or YDATETYPE. DATETYPE formats to MM/DD/YY,
EDATETYPE formatsto DD/MM/YY, and YDATETYPE formatsto YY/MM/DD.

Strdate converts a date from display format, sdate, to internal format, numdate. The format argument specifies the format of
sdate. Format may be MM/DD/YY, DD/MM/YY, or YY/MM/DD. If format is null, the format defaults in the same
manner asfor datestr. A blank or zero length sdate will null the internal date.

Rstrdate also converts a date from display format, sdate, to internal format, numdate. The type argument specifies the
format of sdate and may be DATETYPE, EDATETYPE, or YDATETYPE. DATETYPE formats to MM/DD/YY,
EDATETYPE formats to DD/MM/YY, and YDATETYPE formats to YY/MM/DD. A blank or zero length sdate will
null the internal date.

FORMAT Options

The format argument for datestr () has a number of options. For example, you may use the format Mmm dd, yyyy Ddd to
display the date as "Jan 23, 1992 Tu€'. These formating options are described below.

INFOFLEX Toolflex Functions 9
0-9

DATESTR(T)

Return Value

R_NULL
R_ZERO
-1

0

Format

Description

mm

mmm

dd

ddd

yy

yyyy

displays atwo digit representation of the month
displays athree letter abbreviation of the month
displays atwo digit representation of the day
displays athree letter abbreviation of the day
displays atwo digit representation of the year

displays afour digit representation of the year

Internal input date isnull. (For datestr or rdatestr only. Macro definition in fxcon.h.)

Internal input date islessthan or equal to 0. (For datestr or rdatestr only. Macro definition in fxcon.h.)
Illegal format, type, or sdate.

Conversion successful.

10

Toolflex Functions
0-10

DATESTR(T)

INFOFLEX

DCLR(T) DCLR(T)

Name

dclr - clear one or more fields of the table buffer

Syntax

dclrrec(pdbhead)
DBHEAD *pdbhead;

dlrfld(pdbfield)
DBFIEL D *pdbfield;

dclrrng(pdbfieldl, pdbfield2)

DBFIELD *pdbfield1;
DBFIELD *pdbfield2;

Description
Dclrrec clears the table buffer pointed to by pdbhead.
Dclrfld clears the field in the table buffer pointed to by pdbfield.

Dclrrng clears arange of fields starting at pdbfield1 and ending at pdbfield2.

Return Value

None.

See Also

sclr, tclr

INFOFLEX Toolflex Functions 11
0-11

DMAP(T)

Name

dmap - copy one or more fields from the screen buffer to the table buffer

Syntax

dmaprec(pdbhead, pscrhead)
DBHEAD *pdbhead;
SCRHEAD *pscrhead;

dmapfld(pdbhead, pscrfield)
DBHEAD *pdbhead;
SCRFIELD *pscrfield;

dmaprng(pdbhead, pscrfieldl, pscrfield2)
DBHEAD *pdbhead;
SCRFIELD *pscrfieldl, *pscrfield2;

Description

Dmapr ec copies al fields from the screen buffer pointed to by pscrhead to the table buffer pdbhead.

DMAP(T)

Dmapfld copies the data of the screen buffer field pointed to by pscrfield to the table buffer pointed to by pdbhead.

Dmaprng copies arange of fields starting with pscrfield1 and ending with pscrfield2 of the screen buffer to the table buffer

pdbhead.

Return Value

None.

See Also

smap, tmap

12 Toolflex Functions
0-12

INFOFLEX

ERROR(T)

Name

error - error codes

Description

ERROR(T)

When a TOOLFLEX file management function fails (functions which start with afm), it sets the global variable iserrno to
one of these codes defined in fxisam.h:

1 system error (see errno.h)
2 file not found (check environment variables)
3-99 system error (see errno.h)
100 duplicate record
101 file not open
102 illegal argument
103 illegal key description
104 too many files open
105 bad isam file format
106 exclusive access required
107 record locked
108 key already exists
109 isprimary key
110 end/begin of file
111 no record found
112 no current record
113 file locked
114 file name too long
115 cannot create lock file
116 cannot allocate memory
117 bad custom collating
201 NULL file pointer (pdbhead)
203 file not open
INFOFLEX Toolflex Functions

0-13

13

FLEX(T) FLEX(T)

Name

flex - load and run aflex program

Syntax

flex(argc, argv)
int argc;
char *argv[];

flexemd(command)
char *command;

flexload(picname)
char *picname;

Description

Flex initializes the terminal, then loads a binary screen display or report definition .pic file and runs its SCREEN or
REPORT section. Flex takes main-like parameters, argc and argv, that would be the same as the arguments to the flex
command. Flex may be called recursively to zoom or pop-up other screens from the calling screen. The recursively called
screen must be defined in the same .flx source file as the calling screen.

Flexemd performs the same function as flex except the arguments are specified as a command string.
Flexload performs the same function as flex except the SCREEN or REPORT section is not run. This function is typicaly
used for Infoflex programs which only have a TABLES and INSTRUCTIONS section. The TABLES section is compiled

into a .pic file called picname, which is the argument to flexload. The developer will supply the main function and must
call flexload before using any table management or screen management functions.

Limitations
When recursively calling screens, the called screen must reside in the same source file as the calling screen. Also the first

argument must be flex. Flex functions may be called from outside userexits or from within function key userexits.

Return Value

Last flexkey pressed upon exiting flex() or flexcemd(). Thereis no return value for flexload().

See Also

fxinit

Example

flexemd("flex bkinput -f tbvenpop cdsga N");

will load the Infoflex program bkinput and then run the screen tbvenpop with CHANGE, DELETE, SEARCH, and ADD
MODES enabled.

14 Toolflex Functions INFOFLEX
0-14

FMADDINDEX(T)

Name

fmaddindex - add an index to atable

Syntax

fmaddindex(pdbhead, pdbindex)
DBHEAD *pdbhead;
DBINDEX *pdbindex;

Description

FMADDINDEX(T)

Fmaddindex adds the index pointed to by pdbindex to the table associated with the table buffer pdbhead.

Return Value

-2 Invalid pdbindex structure.

-1 Failed to open table, if table was not already open, or failed to create index. The global variable iserrno will be set

with one of the values listed inerror (T).
0 Index created successfully.

See Also

fmdelindex

INFOFLEX

Toolflex Functions
0-15

15

FMBEGIN(T) FMBEGIN(T)

Name

fmbegin - defines the beginning of atransaction

Syntax
fmbegin()

Description

Fmbegin must be called before the first file management function call (fmxxxx) within atransaction.

Limitations

Thisfunction is currently only available for C-ISAM users (call for current status).

Return Value

-1 Faled condition; iserrnoisset (seeerror (T)).
0 Successful condition.

See Also

fmbegin, fmcommit, fmrollback, fmlogopen, fmlogclose, fmrecover

16 Toolflex Functions INFOFLEX
0-16

FMBLDALL(T) FMBLDALL(T)

Name
fmbldall - build atable and all itsindices

Syntax

fmbldall(pdbhead)
DBHEAD *pdbhead;

Description

Fmbldall will build the table specified by pdbhead, creating all indices defined within the table buffer structure. Where the
table already exists, it iserased prior to building. Thisroutine is effective in deleting the contents of existing files.

Return Value

-2 Fmaddindex failed.
-1 Null pdbhead or fmbuild failed.
0 Successful.

See Also

fmbuild, fmaddindex, fmerase

INFOFLEX Toolflex Functions 17
0-17

FMBUILD(T) FMBUILD(T)

Name

fmbuild - create atable

Syntax

fmbuild(pdbhead, pdbindex, mode)
DBHEAD *pdbhead;

DBINDEX *pdbindex;

int mode;

Description
Fmbuild will create the table specified by pdbhead and create the table's primary index as specified by pdbindex.
The created table will be left open in the specified mode. See mode(T) for the description of the table access modes.
After fmbuild, you may create secondary indices with the fmaddindex function.

Return Value

-2 Invalid pdbindex structure.
-1 Table creation failed. The global variable iserrno will be set with one of the values listed in error (T).
>=0 File descriptor of open created table.

See Also
fmbldall, fmaddindex, fmerase

18 Toolflex Functions INFOFLEX
0-18

FMCLOSE(T)

Name

fmclose - close atable

Syntax

fmclose(pdbhead)
DBHEAD *pdbhead;

Description

Fmclose closes the table specified by the table buffer pdbhead.

Return Value

-1 Null pdbhead or close failed. Inthe latter caseiserrno isset (seeerror(T)).
0 Close successful or table already closed.

See Also

fmopen

INFOFLEX Toolflex Functions
0-19

FMCLOSE(T)

19

FMCOMMIT(T) FMCOMMIT(T)

Name

fmcommit - causes all File Management functions since the last call to fmbegin to take effect.

