
Informix Guide to SQL

Reference
Version 7.2
April 1996
Part No. 000-7881A

ii Informix Guide to SQL
Published by INFORMIX® Press Informix Software, Inc.
4100 Bohannon Drive
Menlo Park, CA 94025

The following are worldwide trademarks of Informix Software, Inc., or its subsidiaries, registered in the
United States of America as indicated by “®,” and in numerous other countries worldwide:

INFORMIX; C-ISAM; INFORMIX-OnLine Dynamic Server

The following are worldwide trademarks of the indicated owners or their subsidiaries, registered in the
United States of America as indicated by “®,” and in numerous other countries worldwide:

Adobe Systems Incorporated: PostScript

X/OpenCompany Ltd.: UNIX; X/Open

Micro Focus Ltd.: Micro Focus®; Micro Focus COBOL/2™
Ryan-McFarland (Liant) Corporation: Ryan-McFarland®

Some of the products or services mentioned in this document are provided by companies other than Informix.
These products or services are identified by the trademark or servicemark of the appropriate company. If you
have a question about one of those products or services, please call the company in question directly.

Documentation Team: Smita Joshi, Geeta Karmarkar, Mary Kraemer, Tom Noronha.

Copyright © 1981-1996 by Informix Software, Inc. All rights reserved.

No part of this work covered by the copyright hereon may be reproduced or used in any form or by any
means—graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage
and retrieval systems—without permission of the publisher.

To the extent that this software allows the user to store, display, and otherwise manipulate various forms of
data, including, without limitation, multimedia content such as photographs, movies, music and other binary
large objects (blobs), use of any single blob may potentially infringe upon numerous different third-party
intellectual and/or proprietary rights. It is the user's responsibility to avoid infringements of any such third-
party rights.

RESTRICTED RIGHTS LEGEND

Software and accompanying materials acquired with United States Federal Government funds or intended for
use within or for any United States federal agency are provided with “Restricted Rights” as defined in DFARS
252.227-7013(c)(1)(ii) or FAR 52.227-19.
: Reference

Table of Contents

Table of
Contents
Introduction
About This Manual 3

Organization of This Manual 4
Types of Users 5
Software Dependencies 5
Demonstration Database 5

New Features of This Product 8
Conventions . 13

Typographical Conventions 13
Icon Conventions 14
Command-Line Conventions 16
Sample-Code Conventions 18

Additional Documentation 19
Printed Documentation 19
On-Line Documentation 20
Related Reading 21

Compliance with Industry Standards 22
Informix Welcomes Your Comments 23

Chapter 1 Informix Databases
Choosing a Database Server 1-3

Data Types 1-4
Rolling Back Statements in a Transaction 1-5
Transaction Logging 1-5
Table and Index Fragmentation 1-5
Locking Issues 1-6
Isolation Level 1-7
System Catalog Tables 1-8
SQL Statements Supported by Specific Database Servers . . . 1-8

Using ANSI-Compliant Databases 1-11
Designating a Database as ANSI Compliant 1-11
Determining If an Existing Database Is ANSI Compliant . . . 1-12

iv Inform
Differences Between ANSI-Compliant and Non-ANSI-Compliant
Databases 1-12

Using a Customized Language Environment for Your Database . . 1-17

Chapter 2 System Catalog
Objects Tracked by the System Catalog Tables 2-3
Using the System Catalog 2-4

Accessing the System Catalog 2-10
Updating System Catalog Data 2-10

Structure of the System Catalog 2-11
SYSBLOBS 2-12
SYSCHECKS 2-13
SYSCOLAUTH 2-14
SYSCOLDEPEND 2-15
SYSCOLUMNS 2-15
SYSCONSTRAINTS 2-19
SYSDEFAULTS 2-20
SYSDEPEND 2-21
SYSDISTRIB 2-22
SYSFRAGAUTH 2-23
SYSFRAGMENTS 2-24
SYSINDEXES 2-26
SYSOBJSTATE 2-29
SYSOPCLSTR 2-30
SYSPROCAUTH 2-32
SYSPROCBODY 2-32
SYSPROCEDURES 2-34
SYSPROCPLAN 2-35
SYSREFERENCES 2-36
SYSROLEAUTH 2-37
SYSSYNONYMS 2-37
SYSSYNTABLE 2-38
SYSTABAUTH 2-39
SYSTABLES 2-40
SYSTRIGBODY 2-43
SYSTRIGGERS 2-44
SYSUSERS 2-45
SYSVIEWS 2-46
SYSVIOLATIONS 2-46

System Catalog Map 2-47
ix Guide to SQL: Reference

Information Schema 2-50
Generating the Information Schema Views 2-51
Accessing the Information Schema Views 2-51
Structure of the Information Schema Views 2-52

Chapter 3 Data Types
Database Data Types 3-3

Summary of Data Types 3-3
BYTE . 3-5
CHAR(n) . 3-6
CHARACTER(n) 3-8
CHARACTER VARYING(m,r) 3-8
DATE . 3-8
DATETIME 3-9
DEC. 3-13
DECIMAL 3-13
DOUBLE PRECISION 3-15
FLOAT(n) . 3-15
INT . 3-16
INTEGER . 3-16
INTERVAL 3-16
MONEY(p,s) 3-19
NCHAR(n) 3-21
NUMERIC(p,s) 3-21
NVARCHAR(m,r) 3-21
REAL . 3-21
SERIAL(n) 3-21
SMALLFLOAT 3-22
SMALLINT 3-23
TEXT . 3-23
VARCHAR(m,r) 3-25

Data Type Conversions 3-27
Converting from Number to Number 3-28
Converting Between Number and CHAR 3-29
Converting Between DATE and DATETIME 3-29

Range of Operations Using DATE, DATETIME, and INTERVAL . . 3-30
Manipulating DATETIME Values 3-31
Manipulating DATETIME with INTERVAL Values 3-32
Manipulating DATE with DATETIME and INTERVAL Values. . 3-33
Manipulating INTERVAL Values 3-35
Multiplying or Dividing INTERVAL Values 3-36
Table of Contents v

vi Inform
Chapter 4 Environment Variables
Types of Environment Variables 4-5
Where to Set Environment Variables 4-6

Setting Environment Variables at the System Prompt 4-6
Setting Environment Variables in an Environment-Configuration File

4-6
Setting Environment Variables at Login Time 4-7

Manipulating Environment Variables 4-8
Setting Environment Variables 4-8
Viewing Your Current Settings 4-9
Unsetting Environment Variables 4-9
Modifying the Setting of an Environment Variable 4-9

Checking Environment Variables with the chkenv Utility 4-10
Rules of Precedence 4-11
List of Environment Variables 4-12
Environment Variables 4-15

ARC_DEFAULT 4-15
ARC_KEYPAD 4-16
DBANSIWARN 4-17
DBBLOBBUF 4-18
DBCENTURY 4-18
DBDATE 4-21
DBDELIMITER 4-24
DBEDIT . 4-24
DBFLTMASK 4-25
DBLANG 4-25
DBMONEY. 4-27
DBONPLOAD. 4-28
DBPATH. 4-29
DBPRINT 4-32
DBREMOTECMD 4-33
DBSPACETEMP 4-34
DBTEMP 4-35
DBTIME . 4-36
DBUPSPACE 4-39
DELIMIDENT 4-39
ENVIGNORE 4-40
FET_BUF_SIZE 4-41
INFORMIXC 4-41
INFORMIXCOB 4-42
INFORMIXCOBDIR. 4-43
INFORMIXCOBSTORE 4-43
INFORMIXCOBTYPE 4-44
ix Guide to SQL: Reference

INFORMIXCONRETRY 4-44
INFORMIXCONTIME 4-45
INFORMIXDIR 4-46
INFORMIXOPCACHE 4-47
INFORMIXSERVER 4-47
INFORMIXSHMBASE 4-48
INFORMIXSQLHOSTS 4-49
INFORMIXSTACKSIZE 4-49
INFORMIXTERM 4-50
INF_ROLE_SEP. 4-51
NODEFDAC. 4-51
ONCONFIG 4-52
OPTCOMPIND 4-53
PATH . 4-54
PDQPRIORITY 4-54
PLCONFIG 4-55
PSORT_DBTEMP 4-56
PSORT_NPROCS 4-57
SQLEXEC . 4-58
SQLRM . 4-59
SQLRMDIR 4-59
TERM . 4-60
TERMCAP 4-60
TERMINFO 4-61
THREADLIB. 4-61

Index of Environment Variables 4-62

Appendix A The stores7 Database

Glossary

Index
Table of Contents vii

Introduction

Introduction
About This Manual 3
Organization of This Manual 4
Types of Users 5
Software Dependencies 5
Demonstration Database 5

New Features of This Product 8

Conventions . 13
Typographical Conventions 13
Icon Conventions 14

Comment Icons 15
Compliance Icons 15

Command-Line Conventions 16
Sample-Code Conventions 18

Additional Documentation 19
Printed Documentation 19
On-Line Documentation. 20

Error Message Files 20
Release Notes, Documentation Notes, Machine Notes 21

Related Reading 21

Compliance with Industry Standards 22

Informix Welcomes Your Comments 23

2 Inform
ix Guide to SQL: Reference

his chapter introduces the Informix Guide to SQL: Reference manual.
Read this chapter for an overview of the information provided in this manual
and for an understanding of the conventions used throughout this manual.

About This Manual
The Informix Guide to SQL: Reference is intended to be used as a companion
volume to the Informix Guide to SQL: Tutorial and the Informix Guide to SQL:
Syntax. This volume and the Informix Guide to SQL: Syntax are references that
you can use on a daily basis after you finish reading and experimenting with
the Informix Guide to SQL: Tutorial. This guide includes information regarding
individual system catalog tables, data types, and environment variables used
by Informix products. It also includes information on designing and using
ANSI-compliant databases and a description of the demonstration database,
stores7.

This manual assumes that you are using INFORMIX-OnLine Dynamic Server
as your database server. Features and behavior specific to INFORMIX-SE are
noted throughout the manual.

Important: This manual does not cover the product called INFORMIX-SQL or any
other Informix application development tool.

T

Introduction 3

Organization of This Manual
Organization of This Manual
The Informix Guide to SQL: Reference includes the following chapters:

■ This Introduction provides general information about the manual,
introduces the demonstration database from which the product
examples are drawn, lists the new features for Version 7.2 of Informix
database server products, describes the documentation conventions
used, and lists additional reference materials that will help you
understand Structured Query Language (SQL) concepts.

■ Chapter 1, “Informix Databases,” explains differences between the
INFORMIX-OnLine Dynamic Server and INFORMIX-SE database serv-
ers and provides information about ANSI-compliant databases.

■ Chapter 2, “System Catalog,” provides details of the Informix sys-
tem catalog, which is a collection of system catalog tables that
describe the structure of stores7 and other Informix databases. The
chapter explains how to access and update statistics in the system
catalog, shows the system catalog structure, and lists the name and
data type for each column in each table. This chapter also includes
information about Information Schema Views.

■ Chapter 3, “Data Types,” defines the column data types supported
by Informix products, tells how to convert between different data
types, and describes how to use specific values in arithmetic and
relational expressions.

■ Chapter 4, “Environment Variables,” describes the various environ-
ment variables that you can or should set to properly use your Infor-
mix products. These variables identify your terminal, specify the
location of your software, and define other parameters of your prod-
uct environment.

■ Appendix A, “The stores7 Database,” describes the structure and
contents of the stores7 demonstration database that is installed with
the Informix database server products. It includes a map of the nine
tables in the database, illustrates the columns on which they are
joined, and displays the data in them.

■ A Glossary of common database terms follows the chapters, and a
comprehensive index directs you to areas of particular interest.
4 Informix Guide to SQL: Reference

Types of Users
Types of Users
This manual is written for people who use Informix products and SQL on a
regular basis.

Software Dependencies
You must have the following Informix software to enter and execute SQL and
SPL statements:

■ An INFORMIX-OnLine Dynamic Server database server or an
INFORMIX-SE database server.

The database server either must be installed on your computer or on
another computer to which your computer is connected over a
network.

■ Either an Informix application development tool, such as
INFORMIX-NewEra; an SQL application programming interface
(API), such as INFORMIX-ESQL/C; or the DB-Access database access
utility, which is shipped as part of your database server.

The application development tool, the SQL API, or the DB-Access util-
ity enables you to compose queries, send them to the database server,
and view the results that the database server returns.

Demonstration Database
The DB-Access utility, which is provided with your Informix database server
products, includes a demonstration database called stores7 that contains
information about a fictitious wholesale sporting-goods distributor. The
sample command files that make up a demonstration application are also
included.

Most examples in this manual are based on the stores7 demonstration
database. The stores7 database is described in detail and its contents are
listed in Appendix A of this volume.
Introduction 5

Demonstration Database
The script that you use to install the demonstration database is called
dbaccessdemo7 and is located in the $INFORMIXDIR/bin directory. The
database name that you supply is the name given to the demonstration
database. If you do not supply a database name, the name defaults to stores7.
Use the following rules for naming your database:

■ Names can have a maximum of 18 characters for INFORMIX-OnLine
Dynamic Server databases and a maximum of 10 characters for
INFORMIX-SE databases.

■ The first character of a name must be a letter or an underscore (_).

■ You can use letters, characters, and underscores (_) for the rest of the
name.

■ DB-Access makes no distinction between uppercase and lowercase
letters.

■ The database name must be unique.

When you run dbaccessdemo7, you are, as the creator of the database, the
owner and Database Administrator (DBA) of that database.

If you install your Informix database server according to the installation
instructions, the files that constitute the demonstration database are
protected so that you cannot make any changes to the original database.

You can run the dbaccessdemo7 script again whenever you want to work
with a fresh demonstration database. The script prompts you when the
creation of the database is complete and asks if you would like to copy the
sample command files to the current directory. Enter N if you have made
changes to the sample files and do not want them replaced with the original
versions. Enter Y if you want to copy over the sample command files.

To create and populate the stores7 demonstration database

1. Set the INFORMIXDIR environment variable so that it contains the
name of the directory in which your Informix products are installed.

2. Set INFORMIXSERVER to the name of the default database server.

The name of the default database server must exist in the
$INFORMIXDIR/etc/sqlhosts file. (For a full description of
environment variables, see Chapter 4, “Environment Variables.”)
For information about sqlhosts, see the INFORMIX-OnLine Dynamic
Server Administrator’s Guide or the INFORMIX-SE Administrator’s
Guide.
6 Informix Guide to SQL: Reference

Demonstration Database
3. Create a new directory for the SQL command files. Create the
directory by entering the following command:
mkdir dirname

4. Make the new directory the current directory by entering the
following command:
cd dirname

5. Create the demonstration database and copy over the sample
command files by entering the dbaccessdemo7 command.

To create the database without logging, enter the following
command:
dbaccessdemo7 dbname

To create the demonstration database with logging, enter the
following command:
dbaccessdemo7 -log dbname

If you are using INFORMIX-OnLine Dynamic Server, by default the
data for the database is put into the root dbspace. If you wish, you
can specify a dbspace for the demonstration database.

To create a demonstration database in a particular dbspace, enter the
following command:
dbaccessdemo7 dbname -dbspace dbspacename

You can specify all of the options in one command, as shown in the
following command:
dbaccessdemo7 -log dbname -dbspace dbspacename

If you are using INFORMIX-SE, a subdirectory called dbname.dbs is
created in your current directory and the database files associated
with stores7 are placed there. You will see both data (.dat) and index
(.idx) files in the dbname.dbs directory. (If you specify a dbspace
name, it is ignored.)

To use the database and the command files that have been copied to
your directory, you must have UNIX read and execute permissions
for each directory in the pathname of the directory from which you
ran the dbaccessdemo7 script. Check with your system
administrator for more information about operating-system file and
directory permissions. UNIX permissions are discussed in the
INFORMIX-OnLine Dynamic Server Administrator’s Guide and the
INFORMIX-SE Administrator’s Guide.
Introduction 7

New Features of This Product
6. To give someone else the permissions to access the command files in
your directory, use the UNIX chmod command.

7. To give someone else access to the database that you have created,
grant them the appropriate privileges using the GRANT statement.

To revoke privileges, use the REVOKE statement. The GRANT and
REVOKE statements are described in Chapter 1 of the Informix Guide
to SQL: Syntax.

New Features of This Product
The Introduction to each Version 7.2 product manual contains a list of new
features for that product. The Introduction to each manual in the Version 7.2
Informix Guide to SQL series contains a list of new SQL features.

A comprehensive list of all of the new features for Version 7.2 Informix
products is in the release-notes file called SERVERS_7.2.

This section highlights the major new features implemented in Version 7.2 of
Informix products that use SQL:

■ Addition of Global Language Support (GLS)

The GLS feature allows you to work in any supported language and
to conform to the customs of a specific territory by setting certain
environment variables. In support of GLS, CHAR and VARCHAR,
columns of the system catalog tables are created as NCHAR and
NVARCHAR columns in this release. In addition, hidden rows have
been added to the systables system catalog table. See the discussion
of GLS in Chapter 1 of the Informix Guide to SQL: Reference.

■ ANSI flagger

The ANSI flagger that Informix products use has been modified to
eliminate the flagging of certain SQL items as Informix extensions.
These items include the AS keyword in the SELECT clause of the
SELECT statement and delimited identifiers in the Identifier segment.
8 Informix Guide to SQL: Reference

New Features of This Product
■ Bidirectional indexes

The database server can now traverse an index in either ascending or
descending order. So you no longer need to create both an ascending
index and a descending index for a column when you use this
column in both SELECT...ORDER BY column name ASC statements and
SELECT...ORDER BY column name DESC statements. You only need to
create a single ascending or descending index for these queries. See
the CREATE INDEX and SELECT statements.

■ Column matches in conditions

When you specify a LIKE or MATCHES condition in the SELECT
statement or other statements, you can specify a column name on
both sides of the LIKE or MATCHES keyword. The database server
retrieves a row when the values of the specified columns match. See
the Condition segment and the SELECT statement.

■ Column substrings in queries

You can specify column subscripts for the column named in a
SELECT...ORDER BY statement. The database server sorts the query
results by the value of the column substring rather than the value of
the entire column.

■ Column updates after a fetch

When you use the FOR UPDATE clause of the SELECT statement, you
can use the OF column name option of this clause to limit the columns
that can be updated after a fetch.

■ Connectivity information

You can use the INFORMIXSQLHOSTS environment variable to
specify the pathname of the file where the client or the database
server looks for connectivity information.

■ COUNT function

The ALL column name option of the COUNT function returns the total
number of non-null values in the specified column or expression. See
the Expression segment.
Introduction 9

New Features of This Product
■ Data distributions

You can suppress the construction of index information in the
MEDIUM and HIGH modes of the UPDATE STATISTICS statement.
When you use the new DISTRIBUTIONS ONLY option of this
statement, the database server gathers only distributions infor-
mation and table information.

■ Database renaming

You can rename local databases. See the new RENAME DATABASE
statement.

■ DBINFO function

You can use the 'sessionid' option of the DBINFO function to return
the session ID of your current session. See the Expression segment.

■ Decimal digits in client applications

Informix client applications (including the DB-Access utility or any
ESQL program that you write) by default display 16 decimal digits of
data types FLOAT, SMALLFLOAT, and DECIMAL. The actual digits
that are displayed can vary according to the size of the character
buffer. The new DBFLTMASK environment variable allows you to
override the default of 16 decimal digits in the display.

■ Default privileges on tables

You can use the new NODEFDAC environment variable to prevent
default table privileges from being granted to PUBLIC when a new
table is created in a database that is not ANSI compliant.

■ Fragment authorization

You can grant and revoke privileges on individual fragments of
tables. See the new GRANT FRAGMENT and REVOKE FRAGMENT
statements and the new sysfragauth system catalog table.

■ High-Performance Loader (HPL) configuration

You can use the new DBONPLOAD and PLCONFIG environment
variables to specify the names of files and databases to be used by
HPL.

■ In-place alter algorithm

INFORMIX-OnLine Dynamic Server uses a new in-place alter
algorithm for altering tables when you add a column to the end of
the table. See the ALTER TABLE statement.
10 Informix Guide to SQL: Reference

New Features of This Product
■ Next century in year values

You can use the next century to expand two-digit year values. See the
new DBCENTURY environment variable, the Literal DATETIME
segment, the DATE data type, and the DATETIME data type.

■ Not null constraints

You can now create not null constraints with the CREATE TABLE and
ALTER TABLE statements. The database server records not null
constraints in the sysconstraints and syscoldepend system catalog
tables.

■ Object modes

You can specify the object mode of database objects with the new SET
statement. This statement permits you to set the object mode of
constraints, indexes, and triggers or the transaction mode of
constraints. See the SET statement, the new sysobjstate system
catalog table, and the new syntax for object modes in ALTER TABLE,
CREATE INDEX, CREATE TABLE, and CREATE TRIGGER.

■ Optical StageBlob area

You can use the new INFORMIXOPCACHE environment variable to
specify the size of the memory cache for the Optical StageBlob area
of the client application.

■ RANGE, STDEV, and VARIANCE functions

You can use the new aggregate functions RANGE, STDEV, and
VARIANCE. See the new syntax for Aggregate Expressions in the
Expression segment.

■ Roles

You can create, drop, and enable roles. You can grant roles to
individual users and to other roles, and you can grant privileges to
roles. You can revoke a role from individual users and from another
role, and you can revoke privileges from a role. See the new CREATE
ROLE, DROP ROLE, and SET ROLE statements and the new
sysroleauth system catalog table. Also see the new syntax for roles in
the GRANT and REVOKE statements and the new information in the
sysusers system catalog table.
Introduction 11

New Features of This Product
■ Separation of administrative tasks

The security feature of role separation allows you to separate admin-
istrative tasks performed by different groups that are running and
auditing OnLine. The INF_ROLE_SEP environment variable allows
you to implement role separation during installation of OnLine.

■ Session authorization

You can change the user name under which database operations are
performed in the current session and thus assume the privileges of
the specified user during the session. See the new SET SESSION
AUTHORIZATION statement.

■ Table access after loads

The FOR READ ONLY clause of the SELECT statement allows you to
access data in the tables of an ANSI-mode database after you have
loaded the data with the High-Performance Loader but before you
have performed a level-0 backup of the data. After you have
performed the level-0 backup, you no longer need to use the FOR
READ ONLY clause. See the SELECT and DECLARE statements.

■ Thread-safe applications

You can use the new THREADLIB environment variable to compile
thread-safe ESQL/C applications. In a thread-safe ESQL/C appli-
cation, you can use the DORMANT option of the SET CONNECTION
statement to make an active connection dormant.

■ Tutorials

Tutorial information on new features has been added to the Informix
Guide to SQL: Tutorial. The new tutorials cover Global Language
Support (GLS), thread-safe applications, object modes, violation
detection, fragment authorization, and roles.

■ Utilities

The dbexport, dbimport, dbload, and dbschema utilities have been
moved from the Informix Guide to SQL: Reference to the Informix
Migration Guide.

■ Violation detection

You can create special tables called violations and diagnostics tables
to detect integrity violations. See the new START VIOLATIONS TABLE
and STOP VIOLATIONS TABLE statements and the new sysviolations
system catalog table.
12 Informix Guide to SQL: Reference

Conventions
■ XPG4 compliance

SQL statements and data structures have been modified to provide
enhanced compliance with the X/Open Portability Guide 4 (XPG4) speci-
fication for SQL. The sqlwarn array within the SQL Communications
Area (SQLCA) has been modified. A new SQLSTATE code (01007) has
been added. The behavior of the ALL keyword in the GRANT
statement and the behavior of the ALL and RESTRICT keywords in
the REVOKE statement has changed.

For data types, system catalog tables, and environment variables, see this
manual. For SQL statements and segments, see the Informix Guide to SQL:
Syntax. For tutorial information, see the Informix Guide to SQL: Tutorial.

Conventions
This section describes the conventions that are used in this manual. By
becoming familiar with these conventions, you will find it easier to gather
information from this and other volumes in the documentation set.

The following conventions are covered:

■ Typographical conventions

■ Icon conventions

■ Command-line conventions

■ Sample-code conventions

Typographical Conventions
This manual uses a standard set of conventions to introduce new terms,
illustrate screen displays, describe command-line syntax, and so forth. The
following typographical conventions are used throughout this manual.
Introduction 13

Icon Conventions
Tip: When you are instructed to “enter” characters or to “execute” a command,
immediately press RETURN after the entry. When you are instructed to “type” the
text or to “press” other keys, no RETURN is required.

Icon Conventions
Throughout the documentation, you will find text that is identified by several
different types of icons. This section describes these icons.

Convention Meaning

italics Within text, new terms and emphasized words are printed in
italics. Within syntax diagrams, values that you are to specify
are printed in italics.

boldface Identifiers (names of classes, objects, constants, events,
functions, program variables, forms, labels, and reports),
environment variables, database names, table names, column
names, menu items, command names, and other similar terms
are printed in boldface.

monospace Information that the product displays and information that you
enter are printed in a monospace typeface.

KEYWORD All keywords appear in uppercase letters.

♦ This symbol indicates the end of product- or platform-specific
information.
14 Informix Guide to SQL: Reference

Icon Conventions
Comment Icons

Comment icons identify three types of information, as described in the
following table. This information is always displayed in italics.

Compliance Icons

Compliance icons indicate paragraphs that provide guidelines for complying
with a standard.

These icons can apply to a row in a table, one or more paragraphs, or an entire
section. A ♦ symbol indicates the end of the compliance information.

Icon Description

Identifies paragraphs that contain vital instructions,
cautions, or critical information.

Identifies paragraphs that contain significant information
about the feature or operation that is being described.

Identifies paragraphs that offer additional details or
shortcuts for the functionality that is being described.

Icon Description

Identifies information that is specific to an ANSI-compliant
database.

Identifies information that is valid only if your database or
application uses a nondefault GLS locale.

ANSI

GLS
Introduction 15

Command-Line Conventions
Command-Line Conventions
This section defines and illustrates the format of the commands available in
Informix products. These commands have their own conventions, which
might include alternative forms of a command, required and optional parts
of the command, and so on.

Each diagram displays the sequences of required and optional elements that
are valid in a command. A diagram begins at the upper left with a command.
It ends at the upper right with a vertical line. Between these points, you can
trace any path that does not stop or back up. Each path describes a valid form
of the command. You must supply a value for words that are in italics.

Element Description

command This required element is usually the product name or
other short word that invokes the product or calls the
compiler or preprocessor script for a compiled Informix
product. It might appear alone or precede one or more
options. You must spell a command exactly as shown
and must use lowercase letters.

variable A word in italics represents a value that you must
supply, such as a database, file, or program name. A table
following the diagram explains the value.

-flag A flag is usually an abbreviation for a function, menu, or
option name or for a compiler or preprocessor argument.
You must enter a flag exactly as shown, including the
preceding hyphen.

.ext A filename extension, such as .sql or .cob, might follow
a variable that represents a filename. Type this extension
exactly as shown, immediately after the name of the file
and a period. The extension might be optional in certain
products.

(.,;+*-/) Punctuation and mathematical notations are literal
symbols that you must enter exactly as shown.

' ' Single quotes are literal symbols that you must enter as
shown.

 (1 of 2)
16 Informix Guide to SQL: Reference

Command-Line Conventions
Figure 1 shows how you read the command-line diagram for setting the
INFORMIXC environment variable.

To construct a correct command, start at the top left with the command
setenv. Then follow the diagram to the right, including the elements that you
want. The elements in the diagram are case sensitive.

A reference in a box represents a subdiagram on the
same page (if no page is supplied) or another page.
Imagine that the subdiagram is spliced into the main
diagram at this point.

A shaded option is the default. If you do not explicitly
type the option, the default will be in effect unless
you choose another option.

Syntax enclosed in a pair of arrows indicates that this is
a subdiagram.

The vertical line is a terminator and indicates that the
statement is complete.

A branch below the main line indicates an optional path.
(Any term on the main path is required, unless a branch
can circumvent it.)

A loop indicates a path that you can repeat. Punctuation
along the top of the loop indicates the separator symbol
for list items, as in this example.

A gate () on a path indicates that you can only use
that path the indicated number of times, even if it is part
of a larger loop. Here you can specify size no more than
three times within this statement segment.

Element Description

 (2 of 2)

Privileges
 p. 5-17

Privileges

ALL

NOT

IN

variable

,

3 size

, 3

Figure 1
An Example Command-Line Diagram

pathname

compilersetenv INFORMIXC
Introduction 17

Sample-Code Conventions
To read the example command-line diagram

1. Type the word setenv.

2. Type the word INFORMIXC.

3. Supply either a compiler name or pathname.

After you choose compiler or pathname, you come to the terminator.
Your command is complete.

4. Press ENTER to execute the command.

Sample-Code Conventions
Examples of SQL code occur throughout this manual. Except where noted,
the code is not specific to any single Informix application development tool.
If only SQL statements are listed in the example, they are not delimited by
semicolons. To use this SQL code for a specific product, you must apply the
syntax rules for that product. For example, if you are using the Query-
language option of DB-Access, you must delimit multiple statements with
semicolons. If you are using an SQL API, you must use EXEC SQL and a
semicolon (or other appropriate delimiters) at the start and end of each
statement, respectively.

For instance, you might see the code in the following example:

CONNECT TO stores7
.
.
.
DELETE FROM customer

WHERE customer_num = 121
.
.
.
COMMIT WORK
DISCONNECT CURRENT

Dots in the example indicate that more code would be added in a full
application, but it is not necessary to show it to describe the concept being
discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the manual for your product.
18 Informix Guide to SQL: Reference

Additional Documentation
Additional Documentation
This section describes the following pieces of the documentation set:

■ Printed documentation

■ On-line documentation

■ Related reading

Printed Documentation
You can refer to the following related Informix documents that complement
this manual:

■ A companion volume to the Reference, the Informix Guide to SQL:
Tutorial, provides a tutorial on SQL as it is implemented by Informix
products. It describes the fundamental ideas and terminology that
are used when planning, using, and implementing a relational
database.

■ An additional companion volume to the Reference, the Informix
Guide to SQL: Syntax, provides a detailed description of all the SQL
statements supported by Informix products. This guide also
provides a detailed description of Stored Procedure Language (SPL)
statements.

■ The SQL Quick Syntax Guide contains syntax diagrams for all state-
ments and segments described in this manual.

■ You, or whoever installs your Informix products, should refer to the
UNIX Products Installation Guide for your particular release to ensure
that your Informix product is properly set up before you begin to
work with it. A matrix depicting possible client/server configura-
tions is included in the UNIX Products Installation Guide.

■ Depending on the database server you are using, you or your system
administrator need either the INFORMIX-SE Administrator’s Guide or
the INFORMIX-OnLine Dynamic Server Administrator’s Guide.
Introduction 19

On-Line Documentation
■ The DB-Access User Manual describes how to invoke the DB-Access
utility to access, modify, and retrieve information from Informix
database servers.

■ When errors occur, you can look them up by number and learn their
cause and solution in the Informix Error Messages manual. If you
prefer, you can look up the error messages in the on-line message file
described in the section later in this Introduction and in the Intro-
duction to the Informix Error Messages manual.