Syntax

fmcommit()

Description

Fmcommit will cause all changes to INFOFLEX files within the transaction to occur. The transactions begins upon calling
the function fmbegin(). All locks held for transaction are released upon completion of the committing process.

Limitations

Thisfunction is currently only available for C-ISAM users (call for current status).

Return Value

-1 Failed condition; iserrnoisset (seeerror (T)).
0 Successful condition.

See Also

fmbegin, fmcommit, fmrollback, fmlogopen, fmlogclose, fmrecover

20 Toolflex Functions INFOFLEX
0-20

FMCURR(T) FMCURR(T)

Name

fmeur - test if there isacurrent record for atable

Syntax
fmcur chk(pdbhead)
DBHEAD *pdbhead;

fmcurclr (pdbhead)
DBHEAD *pdbhead;

Description
Fmcurchk determines if the table specified by pdbhead has been opened and is currently positioned on arecord. A record
is positioned via the fmstart, fmfind, or fmread functions.

Fmcurclr clears the current position flag so the next time fmsave() is called a new record will be written.

Return Value

0 No current record exists.
1 Current record exists.

See Also

fmstart, fmfind, fmread

INFOFLEX Toolflex Functions 21
0-21

FMDEL CURR(T) FMDEL CURR(T)

Name

fmdelcurr - delete the current record of atable

Syntax

fmdelcurr(pdbhead)
DBHEAD *pdbhead;

Description

Fmdelcurr deletes the current record associated with the table buffer pointed to by pdbhead. The current record is the last
record of the table accessed with fmfind or fmread. After fmdelcurr the current record will be the record previous to the
one deleted.

Return Value

-1 Deletefaled; iserrnoisset (seeerror(T)).
0 Delete successful.

See Also
fmdelete, fmfind, fmread

22 Toolflex Functions INFOFLEX
0-22

FMDELETE(T) FMDELETE(T)

Name

fmdelete - delete the record with a given primary index value

Syntax

fmdelete(pdbhead)
DBHEAD *pdbhead;

Description

Fmdelete deletes the record with the values for its primary index defined in the table buffer pdbhead. The primary index
must be an index that does not allow duplicate entries. You may not use this function with files created with SQLFLEX or
INFORMIX-SQL.

Return Value

-1 Deletefaled; iserrnoisset (seeerror(T)).
0 Delete successful.

See Also

fmdelcurr

INFOFLEX Toolflex Functions 23
0-23

FMDELINDEX(T) FMDELINDEX(T)

Name

fmdelindex - remove an index

Syntax

fmdelindex(pdbhead, pdbindex)
DBHEAD *pdbhead;
DBINDEX *pdbindex;

Description

Fmdelindex deletes the index specified by pdbindex from the table specified by pdbhead. The table may be open but need
not be.

Return Value

-2 Invalid pdbindex structure.
-1 Failed to open table, if table was not already open, or failed to delete index. The global variable iserrno will be set
with one of the values listed in error (T).
0 Index deleted successfully.

See Also
fmaddindex

24 Toolflex Functions INFOFLEX
0-24

FMDELREC(T) FMDELREC(T)

Name

fmdelrec - delete arecord from the table identified by its record number

Syntax

fmdelrec(pdbhead, recd)
DBHEAD *pdbhead;
long recd;

Description

Fmdelrec will delete record number recd in table pdbhead. If that record happens to be the "current” record, the current
record will not change.

Return Value

-1 Deletefaled; iserrnoisset (seeerror(T)).
0 Delete successful.

See Also
fmdelcurr, fmdelete, fmfind, fmread

INFOFLEX Toolflex Functions 25
0-25

FMDICTINFO(T) FMDICTINFO(T)

Name

fmdictinfo - get table parameters

Syntax

fmdictinfo(pdbhead, pdictinfo)
DBHEAD *pdbhead;
struct dictinfo *pdictinfo;

Description

Fmdictinfo returns table parameters contained in the pdictinfo structure which is defined in fxisam.h:

struct dictinfo

{

short di_nkeys; /* number of indices defined */
short di_recsize; /* data record size */

short di_idxsize; /* index record size */

long di_nrecords; /* number of records in table */
b

Thetable is specified by pdbhead.

Return Value

-1 Accessfaled; iserrno isset (seeerror(T)).
0 Access successful.

See Also

fmindexinfo

26 Toolflex Functions INFOFLEX
0-26

FMERASE(T) FMERASE(T)

Name

fmerase - remove atable

Syntax

fmer ase(pdbhead)
DBHEAD *pdbhead;

Description

Fmer ase will remove the table specified by pdbhead from its database.

Return Value

-1 Could not close the table, if open, or could not removeit. Inthe former caseiserrno isset (seeerror(T)).
0 Removal successful.

See Also
fmbuild

INFOFLEX Toolflex Functions 27
0-27

FMERRMSG(T) FMERRMSG(T)

Name

fmerrmsg - display a message based on the last table management function call

Syntax

fmerrmsg(pdbhead)
DBHEAD *pdbhead;

Description

Fmerrmsg displays a message based on the last table management function call accessing the table specified by pdbhead.
Fmerrmsg places the message at line 23 of the screen, rings the bell, and waits for a carriage return to continue.

Return Value

None.

See Also

message

28 Toolflex Functions INFOFLEX
0-28

FMFIND(T) FMFIND(T)

Name

fmfind - find arecord based on the given mode and index

Syntax

fmfind(pdbhead, pdbindex, mode)
DBHEAD *pdbhead;

DBINDEX *pdbindex;

int mode;

Description

Fmfind will do a combination of both the functions fmstart and fmread. If the pdbindex is being used for the first time, the
fmfind function will perform the fmstart function. After the fmstart is done the fmread will be performed. Th acceptable
fmfind modes are the same as for the fmread.

Return Value

-1 Findfailed; iserrnoisset (seeerror(T)).
0 Find successful.

See Also

fmstart, fmread

INFOFLEX Toolflex Functions 29
0-29

FMFLUSH(T) FMFLUSH(T)

Name

fmflush - flushes data and indexes to disk

Syntax

fmflush(pdbhead)
DBHEAD *pdbhead;

Description

Fmflush ensures that all data and indexes associated with the table pdbhead are written to disk.

Return Value

-1 Flushfailed; iserrnoisset (seeerror(T)).
0 Flush successful.

See Also

fmclose

30 Toolflex Functions INFOFLEX
0-30

FMINDEXINFO(T)

Name

fmindexinfo - get information about atable sindices

Syntax

fmindexinfo(pdbhead, pdbindex, pkeydesc)
DBHEAD *pdbhead;

DBINDEX *pdbindex;

struct keydesc * pkeydesc;

Description

FMINDEXINFO(T)

Fmindexinfo returns parameters associated with the index pointed to by pdbindex of the table specified by pdbhead. The
index parameters are loaded into the pkeydesc structure defined in fxisam.h:

struct keydesc

{
short k_flags; /* flags */
short k_nparts;/* number of fields in index */
/* index fields */
struct keypart k_part[NPARTS];
short k_len; [/* length of whole index(internal use)*/
long k_rootnode;/* pointer to rootnode(internal use)*/

}s

struct keypart

Thek_flags element specifies the type of index (these macros are defined in fxisam.h):

{
short kp_start;/* starting byte of index part */

short kp_leng; /* length in bytes */
short kp_type; /* type of index part */
b

ISNODUPS no duplicates allowed.
ISDUPS duplicates allowed.
DCOMPRESS compresses duplicates.
LCOMPRESS compressesleading characters.
TCOMPRESS compressestrailing characters.
COMPRESS all forms of compression.

Return Value

-1 Invalid pdbindex structure.
0 Successful.

See Also

fmdictinfo

INFOFLEX

Toolflex Functions
0-31

31

FMLOAD(T) FMLOAD(T)

Name

fmload - dynamically load table information into memory
fmunload - unload dynamically loaded table information

Syntax

fmload(tablelist)

char *tabldlist;

fmunload()

Description

Fmload loads the table information dynamically rather than through a .pic file. Thisis an aternate method to using an
Infoflex source file with a TABL ES section.

When using fmload, your program will look like a normal C program without any Infoflex section names, @variables, or
$variables. You will also need to supply your own main function.

Fmload must be called before any other file management routine (fmxxxx) and should only be called once in a program.

Upon an error, the program will abort with an appropriate error message.

Example

fmload("vendor customer accounts");

will load the dictionary information for the three tables vendor, customer, and accounts.

The following example does the same as above except the customer file isloaded twice under an alias name cust2.

fmload("vendor customer accounts alias cust2");
This technique is used so the same table can be opened more than once in order to access it in different ways at the same
time.

To load the entire dictionary, use the keyword "alltables" as the tablelist argument.

Limitations

Thisfunction may NOT be used in flex programs (* .flx).