■ The Guide to GLS Functionality explains the impact of the GLS feature
on Informix products. This manual includes a chapter on SQL
features and a chapter on GLS environment variables.

■ Getting Started with Informix Database Server Products provides an
orientation to the Informix client/server environment and describes
the manuals for Informix products. If you are a new user of Informix
products, it is helpful to read this manual before you read any of the
manuals in the SQL manual series.

On-Line Documentation
The following on-line files supplement this document:

■ On-line error messages

■ Release notes, documentation notes, and machine notes

Error Message Files

Informix software products provide ASCII files that contain all of the
Informix error messages and their corrective actions. To read the error
messages in the ASCII file, Informix provides scripts that let you display error
messages on the screen (finderr) or print formatted error messages (rofferr).
See the Introduction to the Informix Error Messages manual for a detailed
description of these scripts.

The optional Informix Messages and Corrections product provides
PostScript files that contain the error messages and their corrective actions. If
you have installed this product, you can print the PostScript files on a
PostScript printer. The PostScript error messages are distributed in a number
of files of the format errmsg1.ps, errmsg2.ps, and so on. These files are
located in the $INFORMIXDIR/msg directory.
20 Informix Guide to SQL: Reference

Related Reading
Release Notes, Documentation Notes, Machine Notes

In addition to the Informix set of manuals, the following on-line files, located
in the $INFORMIXDIR/release/en_us/0333 directory, might supplement the
information in this manual:

Please examine these files because they contain vital information about
application and performance issues.

Related Reading
For additional technical information on database management, consult the
following books. The first book is an introductory text for readers who are
new to database management, while the second book is a more complex
technical work for SQL programmers and database administrators:

■ Database: A Primer by C. J. Date (Addison-Wesley Publishing, 1983)

■ An Introduction to Database Systems by C. J. Date (Addison-Wesley
Publishing, 1994)

To learn more about the SQL language, consider the following books:

■ A Guide to the SQL Standard by C. J. Date with H. Darwen (Addison-
Wesley Publishing, 1993)

On-Line File Purpose

Documentation
notes

Describes features that are not covered in the manual or that
have been modified since publication. The file containing the
documentation notes for this product is called SQLRDOC_7.2.

Release notes Describes feature differences from earlier versions of Informix
products and how these differences might affect current prod-
ucts.The file containing the release notes for Version 7.2 of
Informix database server products is called SERVERS_7.2.

Machine notes Describes any special actions that are required to configure and
use Informix products on your computer. Machine notes are
named for the product that is described. For example, the ma-
chine notes file for INFORMIX-OnLine Dynamic Server is
ONLINE_7.2.
Introduction 21

Compliance with Industry Standards
■ Understanding the New SQL: A Complete Guide by J. Melton and
A. Simon (Morgan Kaufmann Publishers, 1993)

■ Using SQL by J. Groff and P. Weinberg (Osborne McGraw-Hill, 1990)

The Informix Guide to SQL: Reference assumes that you are familiar with your
computer operating system. If you have limited UNIX system experience,
consult your operating-system manual or a good introductory text before
you read this manual. The following texts provide a good introduction to
UNIX systems:

■ Introducing the UNIX System by H. McGilton and R. Morgan
(McGraw-Hill Book Company, 1983)

■ Learning the UNIX Operating System by G. Todino, J. Strang, and
J. Peek (O’Reilly & Associates, 1993)

■ A Practical Guide to the UNIX System by M. Sobell
(Benjamin/Cummings Publishing, 1989)

■ UNIX for People by P. Birns, P. Brown, and J. Muster (Prentice-Hall,
1985)

■ UNIX System V: A Practical Guide by M. Sobell (Benjamin/Cummings
Publishing, 1995)

Compliance with Industry Standards
The American National Standards Institute (ANSI) has established a set of
industry standards for SQL. Informix SQL-based products are fully compliant
with SQL-92 Entry Level (published as ANSI X3.135-1992), which is identical
to ISO 9075:1992 on INFORMIX-OnLine Dynamic Server. In addition, many
features of OnLine comply with the SQL-92 intermediate and Full Level and
X/Open C CAE (common applications environment) standards.

Informix SQL-based products are compliant with ANSI SQL-92 Entry Level
(published as ANSI X3.135-1992) on INFORMIX-SE with the following
exceptions:

■ Effective checking of constraints

■ Serializable transactions
22 Informix Guide to SQL: Reference

Informix Welcomes Your Comments
Informix Welcomes Your Comments
Please let us know what you like or dislike about our manuals. To help us
with future versions of our manuals, please tell us about any corrections or
clarifications that you would find useful. Write to us at the following address:

Informix Software, Inc.
SCT Technical Publications Department
4100 Bohannon Drive
Menlo Park, CA 94025

If you prefer to send electronic mail, our address is:

doc@informix.com

Or, send a facsimile to the Informix Technical Publications Department at:

415-926-6571

Please include the following information:

■ The name and version of the manual that you are using

■ Any comments that you have about the manual

■ Your name, address, and phone number

We appreciate your feedback.
Introduction 23

1
Chapter
Informix Databases
Choosing a Database Server 1-3
Data Types . 1-4
Rolling Back Statements in a Transaction 1-5
Transaction Logging 1-5
Table and Index Fragmentation 1-5
Locking Issues 1-6

Lock Scope 1-6
Lock Mode 1-6
Use of Shared Locks 1-7
Waiting for Locks. 1-7

Isolation Level 1-7
System Catalog Tables 1-8
SQL Statements Supported by Specific Database Servers 1-8

SQL Statements Supported Only by OnLine 1-9
SQL Statements That Contain Branches Specific to OnLine . . 1-9
SQL Segments That Contain Branches Specific to OnLine . . . 1-9
SQL Statements Supported Only by SE 1-10
SQL Statements and Segments That Contain Branches

Specific to SE 1-10

Using ANSI-Compliant Databases 1-11
Designating a Database as ANSI Compliant 1-11
Determining If an Existing Database Is ANSI Compliant 1-12
Differences Between ANSI-Compliant and Non-ANSI-Compliant

Databases 1-12
Transactions 1-13
Transaction Logging. 1-13
Owner Naming 1-14
Privileges on Objects 1-14
Default Isolation Level 1-15
Character Data Types 1-15
Decimal Data Type 1-15

1-2 Infor
Escape Characters 1-15
Cursor Behavior 1-16
The SQLCODE Field of the SQL Communications Area . . . 1-16
SQL Statements Allowed with ANSI-Compliant Databases . . 1-16
Synonym Behavior 1-16

Using a Customized Language Environment for Your Database . . . 1-17
mix Guide to SQL: Reference

efore you create a database using an Informix product, you must
make several decisions that affect which features will be available to
applications that use the database. The major decisions are as follows:

■ Which database server will house the database: INFORMIX-OnLine
Dynamic Server or INFORMIX-SE?

■ Does the database need to be ANSI compliant?

■ Will the database use characters from a language other than English
in its tables?

This chapter describes the implications of each choice and summarizes how
these choices affect your databases. For many of the features and behaviors
described in this chapter, the specifics of implementation are discussed
elsewhere in this manual, in the Informix Guide to SQL: Syntax, and in the
Informix Guide to SQL: Tutorial.

Choosing a Database Server
If you have access to both an INFORMIX-OnLine Dynamic Server and an
INFORMIX-SE database server, you must choose one to serve your database.
If you create a database with one database server, you can transfer it later to
the other database server. Informix recommends, however, that you consider
which database server is more appropriate for your needs before you create
and populate the database.

Various factors might influence your choice of database server, for example,
the size of your databases, speed, the need for distributed access, and ease of
installation and maintenance. You should also be aware of differences in the
SQL features that are available on INFORMIX-OnLine Dynamic Server and
INFORMIX-SE.

B

Informix Databases 1-3

Data Types
Your choice of database server decides the following issues for a database:

■ Which data types are available

■ Whether data-definition statements can be rolled back

■ Whether buffered logging is supported

■ Whether tables can be fragmented

■ Which locking options are available

■ Which isolation levels are available

■ What information is stored in the system catalog tables

■ Which SQL statements are available

This section summarizes how your choice of database server affects each of
these issues. References are also provided to indicate where you can find
more extended discussions of these issues.

Data Types
INFORMIX-OnLine Dynamic Server supports all the data types available to
INFORMIX-SE as well as the following additional data types:

■ BYTE

■ CHARACTER VARYING

■ TEXT

■ VARCHAR

■ NVARCHAR

INFORMIX-SE and INFORMIX-OnLine Dynamic Server also have different
values for the maximum length of CHAR(n) and NCHAR(n) data types.

For more information on individual data types, see “Database Data Types”
on page 3-3.
1-4 Informix Guide to SQL: Reference

Rolling Back Statements in a Transaction
Rolling Back Statements in a Transaction
For both database servers, if you have not yet issued a COMMIT WORK
statement for a transaction, the ROLLBACK WORK statement allows you to
undo any changes that occurred since the beginning of that transaction. In
INFORMIX-OnLine Dynamic Server, you can roll back any statement.

If you are using INFORMIX-SE, you cannot undo certain operations with
ROLLBACK WORK. These operations comprise all the data definition state-
ments as well as the GRANT and REVOKE statements. (For a list of the data
definition statements, refer to Chapter 1 of the Informix Guide to SQL: Syntax.)

For a discussion of transactions, refer to Chapter 4 of the Informix Guide to
SQL: Tutorial. See also the description of the ROLLBACK WORK statement in
Chapter 1 of the Informix Guide to SQL: Syntax.

Transaction Logging
INFORMIX-OnLine Dynamic Server supports buffered logging and allows
you to change logging from buffered to unbuffered or unbuffered to buffered
with the SET LOG statement. You can also choose to log or not to log.

INFORMIX-SE does not support buffered logging.

For more information on the SET LOG statement, refer to Chapter 1 of the
Informix Guide to SQL: Syntax. For more information about buffered and
unbuffered logging, see the INFORMIX-OnLine Dynamic Server Adminis-
trator’s Guide.

Table and Index Fragmentation
INFORMIX-OnLine Dynamic Server supports the fragmentation of tables and
indexes. The feature allows you to group rows within a table according to a
distribution scheme. The rows are stored in separate dbspaces that you
specify in a fragmentation strategy.

For more information about fragmentation and the SQL statements you use
to create fragmented tables and indexes, see Chapter 1 of the Informix Guide
to SQL: Syntax. For more information about how fragmentation can enhance
performance, see the INFORMIX-OnLine Dynamic Server Performance Guide.
Informix Databases 1-5

Locking Issues
Locking Issues
When you write applications for INFORMIX-OnLine Dynamic Server and
INFORMIX-SE, you should be aware of how each handles the following
locking issues:

■ Which choices of lock scope are available

■ Which choices of lock mode are available

■ How shared locks are used

■ Whether a process can wait for a lock

The following four sections briefly describe how the different database
servers handle these locking issues.

Lock Scope

When you create a table, INFORMIX-OnLine Dynamic Server sets the lock
scope to page level by default. If you want, you can set the lock scope to row
level instead.

INFORMIX-SE supports only row-level locking.

For more information on lock scope, refer to Chapter 7 of the Informix Guide
to SQL: Tutorial. For how to specify a lock scope, see the descriptions of
CREATE TABLE or ALTER TABLE in Chapter 1 of the Informix Guide to SQL:
Syntax.

Lock Mode

INFORMIX-OnLine Dynamic Server supports three locking modes: shared,
exclusive, and promotable. The OnLine database server implicitly places
promotable locks on the rows that are selected for an update operation. Just
before the actual update, the OnLine promotes the lock to exclusive.

The INFORMIX-SE database server supports only shared and exclusive
locking, which results in different locking strategies for table updates. The
INFORMIX-SE database server does not have promotable locking, so it places
exclusive locks on rows that are selected for update.
1-6 Informix Guide to SQL: Reference

Isolation Level
For more information on lock modes, refer to Chapter 7 of the Informix Guide
to SQL: Tutorial. See also the description of the UPDATE statement in
Chapter 1 of the Informix Guide to SQL: Syntax.

Use of Shared Locks

INFORMIX-OnLine Dynamic Server supports shared locks on tables. Multiple
users can place shared locks on a table.

INFORMIX-SE also supports shared locks on tables. However, the
INFORMIX-SE database server allows only one user at a time to have a shared
lock on a table.

For more information, see the description of LOCK TABLE in Chapter 1 of the
Informix Guide to SQL: Syntax.

Waiting for Locks

The SET LOCK MODE statement is always available with INFORMIX-OnLine
Dynamic Server. This statement specifies whether a process that tries to
access a locked row or table must wait until OnLine releases the lock.

Only those INFORMIX-SE database servers that use kernel locking have the
SET LOCK MODE statement available.

For more information, refer to Chapter 7 of the Informix Guide to SQL: Tutorial.
See also the description of SET LOCK MODE in Chapter 1 of the Informix Guide
to SQL: Syntax.

Isolation Level
INFORMIX-OnLine Dynamic Server supports the SET TRANSACTION
statement for databases that use transaction logging. Using this option, you
can set the isolation level to Read Uncommitted, Read Committed,
Repeatable Read, and Serializable. The default isolation level is Read
Committed, unless the database is ANSI-compliant, in which case the default
is Serializable.

INFORMIX-SE supports the SET TRANSACTION statement for access modes
only. All databases running on INFORMIX-SE use the Read Uncommitted
isolation level.
Informix Databases 1-7

System Catalog Tables
For more information, refer to the description of the SET TRANSACTION
statement in Chapter 1 of the Informix Guide to SQL: Syntax. See also
Chapter 7 of the Informix Guide to SQL: Tutorial.

System Catalog Tables
The following system catalog tables in an INFORMIX-SE database are defined
or used differently than their corresponding system catalog tables in an
INFORMIX-OnLine Dynamic Server database:

■ syscolumns

■ sysindexes

■ syssyntables

■ systables

■ sysreferences

The following system catalog tables exist only on INFORMIX-OnLine
Dynamic Server database servers:

■ sysfragments

■ sysopclstr

■ sysblobs

For more information on the system catalog tables, see Chapter 2, “System
Catalog.”

SQL Statements Supported by Specific Database Servers
This section lists which SQL statements INFORMIX-OnLine Dynamic Server
supports and which statements INFORMIX-SE supports. This information
also appears inChapter 1 of the Informix Guide to SQL: Syntax, where syntax
specific to OnLine and SE is indicated by the appropriate icon.
1-8 Informix Guide to SQL: Reference

SQL Statements Supported by Specific Database Servers
SQL Statements Supported Only by OnLine

The following statements are supported only by OnLine:

■ ALTER FRAGMENT

■ SET CONSTRAINTS

■ SET ISOLATION

■ SET LOG

SQL Statements That Contain Branches Specific to OnLine

The following statements contain at least one option or branch that is
supported only by OnLine:

■ ALTER TABLE

■ CREATE DATABASE

■ CREATE TABLE

■ REVOKE

■ SET LOCK MODE

■ SET TRANSACTION

SQL Segments That Contain Branches Specific to OnLine

Segments are elements of syntax that are extracted from the syntax of the SQL
statements. Segments are described in Chapter 1 of the Informix Guide to SQL:
Syntax. The following segments contain at least one option or branch that is
supported only by OnLine:

■ Condition

■ Constraint

■ Database Name

■ Expression

■ Index Name

■ Procedure Name

■ Synonym Name

■ Table Name

■ View Name
Informix Databases 1-9

SQL Statements Supported by Specific Database Servers
Important: If one of the segments in the preceding list contains a branch that is
specific to OnLine, the entire SQL statement is supported only by OnLine. For
example, if a SELECT statement contains an expression with a branch that is
supported only by OnLine, the entire SELECT statement is supported only by an
OnLine database server.

SQL Statements Supported Only by SE

The following statements are supported only by the SE database server:

■ CHECK TABLE

■ CREATE AUDIT

■ DROP AUDIT

■ RECOVER TABLE

■ REPAIR TABLE

■ ROLLFORWARD DATABASE

■ START DATABASE

SQL Statements and Segments That Contain Branches Specific to SE

The following statements contain at least one option or branch that is
supported only by SE:

■ CONNECT

■ CREATE DATABASE

■ CREATE TABLE

Segments are elements of syntax that are extracted from the syntax of the SQL
statements. Segments are described in Chapter 1 of the Informix Guide to SQL:
Syntax. The Database Name segment is the only segment that contains an
option or branch that is supported only by SE.
1-10 Informix Guide to SQL: Reference

Using ANSI-Compliant Databases
Using ANSI-Compliant Databases
An ANSI-compliant database is created using the MODE ANSI keywords. The
differences between ANSI-compliant databases and those that are not ANSI-
compliant are described on page 1-12.

You might want to create an ANSI-compliant database for the following
reasons:

■ Privileges and access to objects

ANSI rules govern privileges and access to objects such as tables and
synonyms. However, creating an ANSI-compliant database does not
ensure that this database remains compliant with the
ANSI/ISO SQL-92 standards. (If you take a non-ANSI action, such as
CREATE INDEX, on an ANSI database, you receive a warning, but the
application program does not forbid the action.)

■ Name isolation

The ANSI table-naming scheme allows different users to create tables
in a database without having to worry about name conflicts.

■ Transaction isolation

■ Data recovery

ANSI-compliant databases enforce unbuffered logging and
automatic transactions for INFORMIX-OnLine Dynamic Server
database servers.

Designating a Database as ANSI Compliant
You designate a database as ANSI compliant by using the MODE ANSI
keywords when you create it. Once you create a database using the MODE
ANSI keywords, the database is considered ANSI compliant. In an
ANSI-compliant database, you cannot change the logging mode to buffered
logging, and you cannot turn logging off.
Informix Databases 1-11

Determining If an Existing Database Is ANSI Compliant
Determining If an Existing Database Is ANSI Compliant
The following list describes several methods to determine if a database is
ANSI compliant:

■ If the default database server is INFORMIX-OnLine Dynamic Server,
you can use the ON-Monitor utility to list all the databases that reside
on that default database server. The Databases option of the Status
menu displays this list. In the Log Status column on the list, an
ANSI-compliant database has the notation U*.

■ If you are using an SQL API such as INFORMIX-ESQL/C, you can test
the SQL Communications Area (SQLCA). Specifically, the third
element in the SQLCAWARN structure contains a W immediately after
you open an ANSI-compliant database using the DATABASE or
CONNECT statement. For information on SQLCA, see Chapter 5 of
the Informix Guide to SQL: Tutorial or your SQL API manual.

■ If you are running on an INFORMIX-SE database server, you can
query the systables system catalog table. If a database was created
with the MODE ANSI keywords, systables lists a row with a tabname
of ANSI and a tabid of 100. For example, if the following query on
systables returns a row, the database is ANSI compliant:
SELECT * FROM 'informix'.systables WHERE tabname = 'ANSI'

Differences Between ANSI-Compliant and Non-ANSI-
Compliant Databases
Databases that you designate as ANSI compliant (by using the MODE ANSI
keywords when you create them) and databases that are not ANSI compliant
behave differently in the following areas:

■ Transactions

■ Transaction logging

■ Owner naming

■ Privileges on objects

■ Default isolation level

■ Character data types

■ Decimal data type
1-12 Informix Guide to SQL: Reference

Differences Between ANSI-Compliant and Non-ANSI-Compliant Databases
■ Escape characters

■ Cursor behavior

■ SQLCODE of the SQLCA

■ Allowed SQL statements

■ Synonym behavior

Transactions

All the SQL statements that you issue in an ANSI-compliant database are
automatically contained in transactions. With a database that is not ANSI
compliant, you can choose whether to use transaction processing.

In a database that is not ANSI compliant, a transaction is enclosed by a BEGIN
WORK statement and a COMMIT WORK or a ROLLBACK WORK statement.
However, in an ANSI-compliant database, the BEGIN WORK statement is
redundant and unnecessary because all statements are automatically
contained in a transaction. You need to indicate only the end of a transaction
with a COMMIT WORK or ROLLBACK WORK statement.

For more information on transactions, see Chapter 4 of the Informix Guide to
SQL: Tutorial.

Transaction Logging

All ANSI-compliant databases on an INFORMIX-OnLine Dynamic Server
database server run with unbuffered transaction logging. Databases that are
not ANSI compliant can run with either buffered logging or unbuffered
logging. Unbuffered logging provides more comprehensive data recovery,
but buffered logging provides better performance.

For more information, see the description of CREATE DATABASE in Chapter 1
of the Informix Guide to SQL: Syntax.
Informix Databases 1-13

Differences Between ANSI-Compliant and Non-ANSI-Compliant Databases
Owner Naming

In an ANSI-compliant database, owner naming is enforced. When you supply
an object name in an SQL statement, ANSI standards require that the name
include the prefix owner., unless you are the owner of the object. The combi-
nation of owner and name must be unique in the database. If you are the
owner of the object, the database server supplies your user name as the
default.

Databases that are not ANSI compliant do not enforce owner naming.

For more information, see “Table Name” in Chapter 1 of the Informix Guide to
SQL: Syntax.

Privileges on Objects

ANSI-compliant databases and databases that are not ANSI compliant differ
as to which users are granted table-level privileges by default when a table in
a database is created. ANSI standards specify that the database server grants
only the table owner (as well as the DBA if they are not the same user) any
table-level privileges. In a database that is not ANSI compliant, however,
privileges are granted to PUBLIC. In addition, Informix provides two table-
level privileges, Alter and Index, that are not included in the ANSI standards.

For more information on granting table-level privileges, see Chapter 11 of the
Informix Guide to SQL: Tutorial and the description of the GRANT statement in
Chapter 1 of the Informix Guide to SQL: Syntax.

To run a stored procedure, you must have the Execute privilege for that
procedure. When you create an owner-privileged procedure for an
ANSI-compliant database, only the owner of the stored procedure has the
Execute privilege. When you create an owner-privileged procedure in a
database that is not ANSI compliant, the database server grants the Execute
privilege to public by default.

For more information on stored procedure privileges, see Chapter 12 of the
Informix Guide to SQL: Tutorial.
1-14 Informix Guide to SQL: Reference

Differences Between ANSI-Compliant and Non-ANSI-Compliant Databases
Default Isolation Level

The database isolation level specifies the degree to which your program is
isolated from the concurrent actions of other programs. The default isolation
level for all ANSI-compliant databases is Serializable. The default isolation
level for databases that are not ANSI compliant but do use logging is ANSI
Read Committed on an OnLine database server and Informix Dirty Read on
an INFORMIX-SE database server. The default isolation level in a database
that is not ANSI compliant and without logging is Read Uncommitted.

For more information, see Chapter 7 of the Informix Guide to SQL: Tutorial and
the description of the SET TRANSACTION and SET ISOLATION statements in
Chapter 1 of the Informix Guide to SQL: Syntax.

Character Data Types

In an ANSI-compliant database, you get an error if any character field (CHAR,
CHARACTER, VARCHAR, NCHAR, NVARCHAR, CHARACTER VARYING) is
filled with a string that is longer than the specified width of the field.

Decimal Data Type

In an ANSI-compliant database, no scale is used for the DECIMAL data type.
You can think of this as scale=0.

Escape Characters

In an ANSI-compliant database, escape characters can only escape the
following characters: percent (%) and underscore(_). An escape character can
also be used to escape itself. See the Condition segment in the Informix Guide
to SQL: Syntax for additional information.
Informix Databases 1-15

Differences Between ANSI-Compliant and Non-ANSI-Compliant Databases
Cursor Behavior

If a database is not ANSI compliant, you need to use the FOR UPDATE
keywords when you declare an update cursor for a SELECT statement. The
SELECT statement must also meet the following conditions:

■ It selects from a single table.

■ It does not include any aggregate functions.

■ It does not include the DISTINCT, GROUP BY, INTO TEMP, ORDER BY,
UNION, or UNIQUE clauses and keywords.

With an ANSI-compliant database, you do not have to explicitly use the FOR
UPDATE keywords when you declare a cursor. In ANSI-compliant databases,
all cursors that meet the restrictions described in the preceding list are poten-
tially UPDATE cursors. You can specify that a cursor is read-only with the FOR
READ ONLY keywords on the DECLARE statement.

For more information, see the description of the DECLARE statement in
Chapter 1 of the Informix Guide to SQL: Syntax.

The SQLCODE Field of the SQL Communications Area

If no rows satisfy the search criteria of a DELETE, an INSERT INTO tablename
SELECT, a SELECT...INTO TEMP, or an UPDATE statement, the database server
sets SQLCODE to 100 if the database is ANSI compliant and set SQLCODE to
0 if the database is not ANSI compliant.

For more information, see the descriptions of SQLCODE in Chapter 5 of the
Informix Guide to SQL: Tutorial.

SQL Statements Allowed with ANSI-Compliant Databases

No restrictions exist on SQL statements that are allowed in applications used
with an ANSI-compliant database. You can use the Informix extensions with
either an ANSI-compliant database or a database that is not ANSI compliant.

Synonym Behavior

Synonyms are always private in an ANSI-compliant database. If you attempt
to create a public synonym, or use the PRIVATE keyword to designate a
private synonym in an ANSI-compliant database, you receive an error.
1-16 Informix Guide to SQL: Reference

Using a Customized Language Environment for Your Database
Using a Customized Language Environment for Your
Database
With Global Language Support (GLS), Informix Version 7.2 products permit
the use of different locales. A GLS locale is an environment that has defined
conventions for a particular language or culture.

Tip: With this release, GLS replaces Native Language Support (NLS) and Asian
Language Support (ALS).

By default, Informix products use the U.S.-English ASCII code set and
perform in the U.S.-English environment with ASCII collation order. Set your
environment to accommodate a nondefault locale if you plan to use any of
the following functionalities:

■ Non-English characters in the data

■ User-specified object names

■ Conformity with the sorting and collation order of a non-ASCII code
set

■ Culture-specific collation and sorting orders, such as those used in
dictionaries or phone books

For descriptions of GLS environment variables and for detailed information
on implementing non-U.S. English environments, see the Guide to GLS
Functionality. ♦

GLS
Informix Databases 1-17

2
Chapter
System Catalog
Objects Tracked by the System Catalog Tables 2-3

Using the System Catalog 2-4
Accessing the System Catalog 2-10
Updating System Catalog Data 2-10

Structure of the System Catalog 2-11
SYSBLOBS . 2-12
SYSCHECKS 2-13
SYSCOLAUTH 2-14
SYSCOLDEPEND 2-15
SYSCOLUMNS 2-15
SYSCONSTRAINTS 2-19
SYSDEFAULTS 2-20
SYSDEPEND 2-21
SYSDISTRIB . 2-22
SYSFRAGAUTH 2-23
SYSFRAGMENTS 2-24
SYSINDEXES 2-26
SYSOBJSTATE 2-29
SYSOPCLSTR 2-30
SYSPROCAUTH 2-32
SYSPROCBODY 2-32
SYSPROCEDURES 2-34
SYSPROCPLAN 2-35
SYSREFERENCES 2-36
SYSROLEAUTH 2-37
SYSSYNONYMS 2-37
SYSSYNTABLE. 2-38
SYSTABAUTH 2-39
SYSTABLES . 2-40

2-2 Infor
SYSTRIGBODY 2-43
SYSTRIGGERS 2-44
SYSUSERS . 2-45
SYSVIEWS . 2-46
SYSVIOLATIONS 2-46

System Catalog Map 2-47

Information Schema 2-50
Generating the Information Schema Views 2-51
Accessing the Information Schema Views 2-51
Structure of the Information Schema Views 2-52

TABLES . 2-52
COLUMNS 2-53
SQL_LANGUAGES 2-54
SERVER_INFO. 2-55
mix Guide to SQL: Reference

The system catalog consists of tables that describe the structure of the
database. Each system catalog table contains specific information about an
element in the database.

This chapter covers the following topics:

■ How to access tables in the system catalog

■ How to update statistics in the system catalog

■ The structure, including the name and data type of each column, of
the tables that make up the system catalog

■ Information Schema views that are created from system catalog
information

Objects Tracked by the System Catalog Tables
The system catalog tables track the following objects:

■ Tables and constraints

■ Views

■ Triggers

■ Authorized users and privileges that are associated with every table
that you create

■ Stored procedures
System Catalog 2-3

Using the System Catalog
The system catalog tables are generated automatically when you create a
database, and you can query them as you would query any other table in the
database. If you use INFORMIX-OnLine Dynamic Server, the data for a newly
created database and the 29 system catalog tables for that database reside in
a common area of the disk called a dbspace. If you use INFORMIX-SE, the 27
system catalog tables for a newly created database reside in the
databasename.dbs directory. All tables in the system catalog have the prefix
sys (for example, the systables system catalog table).

Using the System Catalog
The database server accesses the system catalog constantly. Each time an SQL
statement is processed, the database server accesses the system catalog to
determine system privileges, add or verify table names or column names,
and so on. For example, the following CREATE SCHEMA block adds the
customer table, with its respective indexes and privileges, to the stores7
database. This block also adds a view, california, that restricts the view in the
customer table to only the first and last names of the customer, the company
name, and the phone number of all customers who reside in California.

CREATE SCHEMA AUTHORIZATION maryl
CREATE TABLE customer

(customer_num SERIAL(101), fname CHAR(15), lname CHAR(15), company CHAR(20),
address1 CHAR(20), address2 CHAR(20), city CHAR(15), state CHAR(2),
zipcode CHAR(5), phone CHAR(18))

GRANT ALTER, ALL ON customer TO cathl WITH GRANT OPTION AS maryl
GRANT SELECT ON CUSTOMER TO public
GRANT UPDATE (fname, lname, phone) ON customer TO nhowe
CREATE VIEW california AS

SELECT fname, lname, company, phone FROM customer WHERE state = 'CA'
CREATE UNIQUE INDEX c_num_ix ON customer (customer_num)
CREATE INDEX state_ix ON customer (state);
2-4 Informix Guide to SQL: Reference

Using the System Catalog
To process this CREATE SCHEMA block, the database server first accesses the
system catalog to verify the following information:

■ The new table and view names do not already exist in the database.
(If the database is ANSI compliant, the database server verifies that
the table and view names do not already exist for the specified
owners.)

■ The user has permission to create the tables and grant user
privileges.

■ The column names in the CREATE VIEW and CREATE INDEX
statements exist in the customer table.

In addition to verifying this information and creating two new tables, the
database server adds new rows to the following system catalog tables:

■ systables

■ syscolumns

■ sysviews

■ systabauth

■ syscolauth

■ sysindexes
System Catalog 2-5

Using the System Catalog
The following two new rows of information are added to the systables
system catalog table after the CREATE SCHEMA block shown on page 2-4 is
run.

Each table recorded in the systables system catalog table is assigned a tabid,
a system-assigned sequential ID number that uniquely identifies each table in
the database. The system catalog tables receive tabid numbers 1 through 24,
and the user-created tables receive tabid numbers beginning with 100.

tabname customer
owner maryl
partnum 16778361
tabid 101
rowsize 134
ncols 10
nindexes 2
nrows 0
created 04/26/1994
version 1
tabtype T
locklevel P
npused 0
fextsize 16
nextsize 16
flags 0
site
dbname

tabname california
owner maryl
partnum 0
tabid 102
rowsize 134
ncols 4
nindexes 0
nrows 0
created 04/26/1994
version 0
tabtype V
locklevel B
npused 0
fextsize 0
nextsize 0
flags 0
site
dbname
2-6 Informix Guide to SQL: Reference

Using the System Catalog
The CREATE SCHEMA block adds 14 rows to the syscolumns system catalog
table. These rows correspond to the columns in the table customer and the
view california, as shown in the following example.