Return Value

None.

32

Toolflex Functions INFOFLEX
0-32

FMLOCK(T) FMLOCK(T)

Name

fmlock - creates alock on the entire table.

Syntax

fmlock(pdbhead)
DBHEAD *pdbhead;

Description

Fmlock places a read only lock on the entire table pdbhead. It works only for tables opened for manua locking
(ISMANULOCK). Thetable may be unlock by calling the fmunlock function.

Return Value

-1 Lockfailed; iserrnoisset (seeerror(T)).
0 Lock successful.

See Also

fmunlock, fmrelease

INFOFLEX Toolflex Functions 33
0-33

FMLOGCLOSE(T)

Name

fmlogclose - closes the transaction log file.

Syntax
fmlogclose()

Description

Fmlogclose closes the log file opened by fmlogopen().

Limitations

Thisfunction is currently only available for C-ISAM users (call for current status).

Return Value

-1 Faled condition; iserrnoisset (seeerror (T)).
0 Successful condition.

See Also

fmbegin, fmcommit, fmrollback, fmlogopen, fmlogclose, fmrecover

34 Toolflex Functions
0-34

FMLOGCLOSE(T)

INFOFLEX

FMLOGOPEN(T) FMLOGOPEN(T)

Name

fmlogopen - Opens th etransaction log file for all subsequent File Management calls to record changes.

Syntax

fmlogopen(logname)
char *logname;

Description

Fmlogopen must specify alogname where transactions are to be stored. Thislog file must already exist prior to calling this
function.

Limitations

Thisfunction is currently only available for C-ISAM users (call for current status).

Return Value

-1 Faled condition; iserrnoisset (seeerror (T)).
0 Successful condition.

See Also

fmbegin, fmcommit, fmrollback, fmlogopen, fmlogclose, fmrecover

INFOFLEX Toolflex Functions 35
0-35

FMOPEN(T) FMOPEN(T)

Name

fmopen - open atable

Syntax

fmopen(pdbhead, mode)
DBHEAD *pdbhead;
int mode;

Description

Fmopen opens the table specified by pdbhead in the specified mode. See mode(T) for the description of the table access
modes.

Return Value

< 0 Open failed.
>=0 File descriptor of the opened table.

See Also

fmclose

36 Toolflex Functions INFOFLEX
0-36

FMREAD(T) FMREAD(T)

Name
fmread - read arecord into the table buffer

Syntax

fmread(pdbhead, mode)
DBHEAD *pdbhead;
int mode;

Description

Fmread reads a record from the table specified by pdbhead. The record is read sequentially or randomly as indicated by
one of these values for mode defined in fxisam.h:

ISCURR reads the current record.

ISFIRST reads thefirst record.

ISLAST readsthe last record.

ISNEXT reads the next record.

ISPREV readsthe previous record.

ISEQUAL reads the record equal to the search value.

ISGREAT reads the first record greater than the search value.

ISGTEQ readsthefirst record greater than or equal to the search value.

The search value will be those values in the fields of pdbhead that comprise the index specified by the most recent fmstart
or fmfind.

To Lock the record read by fmread, add ISLOCK to one of the retrieval modes (for example ISEQUAL +ISLOCK). In order
to use this locking feature the file must have been opened using the ISMANULOCK locking mode (see mode(T). The
record remains locked until you unlock it with fmrelease.

You may use the fmread to read specific records via the record number. To do this you must first call fmstart with a NULL
argument for pdbindex. Then assign the globa variable isrecnum with the record number you wish to locate and call
fmread with an ISEQUAL mode.

Example
fmread(pdbhead, ISFIRST+ISLOCK) ;

Return Value

-1 Readfailed; iserrnoisset (seeerror(T)).
0 Read successful.

See Also

fmstart, fmfind

INFOFLEX Toolflex Functions 37
0-37

FMRECOVER(T) FMRECOVER(T)

Name

fmrecover - re-updates INFOFLEX files with transactions from the log file.

Syntax

fmrecover ()

Description

Fmrecover isused to update a backup copy of your INFOFLEX files with alog file generated since the time of the backup.
The log file must already be opened by a call to fmlogopen. Also, the function should finish executing before anyone is
allowed to access the files.

Limitations

Thisfunction is currently only available for C-ISAM users (call for current status).

Return Value

-1 Faled condition; iserrnoisset (seeerror (T)).
0 Successful condition.

See Also

fmbegin, fmcommit, fmrollback, fmlogopen, fmlogclose, fmrecover

38 Toolflex Functions INFOFLEX
0-38

FMRELEASE(T)

Name

fmrelease - unlock the records of atable

Syntax

fmrelease(pdbhead)
DBHEAD *pdbhead;

Description

FMRELEASE(T)

Fmr elease removes the locks placed on any records locked by the fmfind or fmread functions. The records belong to the

table specified by pdbhead.

A table must be opened with the ISM ANUL OCK mode to make use of the fmrelease function.

Return Value

-1 Releasefailed; iserrnoisset (seeerror(T)).

0 Release successful.

See Also

fmopen, fmfind, fmread

INFOFLEX

Toolflex Functions
0-39

39

FMRENAME(T) FMRENAME(T)

Name

fmrename - rename atable

Syntax

fmrename(oldname, newname)
char *oldname;
char *newname;

Description

Fmrename changes the name of a table, oldname, to the new name, newname. These are the names of the data files
without the .dat or .idx extensions. These names are not necessarily the dictionary table names.

Return Value

-1 Renamefailed; iserrnoisset (seeerror(T)).
0 Rename successful.

40 Toolflex Functions INFOFLEX
0-40

FMREWCURR(T) FMREWCURR(T)

Name

fmrewcurr - rewrite the current record of atable

Syntax

fmrewcurr (pdbhead)
DBHEAD *pdbhead;

Description

Fmrewcurr updates the current record of the table specified by the table buffer pdbhead and with the data in the table
buffer. The current record isthe last record of the table accessed with fmfind or fmread.

Return Value

-1 Rewritefailed; iserrnoisset (seeerror(T)).
0 Rewrite successful.

See Also

fmrewrite, fmfind, fmread

INFOFLEX Toolflex Functions 41
0-41

FMREWREC(T) FMREWREC(T)

Name

fmrewrec - rewrite arecord from the table identified by its record number

Syntax

fmrewrec(pdbhead, recd)
DBHEAD *pdbhead;
long recd;

Description

Fmrewrec will rewrite record number recd in table pdbhead. If that record happens to be the "current” record, the current
record will not change.

Return Value

-1 Deletefaled; iserrnoisset (seeerror(T)).
0 Delete successful.

See Also
fmdelcurr, fmdelete, fmfind, fmread

42 Toolflex Functions INFOFLEX
0-42

FMREWRITE(T) FMREWRITE(T)

Name

fmrewrite - rewrite the record with a given primary index value

Syntax

fmrewrite(pdbhead)
DBHEAD *pdbhead;

Description

Fmrewrite updates arecord of the table specified by pdbhead and with the data in the table buffer. The record is located by
the values in the table buffer for its primary index. The primary index must be an index that does not allow duplicate
entries. You may not use this function on files created using SQLFLEX or INFORMIX-SQL.

Return Value

-1 Rewritefailed; iserrnoisset (seeerror(T)).
0 Rewrite successful.

See Also

fmrewcurr

INFOFLEX Toolflex Functions 43
0-43

FMROLLBACK(T) FMROLLBACK(T)

Name

fmrollback - Cancels all File Management calls made since the last call to fmbegin().

Syntax
fmrollback()

Description

Fmrollback returns any records modified since the last call to fmbegin() to their original unmodified state. To use the
fmrollback() function you must include the ISTRANS parameter as part of the mode in the fmopen call. Also you may not
roll back the following calls: fmbuild, fmaddindex, fmdelindex, fmsetunique, fmuniqueid, fmrename, or fmerase.

Limitations

Thisfunction is currently only available for C-ISAM users (call for current status).

Return Value

-1 Faled condition; iserrnoisset (seeerror (T)).
0 Successful condition.

See Also

fmbegin, fmcommit, fmrollback, fmlogopen, fmlogclose, fmrecover

44 Toolflex Functions INFOFLEX
0-44

FMSAVE(T) FMSAVE(T)

Name

fmsave - save atable record in the appropriate way

Syntax

fmsave(pdbhead)
DBHEAD *pdbhead;

Description

Fmsave is an optimized record write routine. Fmwrite is called if the last fmfind call was unsuccesful. Fmrewcurr is
caled if the last fmfind call was successful.

Return Value

-1 Savefailed; iserrnoisset (seeerror(T)).
0 Save successful.

See Also

fmwrite, fmrewcurr, fmfind

INFOFLEX Toolflex Functions 45
0-45

FMSETSERIAL(T) FMSETSERIAL(T)

Name

fmsetserial - set the serial number in the table buffer

Syntax

fmsetserial(pdbhead)
DBHEAD *pdbhead;

Description

Fmsetserial sets the serial number field to a unique number. A unique number is only assigned if the current value of the
seria field is0. The unique number is one greater than the last one generated by calling fmsetserial.

Return Value

None.

46 Toolflex Functions INFOFLEX
0-46

FMSETUNIQUE(T) FMSETUNIQUE(T)

Name

fmsetunique - set the value of the unique identifier for atable

Syntax

fmsetunique(pdbhead, recnum)
DBHEAD *pdbhead;
long recnum;

Description

Fmsetunique sets a new starting value for the unique number field of the next record created for the table specified by
pdbhead. This starting value will be recnum. If recnum is less than the current value of the unique number field, then
fmsetunique has no effect.

Return Value

None.

See Also

fmuniqueid

INFOFLEX Toolflex Functions 47
0-47

FMSTART(T) FMSTART(T)

Name

fmstart - select the index for subsequent operations

Syntax

fmstart(pdbhead, pdbindex, keylength, mode)
DBHEAD *pdbhead;

DBINDEX *pdbindex;

int keylength;

int mode;

Description

Fmstart specifies and finds the index (pdbindex) for subsequent fmread calls. The fmstart does not, however, read the
record into the table buffer. If arecord is found by the fmstart function, a call to fmread with a mode of ISCURR is
reguired to read the records data from the disk into the tabl€ s buffer.

If you want to locate a record by the entire length of the key then set the length argument either to zero or the entire length
of the key. To locate a record based on part of the key, set Length to the number of initial bytes of the index you want to
use.

Mode defines the relation to the search value of the first record to be read with fmread. Mode can have one of these values
defined in fxisam.h:

ISFIRST findsthefirst record. Search value isirrelevant.

ISLAST findsthe last record. Search valueisirrelevant.

ISEQUAL finds the record equal to the search value.

ISGREAT finds the first record greater than the search value.

ISGTEQ finds the first record greater than or equal to the search value.

The search values for the index fields must be assigned to the appropriate fields of pdbhead prior to the call.
If the mode ISFIRST or ISLAST are used, fmstart ignores the values in the table buffer and the Length argument.

If pdbindex is NULL, the records will be read sequentially. While in sequential mode, records may be read by record
number setting the global variable isrecnum to the desired record number and calling fmread with an ISEQUAL mode.

Note that you only need to use the fmstart function when you want to change an index or use part of a key as the search
criteria. You do not need to use the fmstart function before each fmread call.

Return Value

-1 Index selection failed or could not position for read based on search value. In the latter case the index selection can
be successful. Upon an error iserrnoisset (seeerror(T)).
0 Bothindex selection and positioning for read are successful.

See Also

fmread, fmfind

48 Toolflex Functions INFOFLEX
0-48

FMSTRUCTVIEW(T) FMSTRUCTVIEW(T)

Name

fmstructview - map a set of database fieldsto a structure

Syntax

fmstructview(pdbhead, pdbview, vwnum, vwstruct)
DBHEAD *pdbhead;

struct dbview * pdbview;

int vwnum;

char *vwstruct;

Description

Fmstructview allows you to specify a C structure where a database table will be read to and written from. Pdbhead
argument specifies the table and vwstruct the C structure where the data will be stored. The programmer may then use
vwstruct to access the table's fields. If the pdbview argument is not used (or NULL) then the structure wwstruct must have
every table field declared and in exactly the same order. The pdbview argument alows the programmer to specify the
format of the structure. The fields selected for the view are listed in the dbview array pointed to by pdbview. Thisis the
dbview structure is assigned:

struct dbview empview[] =

"code"},
"lname"},
"fname"},
"hire_date"},
"socno"}

B e Nate Rate Rate Rt Rata)

Dbview is assigned the SQL field names from a table. Mwstruct must match this|list.

Viwvnum argument isonly used if there pdbview is specified and is the number of fieldsin pdbview.

For null termination, the character string elements of wwstruct must be one byte longer than the corresponding table field
Sizes.

Limitations
Once you have defined a view with fmstructview, you must access fields via vwstruct and not pdbhead. Any assignments
to fields of pdbhead will be overwritten by vwstruct with a subsequent table buffer output file management call.

Also, for portability you should not use short data types within your structures.

Return Value

0 successful.
-1 invdlid field namein the view.

Example

See Reference Manual Appendix: Sample ISAMFLEX Program

INFOFLEX Toolflex Functions 49
0-49

FMUNIQUEID(T)

Name

fmuniqueid - get the next unique number for atable

Syntax

fmuniqueid(pdbhead, recnum)
DBHEAD *pdbhead;
long *recnum;

Description

FMUNIQUEID(T)

Fmuniqueid will generate a unique number for the table pointed to by pdbhead. Recnumwill point to this unique value.

Return Value

-1 Accessfaled; iserrnoisset (seeerror(T)).
0 Access successful.

See Also

fmwrite, fmsetunique

50 Toolflex Functions

0-50

INFOFLEX

FMUNLOCK(T)

Name

fmunlock - removes alock on atable.

Syntax

fmunlock(pdbhead)
DBHEAD *pdbhead;

Description

Fmunlock removes the table lock set by fmlock.

Return Value

-1 Unlock failed; iserrno isset (seeerror(T)).

0 Unlock successful.

See Also

fmlock, fmrelease

INFOFLEX

Toolflex Functions
0-51

FMUNLOCK(T)

51

FMWRCURR(T) FMWRCURR(T)

Name

fmwrcurr - write atable record making it the current record

Syntax

fmwr curr (pdbhead)
DBHEAD *pdbhead;

Description

Fmwr curr writes the record data contained in the pdbhead structure to the table specified by pdbhead. The record written
becomes the current record. The record’ s unique number field is automatically incremented if the field value is 0 going in.
You should 0 arecord with dclrrec(T) before filling in the fields of pdbhead.

Return Value

-1 Writefailed; iserrnoisset (seeerror(T)).
0 Write successful.

See Also

fmwrite

52 Toolflex Functions INFOFLEX
0-52

FMWRITE(T) FMWRITE(T)

Name

fmwrite - write anew record into atable

Syntax

fmwrite(pdbhead)
DBHEAD *pdbhead;

Description

Fmwrite writes the field data in the pdbhead structure to a new record of the table specified by pdbhead. The record’'s
unique number field is automatically incremented if the field value is 0 going in. You should O a record with dclrrec(T)
before filling in the fields of pdbhead.

This function changes the global variable isrecnum to the record number of the recently written record.

Return Value

-1 Writefailed; iserrnoisset (seeerror(T)).
0 Write successful.

See Also

fmwrcurr, dclrrec

INFOFLEX Toolflex Functions 53
0-53

FXABORT(T) FXABORT(T)

Name

fxabort - exit an Infoflex program

Syntax

fxabort(status)
int status;

Description

Fxabort will take the necessary actions to terminate a Infoflex program. Passing a status of 0 will result in a normal abort;
passing -1 will result in an abnormal abort. When a status of -1 is passed, the program is aborted passing 1 back to the
calling program or operating system.

Limitations

Fxabort should not be called unless the terminal has been initialized using functions fxinit, flex, flexcemd, or flexload.

Return Value

None.

Name

fxaccept - prompt for a screen field

Syntax

fxaccept(pscrfield)
SCRFIELD *pscrfield;

Description

Fxaccept prompts for a screen field based on parameters in the SCRFIEL D and SCRTRANS structures. These structures
are generated from your .flx source field.

Return Value

-1 PscrfieldisNULL.
0 Fxaccept successful.
1 Thefield isnoentry or noupdate.

See Also

prompt

54 Toolflex Functions INFOFLEX
0-54

FXASAVE(T) FXASAVE(T)

Name

fxasave - default function for saving an array screen line to atable

Syntax

fxasave()

Description
Fxasave will modify or add table records associated with the current screen array line. Thisfunction will do the following:
- Check for required fields
- Execute the abeforesave() userexit

- Save the record
- Execute the aaftersave() userexit

Limitations

Fxssave may NOT be called from a abefor esave userexit or aafter save userexit.

Return Value

-1 Savefailed. If the error isatable access error iserrno isset (seeerror(T)).
0 Save successful.

See Also

fxssave

INFOFLEX Toolflex Functions 55
0-55

FXINIT(T) FXINIT(T)

Name

fxinit - initialize the terminal

Syntax
fxinit()

Description

Fxinit initializes the terminal using the TERMFLEX (Infoflex’s equivalent of termcap) definitions. Fxinit must be called
prior to using any screen 1/O functions such as show, gotoxy, clrscr, etc.

Return Value

None.