In the syscolumns system catalog table, each column within a table is
assigned a sequential column number, colno, that uniquely identifies the
column within its table. In the colno column, the fname column of the
customer table is assigned the value 2 and the fname column of the view
california is assigned the value 1. The colmin and colmax columns contain
no entries. These two columns contain values when a column is the first key
in a composite index or is the only key in the index, has no null or duplicate
values, and the UPDATE STATISTICS statement has been run.

The rows shown in the following example are added to the sysviews system
catalog table. These rows correspond to the CREATE VIEW portion of the
CREATE SCHEMA block:

colname tabid colno coltype collength colmin colmax

customer_num 101 1 262 4
fname 101 2 0 15
lname 101 3 0 15
company 101 4 0 20
address1 101 5 0 20
address2 101 6 0 20
city 101 7 0 15
state 101 8 0 2
zipcode 101 9 0 5
phone 101 10 0 18

fname 102 1 0 15
lname 102 2 0 15
company 102 3 0 20
phone 102 4 0 18

tabidseqviewtext

102 0 create view 'maryl'.california (customer_num, fname, lname, company
102 1 ,address1, address2, city, state,zipcode,phone) as select x0.custom
102 2 er_num, x0.fname, x0.lname, x0.company, x0.address1, x0.address2
102 3 ,x0.city, x0.state, x0.zipcode, x0.phone from 'maryl'.customer
102 4 x0 where (x0.state = 'CA');
System Catalog 2-7

Using the System Catalog
The sysviews system catalog table contains the CREATE VIEW statement that
creates the view. Each line of the CREATE VIEW statement in the current
schema is stored in this table. In the viewtext column, the x0 that precedes the
column names in the statement (for example, x0.fname) operates as an alias
name that distinguishes among the same columns that are used in a self-join.

The CREATE SCHEMA block also adds rows to the systabauth system catalog
table. These rows correspond to the user privileges granted on customer and
california tables, as shown in the following example.

The tabauth column of this table specifies the table-level privileges granted
to users on the customer and california tables. This column uses an 8-byte
pattern—s (select), u (update), * (column-level privilege), i (insert), d
(delete), x (index), a (alter), r (references)—to identify the type of privilege.
In this example, the user nhowe has column-level privileges on the customer
table.

If the tabauth privilege code is uppercase (for example, S for select), the user
who is granted this privilege can also grant it to others. If the tabauth
privilege code is lowercase (for example, s for select), the user who has this
privilege cannot grant it to others.

In addition, three rows are added to the syscolauth system catalog table.
These rows correspond to the user privileges that are granted on specific
columns in the customer table, as shown in the following example.

grantor grantee tabid tabauth

maryl public 101 su-idx--
maryl cathl 101 SU-IDXAR
maryl nhowe 101 --*-----

maryl 102 SU-ID---

grantor grantee tabid colno colauth

maryl nhowe 101 2 -u-
maryl nhowe 101 3 -u-
maryl nhowe 101 10 -u-
2-8 Informix Guide to SQL: Reference

Using the System Catalog
The colauth column specifies the column-level privileges that are granted on
the customer table. This column uses a 3-byte pattern—s (select), u (update),
r (references)—to identify the type of privilege. For example, the user nhowe
has update privileges on the second column (because the colno value is 2) of
the customer table (indicated by tabid value of 101).

The CREATE SCHEMA block adds two rows to the sysindexes system catalog
table. These rows correspond to the indexes created on the customer table, as
shown in the following example.

In this table, the idxtype column identifies whether the created index is
unique or a duplicate. For example, the index c_num_ix that is placed on the
customer_num column of the customer table is unique.

idxname c_num_ix state_ix
owner maryl maryl
tabid 101 101
idxtype U D
clustered
part1 1 8
part2 0 0
part3 0 0
part4 0 0
part5 0 0
part6 0 0
part7 0 0
part8 0 0
part9 0 0
part10 0 0
part11 0 0
part12 0 0
part13 0 0
part14 0 0
part15 0 0
part16 0 0
levels
leaves
nunique
clust
System Catalog 2-9

Accessing the System Catalog
Accessing the System Catalog
Normal user access to the system catalog is read only. Users with the Connect
or Resource privileges cannot alter the system catalog. They can, however,
access data in the system catalog tables on a read-only basis using standard
SELECT statements. For example, the following SELECT statement displays all
the table names and corresponding table ID numbers of user-created tables in
the database:

SELECT tabname, tabid FROM systables WHERE tabid > 99

Warning: Although user informix and DBAs can modify most system catalog tables
(only user informix can modify systables), Informix strongly recommends that you
do not update, delete, or insert any rows in them. Modifying the system catalog tables
can destroy the integrity of the database. Informix supports using the ALTER TABLE
statement to modify the size of the next extent of system catalog tables.

Updating System Catalog Data
The fact that the optimizer in Informix database servers determines the most
efficient strategy for executing SQL queries allows you to query the database
without having to fully consider which tables to search first in a join or which
indexes to use. The optimizer uses information from the system catalog to
determine the best query strategy.

By using the UPDATE STATISTICS statement to update the system catalog, you
can ensure that the information provided to the optimizer is current. When
you delete or modify a table, the database server does not automatically
update the related statistical data in the system catalog. For example, if you
delete rows in a table using the DELETE statement, the nrows column in the
systables system catalog table, which holds the number of rows for that
table, is not updated. The UPDATE STATISTICS statement causes the database
server to recalculate data in the systables, sysdistrib, syscolumns, and
sysindexes system catalog tables. After you run UPDATE STATISTICS, the
systables system catalog table holds the correct value in the nrows column.
If you use the medium or high mode with the UPDATE STATISTICS statement,
the sysdistrib system catalog table holds the updated data-distribution data
after you run UPDATE STATISTICS.
2-10 Informix Guide to SQL: Reference

Structure of the System Catalog
Whenever you modify a table extensively, use the UPDATE STATISTICS
statement to update data in the system catalog. For more information on the
UPDATE STATISTICS statement, see Chapter 1 of the Informix Guide to SQL:
Syntax.

Structure of the System Catalog
The following system catalog tables describe the structure of the Informix
database:

■ sysblobs

■ syschecks

■ syscolauth

■ syscoldepend

■ syscolumns

■ sysconstraints

■ sysdefaults

■ sysdepend

■ sysdistrib

■ sysfragauth

■ sysfragments

■ sysindexes

■ sysobjstate

■ sysopclstr

■ sysprocauth

■ sysprocbody

■ sysprocedures

■ sysprocplan

■ sysreferences

■ sysroleauth

■ syssynonyms

■ syssyntable
System Catalog 2-11

SYSBLOBS
■ systabauth

■ systables

■ systrigbody

■ systriggers

■ sysusers

■ sysviews

■ sysviolations

Do not confuse the system catalog tables of a database with the tables in the
sysmaster database of OnLine database servers. The sysmaster tables also
start with the sys prefix, but they contain information about an entire OnLine
database server, which might manage many databases. The information in
the sysmaster tables is primarily useful for OnLine DBAs. For more infor-
mation about the sysmaster tables, see the INFORMIX-OnLine Dynamic
Server Administrator’s Guide.

In a database whose collation order is locale dependent, all character infor-
mation in the system catalog tables is stored in NCHAR rather than CHAR
columns. However, for those databases where the collation order is code-set
dependent, all character information in the system catalog tables is stored in
CHAR columns. For more information on collation orders, see Chapter 1 of
the Guide to GLS Functionality. For information about NCHAR and CHAR data
types, see Chapter 3 of the Guide to GLS Functionality and Chapter 3 of this
guide.♦

SYSBLOBS
The sysblobs system catalog table specifies the storage location of a blob
column. It contains one row for each blob column in a table. Available only in
OnLine, the sysblobs system catalog table has the columns shown in the
following table.

GLS
2-12 Informix Guide to SQL: Reference

SYSCHECKS
A composite index for the tabid and colno columns allows only unique
values.

SYSCHECKS
The syschecks system catalog table describes each check constraint defined
in the database. Because the syschecks system catalog table stores both the
ASCII text and a binary encoded form of the check constraint, it contains
multiple rows for each check constraint. The syschecks system catalog table
has the columns shown in the following table.

A composite index for the constrid, type, and seqno columns allows only
unique values.

Column Name Type Explanation

spacename NCHAR(18) Blobspace, dbspace, or family name

type NCHAR(1) Media type:

M = Magnetic

O = Optical

tabid INTEGER Table identifier

colno SMALLINT Column number

Column Name Type Explanation

constrid INTEGER Constraint identifier

type NCHAR(1) Form in which the check constraint is stored:

B = Binary encoded

T = ASCII text

seqno SMALLINT Line number of the check constraint

checktext NCHAR(32) Text of the check constraint
System Catalog 2-13

SYSCOLAUTH
The text in the checktext column associated with B type in the type column
is in computer-readable format. To view the text associated with a particular
check constraint, use the following query with the appropriate constraint ID:

SELECT * FROM syschecks WHERE constrid=10 AND type='T'

Each check constraint described in the syschecks system catalog table also
has its own row in the sysconstraints system catalog table.

SYSCOLAUTH
The syscolauth system catalog table describes each set of privileges granted
on a column. It contains one row for each set of column privileges granted in
the database. The syscolauth system catalog table has the columns shown in
the following table.

If the colauth privilege code is uppercase (for example, S for select), a user
who has this privilege can also grant it to others. If the colauth privilege code
is lowercase (for example, s for select), the user who has this privilege cannot
grant it to others.

A composite index for the tabid, grantor, grantee, and colno columns allows
only unique values. A composite index for the tabid and grantee columns
allows duplicate values.

Column Name Type Explanation

grantor NCHAR(8) Grantor of privilege

grantee NCHAR(8) Grantee (receiver) of privilege

tabid INTEGER Table identifier

colno SMALLINT Column number

colauth NCHAR(3) 3-byte pattern that specifies column privileges:

s = Select

u = Update

r = References
2-14 Informix Guide to SQL: Reference

SYSCOLDEPEND
SYSCOLDEPEND
The syscoldepend system catalog table tracks the table columns specified in
check and not null constraints. Because a check constraint can involve more
than one column in a table, the syscoldepend table can contain multiple rows
for each check constraint. One row is created in the syscoldepend table for
each column involved in the constraint. The syscoldepend system catalog
table has the columns shown in the following table.

A composite index for the constrid, tabid, and colno columns allows only
unique values. A composite index for the tabid and colno columns allows
duplicate values.

SYSCOLUMNS
The syscolumns system catalog table describes each column in the database.
One row exists for each column that is defined in a table or view. If you use
OnLine, the syscolumns system catalog table has the columns shown in the
following table.

Column Name Type Explanation

constrid INTEGER Constraint identifier

tabid INTEGER Table identifier

colno SMALLINT Column number

Column Name Type Explanation

colname NCHAR(18) Column name

tabid INTEGER Table identifier

colno SMALLINT Column number sequentially assigned by the
system (from left to right within each table)

 (1 of 2)
System Catalog 2-15

SYSCOLUMNS
A composite index for the tabid and colno columns allows only unique
values.

If the coltype column contains a value greater than 256, it does not allow null
values. To determine the data type for a coltype column that contains a value
greater than 256, subtract 256 from the value and evaluate the remainder,
based on the possible coltype values. For example, if a column has a coltype
value of 262, subtracting 256 from 262 leaves a remainder of 6, which
indicates that this column uses a SERIAL data type.

The value that the collength column holds depends on the data type of the
column. If the data type of the column is BYTE or TEXT, collength holds the
length of the descriptor. A collength value for a MONEY or DECIMAL column
is determined using the following formula:

(precision * 256) + scale

coltype SMALLINT Code for column data type:

0 = NCHAR 8 = MONEY

1 = SMALLINT 10 = DATETIME

2 = INTEGER 11 = BYTE

3 = FLOAT 12 = TEXT

4 = SMALLFLOAT 13 = NVARCHAR

5 = DECIMAL 14 = INTERVAL

6 = SERIAL 15 = NCHAR

7 = DATE 16 = NVARCHAR

collength SMALLINT Column length (in bytes)

colmin INTEGER Second minimum value

colmax INTEGER Second maximum value

Column Name Type Explanation

 (2 of 2)
2-16 Informix Guide to SQL: Reference

SYSCOLUMNS
For columns of type NVARCHAR, the max_size and min_space values are
encoded in the collength column using one of the following formulas:

■ If the collength value is positive:
collength = (min_space * 256) + max_size

■ If the collength value is negative:
collength + 65536 = (min_space * 256) + max_size

For columns of type DATETIME or INTERVAL, collength is determined using
the following formula:

(length * 256) + (largest_qualifier_value * 16) + smallest_qualifier_value

The length is the physical length of the DATETIME or INTERVAL field, and
largest_qualifier and smallest_qualifier have the values shown in the following
table.

For example, if a DATETIME YEAR TO MINUTE column has a length of 12
(such as YYYY:DD:MM:HH:MM), a largest_qualifier value of 0 (for YEAR), and a
smallest_qualifier value of 8 (for MINUTE), the collength value is 3080, or
(256 * 12) + (0 * 16) + 8.

Field Qualifier Value

YEAR 0

MONTH 2

DAY 4

HOUR 6

MINUTE 8

SECOND 10

FRACTION(1) 11

FRACTION(2) 12

FRACTION(3) 13

FRACTION(4) 14

FRACTION(5) 15
System Catalog 2-17

SYSCOLUMNS
For information about using the HEX function to display the collength and
coltype values, see the Column Expression discussion in the Expression
segment in Chapter 1 of the Informix Guide to SQL: Syntax.

The colmin and colmax column values hold the second-smallest and second-
largest data values in the column, respectively. For example, if the values in
an indexed column are 1, 2, 3, 4, and 5, the colmin value is 2 and the colmax
value is 4. Storing the second-smallest and second-largest data values lets the
database server make assumptions about the range of values in a given
column and, in turn, further optimize searching strategies. The colmin and
colmax columns contain values only if the column is indexed and you have
run the UPDATE STATISTICS statement. If you store BYTE or TEXT data in the
tblspace, the colmin value is -1. The values for all other noninteger column
types are the initial 4 bytes of the maximum or minimum value, which are
treated as an integer.

If you are using INFORMIX-SE, the syscolumns system catalog table has the
columns shown in the following table.

Column Name Type Explanation

colname NCHAR(18) Column name

tabid INTEGER Table identifier

colno SMALLINT Column number sequentially assigned by the sys-
tem (ordinally from left to right within each table)

coltype SMALLINT Code for column data type:

0 = NCHAR 6 = SERIAL

1 = SMALLINT 7 = DATE

2 = INTEGER 8 = MONEY

3 = FLOAT 10 = DATETIME

4 = SMALLFLOAT 14 = INTERVAL

5 = DECIMAL 15 = NCHAR

collength SMALLINT Column length (in bytes)
2-18 Informix Guide to SQL: Reference

SYSCONSTRAINTS
A composite index for the tabid and colno columns allows only unique
values.

SYSCONSTRAINTS
The sysconstraints system catalog table lists the constraints placed on the
columns in each database table. An entry is also placed in the sysindexes
system catalog table for each unique primary key or referential constraint
that you create, if the constraint does not already have a corresponding entry
in the sysindexes system catalog table. Because indexes can be shared, more
than one constraint can be associated with an index. The sysconstraints
system catalog table has the columns shown in the following table.