56 Toolflex Functions INFOFLEX
0-56

FXROUND(T) FXROUND(T)

Name

fxround - round a value to the specified number of decimal places

Syntax

double fxround(value, places)
doublevalue;
unsigned places;

Description

Fxround rounds a double-precision float value to a specified number of decimal places right of the decimal point.

Return Value

None.

INFOFLEX Toolflex Functions
0-57

57

FXSPAWN(T) FXSPAWN(T)

Name

fxspawn - call another external program using variable arguments and return to the calling program

Syntax

fxspawn(argc, argv)
int argc;
char *argf[];

Description

Fxspawn calls an external program using main-like argc and argv. When the external program terminates, program
control will return to the code following the fxspawn call.

Return Value

None.

See Also

fxvexec, fxsystem

58 Toolflex Functions INFOFLEX
0-58

FXSSAVE(T)

Name

fxssave - default function for saving a non-array screen datato atable

Syntax

fxssave()

Description
Fxssave will modify or add table records associated with a screen header. Thisfunction will do the following:
- Check for required fields
- Execute the beforesave() userexit

- Save the record
- Execute the aftersave() userexit

Limitations

Fxssave may NOT be called from a befor esave userexit or after save userexit.

Return Value

-1 Savefailed. If the error isatable access error iserrno isset (seeerror(T)).
0 Save successful.

See Also

fxasave

INFOFLEX Toolflex Functions
0-59

FXSSAVE(T)

59

FXSY STEM(T) FXSY STEM(T)

Name

fxsystem - do a system call from an Infoflex program

Syntax

fxsystem(command)
char *command;

Description

Fxsystem executes command as an external program. When the externa program terminates, program control will return to
the code following the fxsystem call.

Return Value

None.

See Also

fxvexec

60 Toolflex Functions INFOFLEX
0-60

FXVEXEC(T) FXVEXEC(T)

Name

fxvexec - calls an external program but does not return

Syntax

fxvexec(argc, argv)
int argc;
char *argf[];

Description

Fxvexec calls an external program using main-like argc and argv. Thisis a program overlay, and in effect, the calling
program terminates with the fxvexec.

Return Value

None.

See Also

fxspawn, fxsystem

INFOFLEX Toolflex Functions 61
0-61

GETK(T) GETK(T)

Name

getdf - get the field value from the table buffer
putdf - put afield value in the table buffer

getsf - get the field value from the screen buffer
putsf - put avalue into afield of the screen buffer

Syntax

getdf(pvalue, pdbfield)
char *pvalue;
DBFIELD *pdbfield;

putdf(pvalue, pdbfield)
char *pvalue;
DBFIELD *pdbfield;
getsf(pvalue, pscrfield)
char *pvalue;
SCRFIELD *pscrfield;
putsf(pvalue, pscrfield)

char *pvalue;
SCRFIELD *pscrfield;

Description
Given the pointer to atable buffer field structure, pdbfield, getdf places the value of the field at the address pvalue.
Putdf puts the value pointed to by pvalue into the table buffer field specified by pdbfield.
Given the pointer to a screen buffer field structure, pscrfield, getsf places the value of the field at the address pvalue.
Putsf puts the value pointed to by pvalue into the screen buffer field specified by pscrfield.

Note that money fields are stored in units of cents (i.e. 50 dollars is stored as 5000 cents).

Return Value

None.

62 Toolflex Functions INFOFLEX
0-62

GETP(T) GETP(T)

Name

getdhp - get the pointer to a table header

getdip - get the pointer to atable index

getdfp - get atable field pointer

getshp - get the pointer to a screen form buffer
getsfp - get afield pointer of a screen

Syntax

DBHEAD *getdhp(hame)
char *name;

DBINDEX *getdip(pdbhead, name)
DBHEAD *pdbhead;
char *name;

DBFIELD *getdfp(pdbhead, name)
DBHEAD *pdbhead;
char *name;

SCRHEAD *getshp(scrname)
char *scrname;

SCRFIELD *getsfp(pscrhead, name)

SCRHEAD *pscrhead;
char *name;

Description

Given the name of atable, getdhp returns a pointer to its table buffer structure. 1f you have allocated memory for your own
table buffers, you must have loaded name with fmload(T) to then find it with getdhp.

Given the name of an index in the table pdbhead, getdip returns a pointer to the index structure for atable.

Given the name of afield in the table buffer pdbhead, getdfp returns a pointer to the field structure in the table buffer.

Given the scrname of a screen (the label of a SCREEN section in a .flx file), getshp returns a pointer to its screen buffer

structure. Getshp looks among the screens of the currently loaded .pic file. Prepend an a in front of scrname to get the

pointer to the array portion of a screen.

Given the name of afield in the screen buffer pscrhead, getsfp returns a pointer to the field structure in the screen buffer.
Return Value

Getdhp returns a table buffer structure pointer if name isfound, otherwise it returns NULLDH (macro in fxstruct.h).

Getdip returns atable index structure pointer if nameisfound, otherwise it returns NUL L DI (macro in fxstruct.h).

name is found, otherwise it returns NUL L DF (macro in fxstruct.h).

Getshp returns a screen buffer structure pointer if scrname isfound, otherwise it returns NULL SH (macro in fxstruct.h).

Getsfp returns afield structure pointer if nameisfound, otherwise it returns NUL L SF (macro in fxstruct.h).

INFOFLEX Toolflex Functions 63
0-63

GETP(T) GETP(T)

See Also
fmload

64 Toolflex Functions INFOFLEX
0-64

GETKEY (T) GETKEY (T)

Name

getkey - prompt for asingle key

Syntax
getkey()

Description

Getkey will return the value of the next key press from the keyboard.

Return Value

The key press value is a number between 1 and 255. For values greater than 127, the keystrokes represented are defined in
fxcrt.h of $FXDIR/include.

See Also

prompt

INFOFLEX Toolflex Functions 65
0-65

GETTIME(T) GETTIME(T)
Name

gettime - get the current time in number of seconds since midnight

Syntax

gettime(numtime)
long *numtime;

Description

Gettime gets the current time in terms of the number of seconds since midnight. Numtime will point to the time value.

Return Value

None.
See Also
systime
66 Toolflex Functions INFOFLEX

0-66

GETTODAY(T) GETTODAY(T)

Name

gettoday - get today’ s date in days since December 31, 1899

Syntax

gettoday(numdate)
long *numdate;

Description

Gettoday gets today’ s date in terms of the number of days since December 31, 1899. Numdate will point to the date value.

Return Value

None.

See Also

sysdate

INFOFLEX Toolflex Functions 67
0-67

GETXY POS(T) GETXY POS(T)

Name

getxypos - get the CRT row and starting column position of a screen field

Syntax

getxypos(pscrfield, prow, pcol)
SCRFIELD *pscrfield;

int *prow;

int *pcol;

Description

Getxypos will return the physical row, prow, and starting column position, pcol, for any screen field specified by pscrfield
belonging to the active screen.

If the screen field is part of an array and the cursor is not positioned in the array portion of the screen, then prow will aways
relate to the first row of the array. If the cursor iswithin the array, then prow will be the row that the cursor addresses.

Limitations

Thisfunction can only be used for screen fields belonging to the active screen.

Return Value

None.

68 Toolflex Functions INFOFLEX
0-68

GOTOXY(T) GOTOXY(T)

Name

gotoxy - position the screen cursor to the specified row and column

Syntax

gotoxy(row, col)
int row, col;

Description

Gotoxy will position the screen display cursor at row and col of the screen.

Return Value

None.

INFOFLEX Toolflex Functions 69
0-69

GRAPHOUT(T) GRAPHOUT(T)

Name

graphout - draw a horizontal or vertical line

Syntax

graphout(row, col, length, graphmacr o)
int row, col;

int length;

int graphmacro;

Description

Graphout draws a line from row and col on the screen and with the specified length. Graphmacro defines the kind of
character that will be used to draw the line. Horizontal lines are drawn where graphmacro is (macros defined in fxcrt.h):

GL_THL single line for top borders.
GD_THL double line for top borders.
GR_THL inverse bar for top borders.
GL_BHL single line for bottom borders.
GD_BHL double line for bottom borders.
GR_BHL inverse bar for bottom borders.

Vertical lines are drawn where graphmacro is:

GL_LVL single line for left borders.
GD_LVL double line for left borders.
GR_LVL inverse bar for left borders.

GL_RVL single line for right borders.
GD_RVL double line for right borders.
GR_RVL inverse bar for right borders.

Return Value

None.

See Also

boxline

70 Toolflex Functions INFOFLEX

0-70

INYESNO(T)

Name

inyesno - prompt for aY or N response

Syntax

inyesno(row, col, msg)
int row;

int col;

char *msg;

Description

I nyesno displays msg at row and col of the screen display and prompts the user for Y or N input.

Return Value

See Also

prompt

INFOFLEX

Toolflex Functions
0-71

INYESNO(T)

71

ISEMPTY (T) ISEMPTY (T)
Name

isempty - test for a0 or null value in afield

Syntax

isempty(pfield)
FIELD *pfield;

isnull(pfield)
FIELD *pfield;

iszer o pfield)
FIELD *pfield;

Description
I sempty testsif the value in the field specified by pfield isO or null.
I'snull testsif the value in the field is null.

|szero tests if the value in the field is 0.

Example

if (iszero(@jmaster.jm_rono))

Return Value

0 Field does not have the value being tested for.
1 Field has the value being tested for.

72 Toolflex Functions INFOFLEX
0-72

ISMOD(T)
Name

ismod - test if afield has been modified

Syntax

ismodfld(pfield)
FIELD *pfield;

ismodrng(pfieldl, pfield2)
FIELD *pfieldl, *pfield2;

Description

Ismodfld testsif the value in the field specified by pfield has been modified.

Ismodrng tests if the value in any field from pfield1 to pfield2 has been modified.

Return Value

0 Field has not been modified.
1 Field has been modified.

INFOFLEX

Toolflex Functions
0-73

ISMOD(T)

73

KEYCHGLABEL(T) KEYCHGLABEL(T)

Name

keychglabel - change afunction key label

Syntax

keychglabel(key, label)
int key;
char *labdl;

Description

Keychglabel will change a function key label as it appears at the bottom of a data entry screen. Key is the function key's
macro definition as defined in fxcrt.h in $FXDIR/include (the list starts with SAVEKEY). Labdl is the label that will
appear for the function key. Thelabel must be four characters or less and be a static variable.

Thisfunction is called in the screen’s befor esubsection or abefor esubsection userexits. The label will automatically revert
back to the default label upon exiting the screen subsection.

Return Value

None.

74 Toolflex Functions INFOFLEX
0-74

LOOKUP(T) LOOKUP(T)

Name

lookup - look up in atable based on the specified index

Syntax

lookup(pdbhead, pdbindex)
DBHEAD *pdbhead;
DBINDEX *pdbindex;

Description

L ookup attempts to retrieve arecord from the table specified by pdbhead accessed by the index specified by pdbindex. The
values for the index fields must be first assigned to the appropriate fields of the pdbhead table buffer.

Return Value

-1 Tablelookup failed. Iserrno is set with the specific error code (seeerror (T)).
0 Record found with the specified index value.

INFOFLEX Toolflex Functions 75
0-75

MESSAGE(T) MESSAGE(T)
Name

message - display a message on the screen

Syntax

message(row, col, msg, attr)
int row, col, attr;
char *msg;

msgerr(msg)
char *msg;

msggerr(msg)
char *msg;

msgstat(msg)
char *msg;

msgwait(msg)
char *msg;

msgcomment(msg)
char *msg;

msgfunc(msg)
char *msg;

msgnfunc()

Description

M essage clears a line and displays the message msg on the screen at row, col screen coordinates with attribute attr. The
possible macro definitions for attr are (defined in fxcrt.h): NORMAL, BLINK, UNDERLINE, REVERSE, REVBLINK,
DIMREVERSE, and DIM.

Msgerr places msg at line 23 of the screen and rings the bell. Msgerr does not require a carriage return to continue.
Msggerr places msg at line 23 of the screen, rings the bell, and waits for a carriage return to continue.

M sgstat displays msg on the data entry screen’s status line, line 23.

M sgwait displays a blinking msg on line 23 and asks the user to "please wait".

M sgcomment displays msg on the data entry screen’s comment line, line 21.

M sgfunc displays msg to the function key label line, line 23. The message becomes the new function key label unless msg
isthe global funcmbuf.

M sgnfunc displays the function key numbersline, line22: F1 F2 F3 ..

See Also

show

76 Toolflex Functions INFOFLEX
0-76

MODE(T) MODE(T)

Name

mode - table access modes

Description
A table is opened with fmbuild(T) or fmopen(T) in one of these modes defined in fxisam.h:

ISINPUT opens the table for reading only.
ISOUTPUT opens the table for writing only.
ISINOUT opens the table for reading and writing.

One of these locking parameters is added to the mode:

ISEXCLLOCK No other process will be allowed to access the table until the table is closed.

ISMANULOCK A record of the table is locked with a subsequent fmfind or fmread call where ISLOCK is
added to the mode parameter of the call. A call to fmrelease then unlocks all record locked in

this way.

ISAUTOLOCK A record is automatically locked with a fmfind or fmread and is released with the next table
access. Only one record per table can be locked at one time in this manner.

Example
fmopen(pdbhead, ISINOUT+ISMANULOCK) ;

See Also
fmbuild, fmopen, fmfind, fmread

INFOFLEX Toolflex Functions 77

0-77

MODRNG(T) MODRNG(T)

Name

modrng - change the modify flag for arange of screen fields

Syntax

maodonrng(pscrfirst, pscrlast)
SCRFIELD *pscrfirst;
SCRFIELD *pscrlagt;

modoffrng(pscrfirst, pscrlast)
SCRFIELD *pscrfirst;
SCRFIELD *pscrlagt;

Description

Modonrng turns on the modify flag in the overall screen buffer and for all the fields within the range of pscrfirst thru
pscrlast.

M odoffr ng turns off the modify flag in the overall screen buffer aswell asfor all fields of the pscrfirst/pscrlast range.

Return Value

None.

78 Toolflex Functions INFOFLEX
0-78

MOVE(T) MOVE(T)

Name

move - copy data from one field to another

Syntax

move(pfieldl, pfield2)
FIELD *pfieldl, *pfield2;

Description

Move copies the contents of pfieldl to pfield2. This function will convert data types if necessary. Also, one of the
arguments may be a C language variable provided it is of the same type and length. The source and the destination can be
either a screen field, a database field, or a C variable. However, you cannot use it to move from a C variable to a C variable.

Examples

There are several ways to move values into a screen or table field via user functions. A summary of the various ways are
shown below:

$table.fieldname = 14;
or

cnum = 14;
$table.fieldname = cnum;

or

cnum = 14;
move(&cnum, @table.fieldname) ;

The first is more efficient when dealing with numerics. However, when dealing with character strings move is the proper
method to use.

move("teststring", @table.fieldname) ;
Note that money fields are stored in units of cents.

Limitation

Assignment to a screen array variable can only be done when the screen is active (currently displayed).

Return Value

None.

See Also

compare, buftostr

INFOFLEX Toolflex Functions 79
0-79

NODISPLAY (T)
Name

nodisplay - set the nodisplay flag for a screen field

Syntax

nodisplay(pscrfield)
SCRFIELD *pscrfield;

unnodisplay(pscrfield)
SCRFIELD *pscrfield;

Description

NODISPLAY (T)

Nodisplay will set the nodisplay flag on for the screen field specified by pscrfield. Anything written to this field thereafter

will not appear on the screen.

Unnodisplay will set the nodisplay flag off for the screen field. Anything written to this field thereafter will appear on the

screen.

Return Value

None.

80

Toolflex Functions
0-80

INFOFLEX

NOL OOK UP(T) NOL OOK UP(T)

Name

nolookup - set the nolookup flag for a screen field

Syntax

nolookup(pscrfield, type)
SCRFIELD *pscrfield;
int type;

Description

Nolookup turns off the look-up process prior to the aselect, abefor edisplay, and abefor er ow userexits. Normally look-ups
for a screen field (with the lookup attribute) are done prior to each of these userexits. If thisis not necessary then you can
improve the speed and efficiency of the system by turning off the look-up process. A type value will turn off look-ups for a
specific userexit (the macros are defined in fxcon.h):

type Userexit effected

LK_SELFUNC asdlect
LK_DSPFUNC abeforedisplay
LK_BEFROW abeforerow

You may also control when looked up tables are opened and closed. By or’'ing the macro LK_NOOPEN with type, the
looked up table will be opened and closed as needed rather than be left open. The nolookup function should be called in
your abefor esubsection userexit.

Return Value

None.

INFOFLEX Toolflex Functions 81
0-81

PAGE(T) PAGE(T)

Name

page - display all screen literals

Syntax

page(pscrhead)
DBHEAD *pscrhead;

Description

Page will display all the literals for the screen specified by pscrhead.

Return Value

None.

See Also

repaint

82 Toolflex Functions INFOFLEX
0-82

PROMPT(T) PROMPT(T)

Name

prompt - prompt for data from any position on the screen

Syntax

prompt(row, col, length, dec, type, attr, fmt, buffer)
int row;

int col;

int length;

int dec;

int type;

int attr;

int fmt;

char *buffer;

Description
Prompt will prompt for length characters of input into buffer at row and col of the screen display.

Dec isaflag indicating that a fractional part of a number input is permitted. If dec is avalue of 0, then a decimal point is
illegal input.