:

A composite index for the constrname and owner columns allows only
unique values. The index for the tabid column allows duplicate values, and
the index for the constrid column allows only unique values.

Column Name Type Explanation

constrid SERIAL System-assigned sequential identifier

constrname NCHAR(18) Constraint name

owner NCHAR(8) User name of owner

tabid INTEGER Table identifier

constrtype NCHAR(1) Constraint type:

C = Check constraint

P = Primary key

R = Referential

U = Unique

N = Not null

idxname NCHAR(18) Index name
System Catalog 2-19

SYSDEFAULTS
For check constraints (where constrtype = C), the idxname is always null.
Additional information about each check constraint is contained in the
syschecks system catalog table.

SYSDEFAULTS
The sysdefaults system catalog table lists the user-defined defaults that are
placed on each column in the database. One row exists for each user-defined
default value. If a default is not explicitly specified in the CREATE TABLE
statement, no entry exists in this table. The sysdefaults system catalog table
has the columns shown in the following table.

If a literal is specified for the default value, it is stored in the default column
as ASCII text. If the literal value is not of type NCHAR, the default column
consists of two parts. The first part is the 6-bit representation of the binary
value of the default value structure. The second part is the default value in
English text. The two parts are separated by a space.

Column Name Type Explanation

tabid INTEGER Table identifier

colno SMALLINT Column identifier

type NCHAR(1) Default type:

L = Literal default

U = User

C = Current

N = Null

T = Today

S = Dbservername

default NCHAR(256) If default type = L, the literal default value
2-20 Informix Guide to SQL: Reference

SYSDEPEND
If the data type of the column is not NCHAR or NVARCHAR, a binary
representation is encoded in the default column.

A composite index for both the tabid and colno columns allows only unique
values.

SYSDEPEND
The sysdepend system catalog table describes how each view or table
depends on other views or tables. One row exists in this table for each depen-
dency, so a view based on three tables has three rows. The sysdepend system
catalog table has the columns shown in the following table.

The btabid and dtabid columns are indexed and allow duplicate values.

Column Name Type Explanation

btabid INTEGER Table identifier of base table or view

btype NCHAR(1) Base object type:

T = Table

V = View

dtabid INTEGER Table identifier of dependent table

dtype NCHAR(1) Dependent object type (V = View); currently, only
view is implemented
System Catalog 2-21

SYSDISTRIB
SYSDISTRIB
The sysdistrib system catalog table stores data-distribution information for
use by the database server. Data distributions provide detailed table column
information to the optimizer to improve the choice of execution paths of SQL
SELECT statements. Information is stored in the sysdistrib table when an
UPDATE STATISTICS statement with mode MEDIUM or HIGH is run for a table.
The sysdistrib system catalog table has the columns shown in the following
table.

You can select any column from sysdistrib except encdat. User informix can
select the encdat column.

Column Name Type Explanation

tabid INTEGER Table identifier of the table where data was
gathered

colno SMALLINT Column number in the source table

seqno INTEGER Sequence number for multiple entries

constructed DATE Date when the data distribution was created

mode NCHAR(1) Optimization level:

L = Low

M = Medium

H = High

resolution FLOAT Specified in the UPDATE STATISTICS statement

confidence FLOAT Specified in the UPDATE STATISTICS statement

encdat NCHAR(256) ASCII-encoded histogram in fixed-length
character field; accessible only to user informix.
2-22 Informix Guide to SQL: Reference

SYSFRAGAUTH
SYSFRAGAUTH
The sysfragauth system catalog table stores information about the privileges
that are granted on table fragments. The sysfragauth system catalog table has
the columns shown in the following table.

If a code in the fragauth column is lowercase, the grantee cannot grant the
privilege to other users. If a code in the fragauth column is uppercase, the
grantee can grant the privilege to other users.

A composite index for the tabid, grantor, grantee, and fragment columns
allows only unique values. A composite index on the tabid and grantee
columns allows duplicate values.

Column Name Type Explanation

grantor NCHAR(8) Grantor of privilege

grantee NCHAR(8) Grantee (receiver) of privilege

tabid INTEGER Table identifier of the table that contains the frag-
ment named in the fragment column.

fragment NCHAR(18) Name of dbspace where fragment is stored. Identi-
fies the fragment on which privileges are granted.

fragauth NCHAR(6) A 6-byte pattern that specifies fragment-level priv-
ileges (including 3 bytes reserved for future use).
This pattern contains one or more of the following
codes:

u = Update

i = Insert

d = Delete
System Catalog 2-23

SYSFRAGMENTS
The following example displays the fragment-level privileges for one base
table, as they appear in the sysfragauth system catalog table. The grantee ted
can grant the UPDATE, DELETE, and INSERT privileges to other users.

SYSFRAGMENTS
Available only for OnLine, the sysfragments table stores fragmentation
information for tables and indexes. One row exists for each table or index
fragment.

The sysfragments table has the following columns:

grantor grantee tabid fragment fragauth

dba dick 101 dbsp1 -ui---

dba jane 101 dbsp3 --i---

dba mary 101 dbsp4 --id--

dba ted 101 dbsp2 -UID--

Column Name Type Explanation

fragtype NCHAR(1) Fragment type:

I = Index

T = Table

tabid INTEGER Table identifier

indexname NCHAR(18) Index identifier

colno SMALLINT Blob column identifier

partn INTEGER Physical location identifier

strategy NCHAR(1) Distribution scheme type:

R = Round robin

E = Expression

 (1 of 2)
2-24 Informix Guide to SQL: Reference

SYSFRAGMENTS
The strategy type T is used for attached indexes (where index fragmentation
is the same as the table fragmentation).

T = Table-based

location NCHAR(1) Reserved for future use; shows L for local

servername NCHAR(18) Reserved for future use

evalpos INTEGER Position of fragment in the fragmentation list

exprtext TEXT Expression that was entered

exprbin BYTE Binary version of expression

exprarr BYTE Range partitioning data used to optimize
expression in range-expression fragmentation
strategy

flags INTEGER Internally used

dbspace NCHAR(18) Dbspacename for fragment

levels SMALLINT Number of B+ tree index levels

npused INTEGER For table fragmentation strategy this is the number
of data pages; for index fragmentation strategy
this is the number of leaf pages

nrows INTEGER For tables this is the number of rows in the
fragment; for indexes this is the number of unique
keys

clust INTEGER Degree of index clustering; smaller numbers
correspond to greater clustering

Column Name Type Explanation

 (2 of 2)
System Catalog 2-25

SYSINDEXES
SYSINDEXES
The sysindexes system catalog table describes the indexes in the database. It
contains one row for each index that is defined in the database. The
sysindexes system catalog table for the OnLine database server has the
columns shown in the following table.

Column Name Type Explanation

idxname NCHAR(18) Index name

owner NCHAR(8) Owner of index (user informix for system catalog
tables and user name for database tables)

tabid INTEGER Table identifier

idxtype NCHAR(1) Index type:

U = Unique

D = Duplicates

clustered NCHAR(1) Clustered or nonclustered index (C = Clustered)

part1 SMALLINT Column number (colno) of a single index or the
1st component of a composite index

part2 SMALLINT 2nd component of a composite index

part3 SMALLINT 3rd component of a composite index

part4 SMALLINT 4th component of a composite index

part5 SMALLINT 5th component of a composite index

part6 SMALLINT 6th component of a composite index

part7 SMALLINT 7th component of a composite index

part8 SMALLINT 8th component of a composite index

part9 SMALLINT 9th component of a composite index

part10 SMALLINT 10th component of a composite index

part11 SMALLINT 11th component of a composite index

 (1 of 2)
2-26 Informix Guide to SQL: Reference

SYSINDEXES
Changes that affect existing indexes are reflected in this table only after you
run the UPDATE STATISTICS statement.

Each partnth column component of a composite index (the part1 through
part16 columns in this table) holds the column number (colno) of each part
of the 16 possible parts of a composite index. If the component is ordered in
descending order, the colno is entered as a negative value.

The clust column is blank until the UPDATE STATISTICS statement is run on
the table. The maximum value is the number of rows in the table, and the
minimum value is the number of data pages in the table.

The tabid column is indexed and allows duplicate values. A composite index
for the idxname, owner, and tabid columns allows only unique values.

part12 SMALLINT 12th component of a composite index

part13 SMALLINT 13th component of a composite index

part14 SMALLINT 14th component of a composite index

part15 SMALLINT 15th component of a composite index

part16 SMALLINT 16th component of a composite index

levels SMALLINT Number of B+ tree levels

leaves INTEGER Number of leaves

nunique INTEGER Number of unique keys in the first column

clust INTEGER Degree of clustering: smaller numbers corre-
spond to greater clustering

Column Name Type Explanation

 (2 of 2)
System Catalog 2-27

SYSINDEXES
If you use SE, the sysindexes system catalog table has the columns shown in
the following table.

Each partnth column component of a composite index (the part1 through
part8 columns in this table) holds the column number (colno) of each part of
the eight possible parts of an index.

The tabid column is indexed and allows duplicate values. A composite index
for the idxname and tabid columns allows only unique values.

Column Name Type Explanation

idxname NCHAR(18) Index name

owner NCHAR(8) Owner of index (user informix for system tables
and user name for database tables)

tabid INTEGER Table identifier

idxtype NCHAR(1) Index type:

U = Unique

D = Duplicates

clustered NCHAR(1) Clustered or nonclustered index (C = Clustered)

part1 SMALLINT Column number (colno) of a single index or the
1st component of a composite index

part2 SMALLINT 2nd component of a composite index

part3 SMALLINT 3rd component of a composite index

part4 SMALLINT 4th component of a composite index

part5 SMALLINT 5th component of a composite index

part6 SMALLINT 6th component of a composite index

part7 SMALLINT 7th component of a composite index

part8 SMALLINT 8th component of a composite index
2-28 Informix Guide to SQL: Reference

SYSOBJSTATE
SYSOBJSTATE
The sysobjstate system catalog table stores information about the state
(object mode) of database objects. The types of database objects listed in this
table are indexes, triggers, and constraints.

Every index, trigger, and constraint in the database has a corresponding row
in the sysobjstate table if a user created the object. Indexes that the database
server created on the system catalog tables are not listed in the sysobjstate
table because their object mode cannot be changed.

The sysobjstate system catalog table has the columns shown in the following
table.

A composite index for the objtype, name, owner, and tabid columns allows
only unique values.

Column Name Type Explanation

objtype NCHAR(1) The type of database object. This column has one of
the following codes:

C = Constraint

I = Index

T = Trigger

owner NCHAR(8) The owner of the database object

name NCHAR(18) The name of the database object

tabid INTEGER Table identifier of the table on which the database
object is defined

state NCHAR(1) The current state (object mode) of the database
object. This column has one of the following codes:

D = Disabled

E = Enabled

F = Filtering, with no integrity-violation errors

G = Filtering, with integrity-violation errors
System Catalog 2-29

SYSOPCLSTR
SYSOPCLSTR
The sysopclstr system catalog table defines each optical cluster in the
database. Available for OnLine only, it contains one row for each optical
cluster. The sysopclstr system catalog table has the columns shown in the
following table.

Column Name Type Explanation

owner NCHAR(8) Owner of the cluster

clstrname NCHAR(18) Name of the cluster

clstrsize INTEGER Size of the cluster

tabid INTEGER Table identifier

blobcol1 SMALLINT Blob column number 1

blobcol2 SMALLINT Blob column number 2

blobcol3 SMALLINT Blob column number 3

blobcol4 SMALLINT Blob column number 4

blobcol5 SMALLINT Blob column number 5

blobcol6 SMALLINT Blob column number 6

blobcol7 SMALLINT Blob column number 7

blobcol8 SMALLINT Blob column number 8

blobcol9 SMALLINT Blob column number 9

blobcol10 SMALLINT Blob column number 10

blobcol11 SMALLINT Blob column number 11

blobcol12 SMALLINT Blob column number 12

blobcol13 SMALLINT Blob column number 13

blobcol14 SMALLINT Blob column number 14

blobcol15 SMALLINT Blob column number 15

 (1 of 2)
2-30 Informix Guide to SQL: Reference

SYSOPCLSTR
A composite index for both the clstrname and owner columns allows only
unique values. The tabid column allows duplicate values.

blobcol16 SMALLINT Blob column number 16

clstrkey1 SMALLINT Cluster key number 1

clstrkey2 SMALLINT Cluster key number 2

clstrkey3 SMALLINT Cluster key number 3

clstrkey4 SMALLINT Cluster key number 4

clstrkey5 SMALLINT Cluster key number 5

clstrkey6 SMALLINT Cluster key number 6

clstrkey7 SMALLINT Cluster key number 7

clstrkey8 SMALLINT Cluster key number 8

clstrkey9 SMALLINT Cluster key number 9

clstrkey10 SMALLINT Cluster key number 10

clstrkey11 SMALLINT Cluster key number 11

clstrkey12 SMALLINT Cluster key number 12

clstrkey13 SMALLINT Cluster key number 13

clstrkey14 SMALLINT Cluster key number 14

clstrkey15 SMALLINT Cluster key number 15

clstrkey16 SMALLINT Cluster key number 16

Column Name Type Explanation

 (2 of 2)
System Catalog 2-31

SYSPROCAUTH
SYSPROCAUTH
The sysprocauth table describes the privileges granted on a procedure. It
contains one row for each set of privileges that are granted. The sysprocauth
system catalog table has the columns shown in the following table.

A composite index for the procid, grantor, and grantee columns allows only
unique values. The composite index for the procid and grantee columns
allows duplicate values.

SYSPROCBODY
The sysprocbody system catalog table describes the compiled version of each
stored procedure in the database. Because the sysprocbody system catalog
table stores the text of the procedure, each procedure can have multiple rows.
The sysprocbody system catalog table has the columns shown in the
following table.

Column Name Type Explanation

grantor NCHAR(8) Grantor of procedure

grantee NCHAR(8) Grantee (receiver) of procedure

procid INTEGER Procedure identifier

procauth NCHAR(1) Type of procedure permission granted:

e = Execute permission on procedure

E = Execute permission and the ability to grant
it to others
2-32 Informix Guide to SQL: Reference

SYSPROCBODY
:

Although the datakey column indicates the type of data that is stored, the
data column contains the actual data, which can be one of the following
types: the encoded return values list, the encoded symbol table, constant
data, compiled code for the procedure, or the text of the procedure and its
documentation.

A composite index for the procid, datakey, and seqno columns allows only
unique values.

Column Name Type Explanation

procid INTEGER Procedure identifier

datakey NCHAR(1) Data-descriptor type:

D = User document text

T = Actual procedure source

R = Return value type list

S = Procedure symbol table

L = Constant procedure data string (that is, lit-
eral numbers or quoted strings)

P = Interpreter instruction code

seqno INTEGER Line number of the procedure

data NCHAR(256) Actual text of the procedure
System Catalog 2-33

SYSPROCEDURES
SYSPROCEDURES
The sysprocedures system catalog table lists the characteristics for each
stored procedure in the database. It contains one row for each procedure. The
sysprocedures system catalog table has the columns shown in the following
table.

A composite index for the procname and owner columns allows only unique
values.

A database server can create special-purpose protected stored procedures for
internal use. The sysprocedures table identifies these protected procedures
with the letter P in the mode column. You cannot modify or drop protected
stored procedures or display them through dbschema.