Type is the data type being prompted for (these macros are defined in fxtypes.h):

CHARTYPE character string
SHORTTYPE short integer
INTTYPE integer
LONGTYPE long integer
DOUBLETYPE double-precision floating point number
DECTYPE decimal structure
SERIALTYPE serial long integer
DATETYPE date
MONEYTYPE money
TIMETYPE AM/PM style time
MTIMETYPE military time

Theattr argument definesinput requirements. The possible macro definitions for attr are defined in fxcon.h:
A_NODISPLAY fieldisnot displayed.
A_AUTONEXT Automatic RETURN key when field isfilled.

A_ALNUM alow aphabetic characters or numeric.
A_ALPHA alow aphabetic strings only.
A_NUMERIC alow numeric field only.
A_DNSHIFT map input to lower case.

A_UPSHIFT map input to upper case.

A REVERSE use reverse video attribute for field.

Fmt is a format flag. The format flags that are meaningful to prompt are defined in fxcon.h and described under the
function buftostr. These flags may be or’ed together.

F_TRUNCATE For CHARTYPE fields blank any other characters in the prompt field with input of the first
character into the field.

F_PHONE Input must be legal characters of a phone number.

Buffer must be at least one byte longer than length.

INFOFLEX Toolflex Functions 83
0-83

PROMPT(T) PROMPT(T)

Return Value

None.

84 Toolflex Functions INFOFLEX
0-84

PUTKEY (T)
Name

putkey - display asingle character on the screen

Syntax

putkey(row, col, key)
int row, col, key;

Description

Putkey displays the character key at row and col of the screen display.

Return Value

None.

INFOFLEX

Toolflex Functions
0-85

PUTKEY(T)

85

REPAINT(T) REPAINT(T)

Name

repaint - repaint the active screen and any background screens.

Syntax
repaint()

Description

Repaint redraws the literals of the active SCREENFLEX screen and any background screens if the active screen is a pop-
up.

Return Value

None.

See Also

page

86 Toolflex Functions INFOFLEX
0-86

RPT(T) RPT(T)

Name

rpt - manipulate the reportflex output

Syntax
rptformfeed()
rptgetline()
rptineed(n)
int n;
rptline(buffer)
char *buffer;
long rptpageno()
rptposition(n)
int n;
rptprint()
rptsection(pscrhead)
SCRHEAD *pscrhead;

long rptreccount()

Description

Rptformfeed starts newpage for report.
Rptgetline returns current report line number.

RptIneed requests n number of lines to the bottom of the report page. If that number of lines is not available, then the next
output of the report will appear on a new page. Userptlneed if you want a certain number of lines not to be broken across
pages, for example, a header being printed on one page and the detail to that header beginning on the next page. The n
number of lines should include any lines taken up by a page footer and bottom margin.

Rptline prints buffer to the output file of areport.
Rptpageno returns current page number. Rptpageno returns value as along.
Rptposition skips to report line number n.

Rptprint outputs a record formatted according to the REPORT section. Rptprint may only be used in the section userexit
of the SELECT section immediately preceding the REPORT section.

Rptsection outputs a complete REPORT section. Rptsection may be used in the the beforeprint() and afterprint()
userexits.

Rptreccount returns record count for primary file. Rptreccount returns value as along.

Limitations

All these functions are only for usein REPORTFL EX userexits.

Return Value

None.

INFOFLEX Toolflex Functions 87
0-87

RTIMESTR(T) RTIMESTR(T)

Name

rtimestr - convert an internal time format to a string

Syntax

rtimestr (secs, stime, type)
long secs;

char *stime;

int type;

rstrtime(stime, secs, type)
char *stime;

long * secs,

int type;

Description

Rtimestr converts the time in internal format, secs, to a display format string, stime. Internal format is the number of
seconds since midnight, where midnight itself is 86400. A O value for secs results in blank stime. Type is TIMETYPE or
MTIMETY PE (military time) which defines the format of stime (these macros are defined in fxtypes.h).

Rstrtime also converts adisplay format string, stime, to the timeininternal format. The resultant internal time is pointed to
by secs. Typeisone of the same two macros used by rtimestr. A blank input string will zero the internal time.

Return Value

-1 Secsout of range (rtimestr), bad stime format (rstrtime), or illegal type.
0 Conversion successful.

88 Toolflex Functions INFOFLEX
0-88

SCLR(T)
Name

sclr - clear fields in the screen buffer

Syntax

sclrrec(pscrhead)
SCRHEAD *pscrhead;

sclrfld(pscrfield)
SCRFIELD *pscrfield;

sclrrng(pscrfirst, pscrlast)
SCRFIELD *pscrfirst, * pscrlast;

Description

Sclrrec clears al fields in the screen buffer specified by pscrhead.

Sclrfld clears the single screen buffer field specified by pscrfield.

Sclrrng clears each field of arange of screen buffer fields from pscrfirst to pscrlast.

Return Value

None.

See Also

dclr, tclr

INFOFLEX

Toolflex Functions
0-89

SCLR(T)

89

SCROLLPAGE(T) SCROLLPAGE(T)

Name

scrollpage - scroll the array portion of the screen

Syntax

scrollpage(mode)
int mode;

Description

Scrollpage will scroll the array portion of a screen form based on the value of mode (these macros are defined in fxform.h):

R_UPLINE scroll up 1 line.

R_FWRD scroll forward 1 page.

R_DOWNLINE scroll down 1 line.

R_BACK scroll back 1 page.

R_FIRST scroll to first page.

R_LAST scroll to last page.

R_MREPAINT scroll current page; used to repaint the array portion of a screen after temporarily overwriting it with
aanother screen or other literals. The data will be repainted from memory.

R_DREPAINT scroll current page; used to repaint the array portion of a screen after temporarily overwriting it with
aanother screen or other literals. The data will be repainted by rereading the disk.

Return Value

None.

90 Toolflex Functions INFOFLEX
0-90

SETCURSOR(T) SETCURSOR(T)

Name

setcursor - turn the screen cursor on or off

Syntax

setcur sor (mode)
int mode;

Description

Setcursor turns the screen cursor on when mode is ON and turns it off when mode is OFF (these macros are defined in
fxcon.h).

Return Value

None.

INFOFLEX Toolflex Functions 91
0-91

SETNULL(T)
Name

setnull - set the value of field to null

Syntax

setnull(pfield)
FIELD *pfield;

setzero(pfield)
PFIELD *pfield;

Description

Setnull nulls the value of the field specified by pfield.

Setzer o sets the value of the field to 0.

Return Value

None.

92

Toolflex Functions
0-92

SETNULL(T)

INFOFLEX

SFSWAR(T) SFSWAP(T)

Name

sfswap - swap two screen fields

Syntax

sfswap(pscrfieldl, pscrfield2)
SCRFIELD *pscrfieldl, *pscrfield2;

Description

Sfswap will dynamically swap two screen fields. When swapped, pscrfieldl will take on al of the field attributes of
pscrfield2 but will retain pscrfield1’s original row and column placement on the screen.

Return Value

None.

INFOFLEX Toolflex Functions 93
0-93

SHOW(T)

Name

show - display a message on the screen

Syntax

show(msg, attr)
char *msg;
int attr;

bshow(msg, attr)
char *msg;
int attr;

showxy(row, col, msg, attr)
int row, col;

char *msg;

int attr;

bshowxy(row, col, msg, attr)
int row, col;

char *msg;

int attr;

Description

Show and bshow display the message msg at the current x, y coordinate.

Showxy and bshowxy display msg at the given row, col coordinate.

Bshow and bshowxy only buffer the message, which is displayed when bflush is called.

SHOW(T)

The possible macro definitions for attr are defined in fxcrt.h: NORMAL, BLINK, UNDERLINE, REVERSE,

REVBLINK, DIMREVERSE, and DIM.

Row may have avalue of 0to 23. Col may have avalue of 0to 79. For portablility on UNIX, be careful not to use column

79 for attributed text because some terminals require an additional column for the attribute.

Displaying a message using any of these functions does not first clear the display line.

Return Value

None.

See Also

message, bflush

94

Toolflex Functions
0-94

INFOFLEX

SKIP(T) SKIP(T)
Name

skip - mark afield so it is skipped during data entry

Syntax

skip(pscrfield)
SCRFIELD *pscrfield;

noskip(pscrfield)
SCRFIELD *pscrfield;

Description
Skip marks a screen field specified by pscrfield to be skipped during data entry.
Noskip marks pscrfield not to be skipped.

Return Value

None.

INFOFLEX Toolflex Functions 95
0-95

SKIPTO(T)

Name

skipto - specify the next screen field to take input

Syntax

skipto(pscrfield)
SCRFIELD *pscrfield;

Description

Skipto specifies that pscrfield isthe next screen field to take input after data entry to the current one.