Column Name Type Explanation

procname NCHAR(18) Procedure name

owner NCHAR(8) Owner name

procid SERIAL Procedure identifier

mode NCHAR(1) Mode type:

D = DBA

O = Owner

P = Protected

retsize INTEGER Compiled size (in bytes) of values

symsize INTEGER Compiled size (in bytes) of symbol table

datasize INTEGER Compiled size (in bytes) constant data

codesize INTEGER Compiled size (in bytes) of procedure instruction
code

numargs INTEGER Number of procedure arguments
2-34 Informix Guide to SQL: Reference

SYSPROCPLAN
SYSPROCPLAN
The sysprocplan system catalog table describes the query-execution plans
and dependency lists for data-manipulation statements within each stored
procedure. Because different parts of a procedure plan can be created on
different dates, the table can contain multiple rows for each procedure. The
sysprocplan system catalog table has the columns shown in the following
table.

A composite index for the procid, planid, datakey, and seqno columns
allows only unique values.

Column Name Type Explanation

procid INTEGER Procedure identifier

planid INTEGER Plan identifier

datakey NCHAR(1) Identifier procedure plan part:

D = Dependency list

Q = Execution plan

seqno INTEGER Line number of plan

created DATE Date plan created

datasize INTEGER Size (in bytes) of the list or plan

data NCHAR(256) Encoded (compiled) list or plan
System Catalog 2-35

SYSREFERENCES
SYSREFERENCES
The sysreferences system catalog table lists the referential constraints that
are placed on columns in the database. It contains a row for each referential
constraint in the database. The sysreferences table has the columns shown in
the following table.

The constrid column is indexed and allows only unique values. The primary
column is indexed and allows duplicate values. If you use SE, the contents of
the delrule column are reserved.

Column Name Type Explanation

constrid INTEGER Constraint identifier

primary INTEGER Constraint identifier of the corresponding
primary key

ptabid INTEGER Table identifier of the primary key

updrule NCHAR(1) Reserved for future use; displays an R

delrule NCHAR(1) Displays cascading delete or restrict rule:

C = Cascading delete

R = Restrict (default)

matchtype NCHAR(1) Reserved for future use; displays an N

pendant NCHAR(1) Reserved for future use; displays an N
2-36 Informix Guide to SQL: Reference

SYSROLEAUTH
SYSROLEAUTH
The sysroleauth system catalog table describes the roles that are granted to
users. It contains one row for each role that is granted to a user in the
database. The sysroleauth system catalog table has the columns shown in the
following table.

The rolename and grantee columns are indexed and allow only unique
values. The is_grantable column indicates whether the role was granted with
the WITH GRANT OPTION on the GRANT statement.

SYSSYNONYMS
The syssynonyms system catalog table lists the synonyms for each table or
view. It contains a row for every synonym defined in the database. The
syssynonyms system catalog table has the columns shown in the following
table.

Column Name Type Explanation

rolename NCHAR(user-
size)

Name of the role

grantee NCHAR(user-
size)

Grantee (receiver) of role

is_grantable NCHAR(1) Specifies whether the role is grantable:

Y = Grantable

N = Not grantable

Column Name Type Explanation

owner NCHAR(8) User name of owner

synname NCHAR(18) Synonym identifier

created DATE Date synonym created

tabid INTEGER Table identifier
System Catalog 2-37

SYSSYNTABLE
A composite index for the owner and synonym columns allows only unique
values. The tabid column is indexed and allows duplicate values.

Important: Informix Version 4.0 or later products no longer use this table; however,
any syssynonyms entries made before Version 4.0 remain in this table.

SYSSYNTABLE
The syssyntable system catalog table outlines the mapping between each
synonym and the object it represents. It contains one row for each entry in the
systables table that has a tabtype of S. The syssyntable system catalog table
has the columns shown in the following table.

If you define a synonym for a table that is in your current database, only the
tabid and btabid columns are used. If you define a synonym for a table that
is external to your current database, the btabid column is not used; but the
tabid, servername, dbname, owner, and tabname columns are used.

The tabid column maps to the tabid column in systables. With the tabid
information, you can determine additional facts about the synonym from
systables.

An index for the tabid column allows only unique values. The btabid column
is indexed to allow duplicate values.

If you are using SE, only the tabid and btabid columns are used.

Column Name Type Explanation

tabid INTEGER Table identifier

servername NCHAR(18) Server name

dbname NCHAR(18) Database name

owner NCHAR(8) User name of owner

tabname NCHAR(18) Name of table

btabid INTEGER Table identifier of base table or view
2-38 Informix Guide to SQL: Reference

SYSTABAUTH
SYSTABAUTH
The systabauth system catalog table describes each set of privileges that are
granted in a table. It contains one row for each set of table privileges that are
granted in the database. The systabauth system catalog table has the
columns shown in the following table.

If the tabauth privilege code is uppercase (for example, S for select), a user
who has this privilege also can grant it to others. If the tabauth privilege code
is lowercase (for example, s for select), the user who has this privilege cannot
grant it to others.

A composite index for the tabid, grantor, and grantee columns allows only
unique values. The composite index for the tabid and grantee columns
allows duplicate values.

Column Name Type Explanation

grantor NCHAR(8) Grantor of privilege

grantee NCHAR(8) Grantee (receiver) of privilege

tabid INTEGER Table identifier

tabauth NCHAR(8) 8-byte pattern that specifies table privileges:

s = Select

u = Update

* = Column-level authority

i = Insert

d = Delete

x = Index

a = Alter

r = References
System Catalog 2-39

SYSTABLES
SYSTABLES
The systables system catalog table describes each table in the database. It
contains one row for each table, view, or synonym that is defined in the
database. This includes all database tables and the system catalog tables. If
you use OnLine, the systables system catalog table has the columns shown
in the following table.

Column Name Type Explanation

tabname NCHAR(18) Name of table, view, or synonym

owner NCHAR(8) Owner of table (user informix for system catalog
tables and user name for database tables)

partnum INTEGER Tblspace identifier (similar to tabid)

tabid SERIAL System-assigned sequential ID number (system
tables: 1-24, user tables: 100-nnn)

rowsize SMALLINT Row size

ncols SMALLINT Number of columns

nindexes SMALLINT Number of indexes

nrows INTEGER Number of rows

created DATE Date created

version INTEGER Number that changes when table is altered

tabtype NCHAR(1) Table type:

T = Table

V = View

P = Private synonym

P = Synonym (in an ANSI-compliant database)

S = Synonym

 (1 of 2)
2-40 Informix Guide to SQL: Reference

SYSTABLES
The tabid column is indexed and must contain unique values. A composite
index for the tabname and owner columns allows only unique values. The
version column contains an encoded number that is put into the systables
system catalog table when the table is created. Portions of the encoded value
are incremented when data-definition statements, such as ALTER INDEX,
ALTER TABLE, DROP INDEX, and CREATE INDEX, are performed. When a
prepared statement is executed, the version number is checked to make sure
that nothing has changed since the statement was prepared. If the version
number has changed, your statement does not execute and you must prepare
your statement again.

The npused column does not reflect blob data used.

locklevel NCHAR(1) Lock mode for a table:

B = Page

P = Page

R = Row

npused INTEGER Number of data pages in use

fextsize INTEGER Size of initial extent (in kilobytes)

nextsize INTEGER Size of all subsequent extents (in kilobytes)

flags SMALLINT Reserved for future use

site NCHAR(18) Reserved for future use in OnLine (used to store
database collation and Ctype information)

dbname NCHAR(18) Reserved for future use

Column Name Type Explanation

 (2 of 2)
System Catalog 2-41

SYSTABLES
If you use SE, the systables system catalog table has the columns shown in
the following table.

The dirpath column contains the directory path for the table or log file. The
tabid column is indexed and must contain unique values. A composite index
for the tabname and owner columns allows only unique values.

Column Name Type Explanation

tabname NCHAR(18) Name of table

owner NCHAR(8) Owner of table (user informix for system tables
and user name for database tables)

dirpath NCHAR(64) Directory path for the table file

tabid SERIAL System assigned sequential ID number (system
tables: 1-21, user tables: 100-nnn)

rowsize SMALLINT Row size

ncols SMALLINT Number of columns

nindexes SMALLINT Number of indexes

nrows INTEGER Number of rows

created DATE Date created

version INTEGER Number that changes when table is altered

tabtype NCHAR(1) Table type:

T = Table

V = View

S = Synonym

L = Log

P = Synonym (in an ANSI-compliant database)

audpath NCHAR(64) Audit filename (full pathname)
2-42 Informix Guide to SQL: Reference

SYSTRIGBODY
The systables system catalog table has two additional rows to store the
database locale: GL_COLLATE with a tabid of 90, and GL_CTYPE with a tabid
of 91. Enter the following SELECT statement to view these rows:

SELECT tabname, tabid FROM systables

SYSTRIGBODY
The systrigbody system catalog table contains the English text of the trigger
definition and the linearized code for the trigger. Linearized code is binary
data and code that is represented in ASCII format.

Warning: The database server uses the linearized code that is stored in systrigbody.
You must not alter the content of rows that contain linearized code.

The systrigbody system catalog table has the columns shown in the
following table.

A composite index for the trigid, datakey, and seqno columns allows only
unique values.

Column Name Type Explanation

trigid INT Trigger identifier

datakey NCHAR Type of data:

D = English text for the header, trigger definition

A = English text for the body, triggered actions

H = Linearized code for the header

S = Linearized code for the symbol table

B = Linearized code for the body

seqno INT Sequence number

data NCHAR(256) English text or linearized code
System Catalog 2-43

SYSTRIGGERS
SYSTRIGGERS
The systriggers system catalog table contains miscellaneous information
about the SQL triggers in the database. This information includes the trigger
event and the correlated reference specification for the trigger. The
systriggers system catalog table has the columns shown in the following
table.

A composite index for the trigname and owner columns allows only unique
values. The trigid column is indexed and must contain unique values. An
index for the tabid column allows duplicate values.

Column Name Type Explanation

trigid SERIAL Trigger identifier

trigname NCHAR(18) Trigger name

owner NCHAR(8) Owner of trigger

tabid INT ID of triggering table

event NCHAR Triggering event:

I = Insert trigger

U = Update trigger

D = Delete trigger

old NCHAR(18) Name of value before update

new NCHAR(18) Name of value after update

mode NCHAR Reserved for future use
2-44 Informix Guide to SQL: Reference

SYSUSERS
SYSUSERS
The sysusers system catalog table describes each set of privileges that are
granted in the database. It contains one row for each user who has privileges
in the database. The sysusers system catalog table has the columns shown in
the following table.

The username column is indexed and allows only unique values. The
username can be the name of a role.

Column Name Type Explanation

username NCHAR(8) Name of the database user or role

usertype NCHAR(1) Specifies database-level privileges:

D = DBA (all privileges)

R = Resource (create permanent tables and
indexes)

G = Role

C = Connect (work within existing tables)

priority SMALLINT Reserved for future use

password CHAR(8) Reserved for future use
System Catalog 2-45

SYSVIEWS
SYSVIEWS
The sysviews system catalog table describes each view that is defined in the
database. Because the sysviews system catalog table stores the SELECT
statement that you use to create the view, it can contain multiple rows for
each view into the database. The sysviews system catalog table has the
columns shown in the following table.

A composite index for the tabid and seqno columns allows only unique
values.

SYSVIOLATIONS
The sysviolations system catalog table stores information about the viola-
tions and diagnostics tables for base tables. Every table in the database that
has a violations and diagnostics table associated with it has a corresponding
row in the sysviolations table. The sysviolations database table has the col-
umns shown in the following table.

Column Name Type Explanation

tabid INTEGER Table identifier

seqno SMALLINT Line number of the SELECT statement

viewtext NCHAR(64) Actual SELECT statement used to create the view

Column Name Type Explanation

targettid INTEGER Table identifier of the target table. The target table
is the base table on which the violations and diag-
nostics tables are defined.

viotid INTEGER Table identifier of the violations table

diatid INTEGER Table identifier of the diagnostics table

 (1 of 2)
2-46 Informix Guide to SQL: Reference

System Catalog Map
The primary key of the sysviolations table is the targettid column. Unique
indexes are also defined on the viotid and diatid columns.

System Catalog Map
Figure 2-1 displays the column names of the tables in an OnLine system
catalog. The lines connecting a column in one table to a column in another
table indicate columns that contain the same information. The columns in
parentheses apply to SE only.

maxrows INTEGER Maximum number of rows that can be inserted into
the diagnostics table during a single insert, update,
or delete operation on a target table that has a filter-
ing mode object defined on it.

Also signifies the maximum number of rows that
can be inserted into the diagnostics table during a
single operation that enables a disabled object or
sets a disabled object to filtering mode (provided
that a diagnostics table exists for the target table).

If no maximum has been specified for the diagnos-
tics table, this column contains a null value.

Column Name Type Explanation

 (2 of 2)
System Catalog 2-47

System Catalog Map
Figure 2-1
System Catalog Map

 (1 of 3)

tabid tabname owner (dirpath) rowsize ncols nindexes nrows created version tabtype
(audpath) partnum locklevel npused fextsize nextsize flags site dbname

systables

tabid idxname owner idxtype clustered part1-part16 levels leaves nunique clust

tabid colno colname coltype collength colmin colmax

sysindexes

syscolumns

tabid colno grantor grantee colauth

syscolauth

btabid btype dtabid dtype

sysdepend
tabid owner synname created

syssynonyms

username usertype priority password

sysusers

tabid tabname servername dbname owner btabid

syssyntable

tabid idxname constrid constrname owner constrtype

sysconstraints

tabid fragtype indexname colno partn strategy location servername evalpos
exprtext exprbin exprarr flags dbspace levels npused nrows clust

sysfragments
2-48 Informix Guide to SQL: Reference

System Catalog Map
 (2 of 3)

procid planid datakey seqno created
datasize data

sysprocplan

procid procname owner mode retsize
symsize datasize codesize numargs

sysprocedures

procid datakey seqno data

sysprocbody

procid procauth grantor grantee

sysprocauth

sysroleauth

rolename is_grantable grantee

tabid grantor grantee tabauth

systabauth

tabid seqno viewtext

sysviews

tabid spacename type colno

sysblobs

tabid colno seqno constructed mode resolution confidence encdat

sysdistrib

tabid trigid trigname owner event old new mode

systriggers

trigid datakey seqno data

systrigbody

tabid grantor grantee fragment fragauth

sysfragauth

tabid objtype owner name state

sysobjstate

tabid owner clstrname clstrsize blobcol1-blobcol16 clstrkey1-clstrkey16

sysopclstr
System Catalog 2-49

Information Schema
Information Schema
The Information Schema consists of read-only views that provide infor-
mation about all the tables, views, and columns on the current database
server to which you have access. In addition, Information Schema views
provide information about SQL dialects (such as Informix, Oracle, or Sybase)
and SQL standards.

This version of the Information Schema views are X/Open CAE standards.
Informix provides them so that applications developed on other database
systems can obtain Informix system catalog information without having to
use the Informix system catalogs directly.

Important: Because the X/Open CAE standards Information Schema views differ
from ANSI-compliant Information Schema views, Informix recommends that you do
not install the X/Open CAE Information Schema views on ANSI-compliant databases.

 (3 of 3)

tabid colno constrid

syscoldepend

constrid primary ptabid updrule delrule matchtype pendant

sysreferences

constrid type seqno checktext

syschecks

tabid colno type default

sysdefaults sysviolations

targettid viotid diatid maxrows
2-50 Informix Guide to SQL: Reference

Generating the Information Schema Views
The following Information Schema views are available:

■ tables

■ columns

■ sql_languages

■ server_info

The following sections contain information about generating and accessing
Information Schema views as well as information about their structure.