If the user is cursoring back afield or has pressed JUMP, ZOOM, or HL (help), the skipto will not take effect.

Limitations

Skipto should be called from the after field userexit.

Return Value

None.

96 Toolflex Functions
0-96

SKIPTO(T)

INFOFLEX

SMAP(T) SMAP(T)

Name

smap - copy fields from the table buffer to the screen buffer

Syntax

smaprec(pdbhead, pscrhead)
DBHEAD *pdbhead;
SCRHEAD *pscrhead;

smapfld(pdbhead, pscrfield)
DBHEAD *pdbhead;
SCRFIELD *pscrfield;

smaprng(pdbhead, pscrfieldl, pscrfield2)
DBHEAD *pdbhead;
SCRFIELD *pscrfieldl, *pscrfield2;

Description

Smaprec copies the data of any fields from the table buffer specified by pdbhead to the corresponding fields of the screen
buffer specified by pscrhead.

Smapfld copies the data from the corresponding field of the table buffer to the screen buffer field specified by pscrfield.

Smaprng copies the data from the corresponding fields of the table buffer to a range of screen buffer fields from pscrfieldl
to pscrfield2.

Return Value

None.

See Also

dmap, tmap

INFOFLEX Toolflex Functions 97
0-97

STR(T)

Name

str - operations on strings

Syntax

char *strscan(s)
register char *s,

char *strcompress(s)
char *s;

char *strtrim(s, ¢)
char *s;
int c;

char *stritrim(s, ¢)
char *s;
int c;

streenter (s, len)
char *s;
int len;

char *strfind(s, subs, comp)

register char *s,
char *subs;
int (*comp)();

Description

Strscan deletes leading white space in the string s.

Strcompr ess deletes leading and trailing white space from a string s.

Strtrim trims the character ¢ from the right of the string s.

Stritrim trims the character ¢ from the left of the string s.

STR(T)

Strcenter centers the string swithin thefirst len bytes of s. The size of string s must be greater than or equal to len, and len

must not be greater than 255.

Strfind will attempt to find the substring subsin the string s. Comp is a pointer to the comparison function, e.g. strncmp.

Return Value

All functions, except strcenter, return a pointer to the resultant string. Strfind will return the NULLCHAR (defined in

fxcon.h) if subsisnot found in s.

98

Toolflex Functions
0-98

INFOFLEX

SY SDATE(T) SY SDATE(T)

Name

sysdate - get the system date

Syntax

sysdate(datebuf)
char *datebuf

Description

Sysdate formats the current system date into a buffer pointed to by datebuf. The format of the date will be according to the
FXDATE environment variable, and if that variable is undefined, the format will be MM/DD/YY.

Return Value

None.

See Also

gettoday

INFOFLEX Toolflex Functions 99
0-99

SYSTIME(T) SYSTIME(T)

Name

systime - get the system time

Syntax

systime(timebuf)
char *timebuf;

Description

Systime formats the current system time into a buffer pointed to by datebuf in military format: hh:mm:ss.

Return Value

None.

See Also

gettime

100 Toolflex Functions INFOFLEX
0-100

TCLR(T) TCLR(T)

Name

tclr - clear screen fields on the display

Syntax

telrrec(pscrhead)
SCRHEAD *pscrhead;

tclrall(pscrhead)
SCRHEAD *pscrhead;

telr fld(pscrfield)
SCRFIELD *pscrfield;

telrrng(pscrfirst, pscrlast)

SCRFIELD *pscrfirst;
SCRFIELD *pscrlagt;

Description

Tclrrec clears al screen fields of the screen specified by pscrhead, except in the case of an array screen where only the
fields of the current array row are cleared.

Tclrall clears all screen fields of the screen specified by pscrhead. In the case of an array screen, al fields of every array
row are cleared.

Tclrfld clears the screen field specified by pscrfield.

Tclrrng clears the range of screen fields from pscrfirst to pscrlast.

Return Value

None.

See Also

clr, dclr, scir

INFOFLEX Toolflex Functions 101
0-101

TMAP(T) TMAR(T)

Name

tmap - display data to screen fields

Syntax

tmaprec(pscrhead)
SCRHEAD *pscrhead;

tmapfld(pscrfield)
SCRFIELD *pscrfield;

tmaprng(pscrfirst, pscrlast)

SCRFIELD *pscrfirst;
SCRFIELD *pscrlagt;

Description
Tmaprec displays all the data of the fields of the screen buffer specified by pscrhead.
Tmapfld displays the data of a single screen field specified by pscrfield.
Tmaprng displays the data of arange of screen fields from pscrfirst to pscrlast.

Return Value

None.

See Also

dmap, smap
ma

102 Toolflex Functions INFOFLEX
0-102

BFLUSH 2

BOX 3
BOXLINE 3
BOXREV 3
BSHOW 94
BSHOWXY 94
BUFTOSTR 4
CHKENT 6

CLR 7

CLRBOX 7
CLREOL 7
CLREQCS 7
CLRPAGE 7
CLRRNG 7
CLRSCR 7
COMPARE 8
DATESTR 9
DCLR 11
DCLRFLD 11
DCLRREC 11
DCLRRNG 11
DMAP 12
DMAPFLD 12
DMAPREC 12
DMAPRNG 12
ERROR 13
FLEX 14
FLEXCMD 14
FLEXLOAD 14
FMADDINDEX 15
FMBEGIN 16
FMBLDALL 17
FMBUILD 18
FMCLOSE 19
FMCOMMIT 20
FMCURCHK 21
FMCURCLR 21
FMCURR 21
FMDELCURR 22
FMDELETE 23
FMDELINDEX 24
FMDELREC 25
FMDICTINFO 26
FMERASE 27
FMERRMSG 28
FMFIND 29
FMFLUSH 30
FMINDEXINFO 31
FMLOAD 32
FMLOCK 33
FMLOGCLOSE 34
FMLOGOPEN 35
FMOPEN 36
FMREAD 37
FMRECOVER 38
FMRELEASE 39

INDEX

FMRENAME 40
FMREWCURR 41
FMREWREC 42
FMREWRITE 43
FMROLLBACK 44
FMSAVE 45
FMSETSERIAL 46
FMSETUNIQUE 47
FMSTART 48
FMSTRUCTVIEW 49
FMUNIQUEID 50
FMUNLOCK 51
FMWRCURR 52
FMWRITE 53
FXABORT 54
FXASAVE 55
FXINIT 56
FXROUND 57
FXSPAWN 58
FXSSAVE 59
FXSYSTEM 60
FXVEXEC 61
GETDF 62
GETDFP 63
GETDHP 63
GETDIP 63

GETF 62
GETKEY 65
GETP 63

GETSF 62
GETSFP 63
GETSHP 63
GETTIME 66
GETTODAY 67
GETXYPOS 68
GOTOXY 69
GRAPHOUT 70
INYESNO 71
ISEMPTY 72
ISMOD 73
ISMODFLD 73
ISMODRNG 73
ISNULL 72
ISZERO 72
KEYCHGLABEL 74
LOOKUP 75
MESSAGE 76
MODE 77
MODOFFRNG 78
MODONRNG 78
MODRNG 78
MOVE 79
MSGCOMMENT 76
MSGERR 76
MSGFUNC 76
MSGGERR 76

INDEX

MSGNFUNC 76
MSGSTAT 76
MSGWAIT 76
NODISPLAY 80
NOLOOKUP 81
NOSKIP 95
PAGE 82
PROMPT 83
PUTDF 62
PUTKEY 85
PUTSF 62
RDATESTR 9
REPAINT 86
RPT 87
RPTFORMFEED 87
RPTGETLINE 87
RPTLINE 87
RPTLNEED 87
RPTPAGENO 87
RPTPOSITION 87
RPTPRINT 87
RPTRECCOUNT 87
RSTRDATE 9
RSTRTIME 88
RTIMESTR 88
SCLR 89
SCLRFLD 89
SCLRREC 89
SCLRRNG 89
SCROLLPAGE 90
SETCURSOR 91
SETNULL 92
SETZERO 92
SFSWAP 93
SHOW 94
SHOWXY 94
SKIP 95
SKIPTO 96
SMAP 97
SMAPFLD 97
SMAPREC 97
SMAPRNG 97
STR 98
STRCENTER 98
STRCOMPRESS 98
STRDATE 9
STRFIND 98
STRLTRIM 98
STRSCAN 98
STRTOBUF 4
STRTRIM 98
SYSDATE 99
SYSTIME 100
TCLR 101
TCLRALL 101
TCLRFLD 101
TCLRREC 101
TCLRRNG 101
TMAP 102
TMAPFLD 102

TMAPREC 102
TMAPRNG 102
UNNODISPLAY 80

INDEX

	User Guide
	Reference Guide
	ToolFlex Guide