Generating the Information Schema Views
The Information Schema views are generated automatically when you, as
DBA, run the following DB-Access command:

dbaccess database-name $INFORMIXDIR/etc/xpg4_is.sql

The views are populated by data in the Informix system catalog tables. If
tables, views, or stored procedures exist with any of the same names as the
Information Schema views, you need to either rename the database objects or
rename the views in the script before you can install the views. You can drop
the views by using the DROP VIEW statement on each view. Re-create the
views by running the script again.

Important: In addition to the columns specified for each Information Schema view,
individual vendors might include additional columns or change the order of the
columns. Informix recommends that applications not use the forms SELECT * or
SELECT table-name* to access an Information Schema view.

Accessing the Information Schema Views
All Information Schema views have the Select privilege granted to PUBLIC
WITH GRANT OPTION so that all users can query the views. Because no other
privileges are granted on the Information Schema views, they cannot be
updated.

You can query the Information Schema views as you would query any other
table or view in the database.
System Catalog 2-51

Structure of the Information Schema Views
Structure of the Information Schema Views
The following views are described in this section:

■ tables

■ columns

■ sql_languages

■ server_info

Most of the columns in the views are defined as VARCHAR data types with
large maximums to accept large names and in anticipation of long identifier
names in future standards.

TABLES

The tables Information Schema view contains one row for each table to
which you have access. It contains the columns shown in the following table.

The visible rows in the tables view depend on your privileges. For example,
if you have one or more privileges on a table (such as Insert, Delete, Select,
References, Alter, Index, or Update on one or more columns), or if these privi-
leges have been granted to PUBLIC, you see one row describing that table.

Column Name Data Type Explanation

table_schema VARCHAR(128) Owner of table

table_name VARCHAR(128) Name of table or view

table_type VARCHAR(128) BASE TABLE for table or VIEW for view

remarks VARCHAR(255) Reserved
2-52 Informix Guide to SQL: Reference

Structure of the Information Schema Views
COLUMNS

The columns Information Schema view contains one row for each accessible
column. It contains the columns shown in the following table.

Column Name Data Type Explanation

table_schema VARCHAR(128) Owner of table

table_name VARCHAR(128) Name of table or view

column_name VARCHAR(128) Name of the column of the table or view

ordinal_position INTEGER Ordinal position of the column. The
ordinal_position of a column in a table is
a sequential number starting at 1 for the
first column.This column is an Informix
extension to XPG4.

data_type VARCHAR(254) Data type of the column, such as CHAR-
ACTER or DECIMAL

char_max_length INTEGER Maximum length for character data
types; null otherwise

numeric_precision INTEGER Total number of digits allowed for exact
numeric data types (DECIMAL, INTEGER,
MONEY, and SMALLINT), and the num-
ber of digits of mantissa precision for
approximate data types (FLOAT and
SMALLFLOAT), and null for all other
data types. The value is machine depen-
dent for FLOAT and SMALLFLOAT.

numeric_prec_radix INTEGER Uses one of the following values:

Two approximate data types (FLOAT
and SMALLFLOAT)

10 exact numeric data types
(DECIMAL, INTEGER, MONEY, and
SMALLINT)

Null for all other data types

 (1 of 2)
System Catalog 2-53

Structure of the Information Schema Views
SQL_LANGUAGES

The sql_languages Information Schema view contains a row for each
instance of conformance to standards that the current database server
supports. If the database server is INFORMIX-SE, the table shows no rows.
The sql_languages Information Schema view contains the columns shown in
the following table.

numeric_scale INTEGER Number of significant digits to the right
of the decimal point for DECIMAL and
MONEY data types:

0 for INTEGER and SMALLINT data
types

Null for all other data types

datetime_precision INTEGER Number of digits in the fractional part of
the seconds for DATE and DATETIME col-
umns; null otherwise. This column is an
Informix extension to XPG4.

is_nullable VARCHAR(3) Indicates whether a column allows
nulls; either YES or NO

remarks VARCHAR(254) Reserved

Column Name Data Type Explanation

 (2 of 2)

Column Name Data Type Explanation

source VARCHAR(254) Organization that defines this SQL
version

source_year VARCHAR(254) Year the source document was approved

conformance VARCHAR(254) Which conformance is supported

integrity VARCHAR(254) Indicates whether this is an integrity en-
hancement feature; either YES or NO

 (1 of 2)
2-54 Informix Guide to SQL: Reference

Structure of the Information Schema Views
The sql_languages Information Schema view is completely visible to all
users.

SERVER_INFO

The server_info Information Schema view describes the database server to
which the application is currently connected. It contains the columns shown
in the following table.

Each row in this view provides information about one attribute.
X/Open-compliant databases must provide applications with certain
required information about the database server. The server_info view
includes the information shown in the following table.

implementation VARCHAR(254) Identifies the vendor’s SQL product

binding_style VARCHAR(254) Direct, module, or other bind style

programming_lang VARCHAR(254) Host language for which the binding
style is adopted

Column Name Data Type Explanation

 (2 of 2)

Column Name Data Type Explanation

server_attribute VARCHAR(254) An attribute of the database server

attribute_value VARCHAR(254) Value of the server_attribute as it applies to
the current database server

server_attribute Description

identifier_length Maximum number of characters for a user-defined name

row_length Maximum length of a row

 (1 of 2)
System Catalog 2-55

Structure of the Information Schema Views
The server_info Information Schema view is completely visible to all users.

userid_length Maximum number of characters of a user name
(or “authorization identifier”)

txn_isolation Initial transaction isolation level that the database server
assumes:

Read Committed
Default isolation level for databases created without
logging

Read Uncommitted
Default isolation level for databases created with logging,
but not ANSI compliant

Serializable
Default isolation level for ANSI-compliant databases

collation_seq Assumed ordering of the character set for the database
server. The following values are possible:

ISO 8859-1

EBCDIC

The Informix representation shows ISO 8859-1

server_attribute Description

 (2 of 2)
2-56 Informix Guide to SQL: Reference

3
Chapter
Data Types
Database Data Types 3-3
Summary of Data Types 3-3
BYTE . 3-5
CHAR(n) . 3-6

Collating CHAR Data 3-7
Multibyte Characters with CHAR 3-7
Treating CHAR Values as Numeric Values 3-7
Nonprintable Characters with CHAR 3-7

CHARACTER(n) 3-8
CHARACTER VARYING(m,r). 3-8
DATE . 3-8
DATETIME . 3-9
DEC . 3-13
DECIMAL . 3-13

DECIMAL Storage 3-14
DOUBLE PRECISION 3-15
FLOAT(n). 3-15
INT . 3-16
INTEGER . 3-16
INTERVAL . 3-16
MONEY(p,s) . 3-19
NCHAR(n) . 3-21
NUMERIC(p,s) 3-21
NVARCHAR(m,r) 3-21
REAL . 3-21
SERIAL(n) . 3-21
SMALLFLOAT 3-22
SMALLINT . 3-23
TEXT . 3-23

Nonprintable Characters with TEXT 3-25
Multibyte Characters with TEXT 3-25

3-2 Infor
Collating TEXT Data. 3-25
VARCHAR(m,r). 3-25

Multibyte Characters with VARCHAR 3-26
Collating VARCHAR 3-27
Nonprintable Characters with VARCHAR 3-27
Storing Numeric Values in a VARCHAR Column 3-27

Data Type Conversions 3-27
Converting from Number to Number 3-28
Converting Between Number and CHAR 3-29
Converting Between DATE and DATETIME 3-29

Range of Operations Using DATE, DATETIME, and INTERVAL . . . 3-30
Manipulating DATETIME Values. 3-31
Manipulating DATETIME with INTERVAL Values 3-32
Manipulating DATE with DATETIME and INTERVAL Values. . . 3-33
Manipulating INTERVAL Values 3-35
Multiplying or Dividing INTERVAL Values 3-36
mix Guide to SQL: Reference

Every column in a table is assigned a data type. The data type
precisely defines the type of values that you can store in that column.

This chapter covers the following topics:

■ Data types supported by Informix products

■ Data type conversions

■ DATE, DATETIME, and INTERVAL values in arithmetic and relational
expressions

Database Data Types
You assign data types with the CREATE TABLE statement and change them
with the ALTER TABLE statement. When you change an existing data type, all
data is converted to the new data type, if possible. For more information on
the ALTER TABLE and CREATE TABLE statements and data type syntax
conventions, refer to Chapter 1 of the Informix Guide to SQL: Syntax. For a
general introduction to data types, see the Informix Guide to SQL: Tutorial.

Summary of Data Types
Informix products recognize the data types listed in Figure 3-1. The
remainder of this chapter describes each of these data types.
Data Types 3-3

Summary of Data Types
Figure 3-1
Data Types Recognized by Informix Products

Data Type Explanation

BYTE Stores any kind of binary data

CHAR(n) Stores single-byte or multibyte sequences of characters,
including letters, numbers, and symbols; collation is
code-set dependent

CHARACTER(n) Is a synonym for CHAR

CHARACTER
VARYING(m,r)

Stores single-byte and multibyte sequences of characters,
including letters, numbers, and symbols of varying
length (ANSI compliant); collation is code-set dependent

DATE Stores calendar date

DATETIME Stores calendar date combined with time of day

DEC Is a synonym for DECIMAL

DECIMAL Stores numbers with definable scale and precision

DOUBLE PRECISION Behaves the same way as FLOAT

FLOAT(n) Stores double-precision floating-point numbers
corresponding to the double data type in C

INT Is a synonym for INTEGER

INTEGER Stores whole numbers from −2,147,483,647 to
+2,147,483,647

INTERVAL Stores span of time

MONEY(p,s) Stores currency amount

NCHAR(n) Stores single-byte and multibyte sequences of characters,
including letters, numbers, and symbols; collation is
locale dependent

NUMERIC(p,s) Is a synonym for DECIMAL

NVARCHAR(m,r) Stores single-byte and multibyte sequences of characters,
including letters, numbers, and symbols of varying
length; collation is locale dependent

 (1 of 2)
3-4 Informix Guide to SQL: Reference

BYTE
BYTE
The BYTE data type stores any kind of binary data in an undifferentiated byte
stream. Binary data typically consists of saved spreadsheets, program load
modules, digitized voice patterns, and so on.

Important: The INFORMIX-SE database server does not support this data type.

The BYTE data type has no maximum size. A BYTE column has a theoretical
limit of 231 bytes and a practical limit determined by your disk capacity.

You can store, retrieve, update, or delete the contents of a BYTE column.
However, you cannot use BYTE data items in arithmetic or string operations,
or assign literals to BYTE items with the SET clause of the UPDATE statement.
You also cannot use BYTE items in any of the following ways:

■ With aggregate functions

■ With the IN clause

■ With the MATCHES or LIKE clauses

■ With the GROUP BY clause

■ With the ORDER BY clause

You can use BYTE objects in a Boolean expression only if you are testing for
null values.

REAL Is a synonym for SMALLFLOAT

SERIAL Stores sequential integers

SMALLFLOAT Stores single-precision floating-point numbers
corresponding to the float data type in C

SMALLINT Stores whole numbers from −32,767 to +32,767

TEXT Stores any kind of text data

VARCHAR(m,r) Stores multibyte strings of letters, numbers, and symbols
of varying length; collation is code-set dependent

Data Type Explanation

 (2 of 2)
Data Types 3-5

CHAR(n)
You can insert data into BYTE columns in the following ways:

■ With the dbload or onload utilities

■ With the LOAD statement (DB-Access)

■ From BYTE host variables (INFORMIX-ESQL/C)

■ By declaring a FILE (INFORMIX-ESQL/COBOL)

You cannot use a quoted text string, number, or any other actual value to
insert or update BYTE columns.

When you select a BYTE column, you can choose to receive all or part of it. To
see it all, use the regular syntax for selecting a column. You can also select any
part of a BYTE column by using subscripts as shown in the following
example:

SELECT cat_picture [1,75] FROM catalog WHERE catalog_num = 10001

This statement reads the first 75 bytes of the cat_picture column associated
with the catalog number 10001.

Tip: If you select a BYTE column using the DB-Access Interactive Schema Editor,
only the phrase “BYTE value” is returned; no actual value is displayed.

CHAR(n)
The CHAR data type stores any sequence of letters, numbers, and symbols. It
can store single-byte and multibyte characters, based on what the chosen
locale supports. For more information on multibyte CHARs, see “Multibyte
Characters with CHAR” on page 3-7.

A character column has a maximum length n bytes, where 1 ≤ n ≤ 32,767. (If
you are using SE, the maximum length is 32,511.) If you do not specify n,
CHAR(1) is assumed. Character columns typically store names, addresses,
phone numbers, and so on.

Because the length of this column is fixed, when a character value is retrieved
or stored, exactly n bytes of data are transferred. If the character string is
shorter than n bytes, the string is extended with spaces to make up the length.
If the string value is longer than n bytes, the string is truncated.
3-6 Informix Guide to SQL: Reference

CHAR(n)
Collating CHAR Data

The collation order of the CHAR data type depends on the code set. That is,
this data is sorted by the order of characters as they appear in the code set.
For more information, see Chapter 1 of the Guide to GLS Functionality. ♦

Multibyte Characters with CHAR

Multibyte characters used in a database must be supported by the database
locale. If you are storing multibyte characters, make sure to calculate the
number of bytes needed. For more information on multibyte characters and
locales, see Chapter 1 of the Guide to GLS Functionality. ♦

Treating CHAR Values as Numeric Values

If you plan to perform calculations on numbers stored in a column, you
should assign a number data type to that column. Although you can store
numbers in CHAR columns, you might not be able to use them in some arith-
metic operations. For example, if you are inserting the sum of values into a
character column, you might experience overflow problems if the character
column is too small to hold the value. In this case, the insert fails. However,
numbers that have leading zeros (such as some zip codes) have the zeros
stripped if they are stored as number types INTEGER or SMALLINT. Instead,
store these numbers in CHAR columns.

CHAR values are compared to other CHAR values by taking the shorter value
and padding it on the right with spaces until the values have equal length.
Then the two values are compared for the full length. Comparisons use the
code-set collation order.

Nonprintable Characters with CHAR

A CHAR value can include tabs, spaces, and other nonprintable characters.
However, you must use an application to insert the nonprintable characters
into host variables and to insert the host variables into your database. After
passing nonprintable characters to the database server, you can store or
retrieve the characters. When you select nonprintable characters, fetch them
into host variables and display them using your own display mechanism.

GLS

GLS
Data Types 3-7

CHARACTER(n)
The only nonprintable character that you can enter and display with
DB-Access is a tab. If you try to display other nonprintable characters using
DB-Access, your screen returns inconsistent results.

CHARACTER(n)
The CHARACTER data type is a synonym for CHAR.

CHARACTER VARYING(m,r)
The CHARACTER VARYING data type stores any multibyte string of letters,
numbers, and symbols of varying length, where m is the maximum size of the
column and r is the minimum amount of space reserved for that column. The
CHARACTER VARYING data type complies with ANSI standards; the Informix
VARCHAR data type supports the same functionality. See the description of
the VARCHAR data type on page 3-25.

Important: The INFORMIX-SE database server does not support this data type.

DATE
The DATE data type stores the calendar date. DATE data types require 4 bytes.
A calendar date is stored internally as an integer value equal to the number
of days since December 31, 1899.

Because DATE values are stored as integers, you can use them in arithmetic
expressions. For example, you can subtract a DATE value from another DATE
value. The result, a positive or negative INTEGER value, indicates the number
of days that elapsed between the two dates.

The default display format of a DATE column is shown in the following
example:

mm/dd/yyyy

In this example, mm is the month (1-12), dd is the day of the month (1-31), and
yyyy is the year (0001-9999). For the month, Informix products accept a
number value 1 or 01 for January, and so on. For the day, Informix products
accept a value 1 or 01 that corresponds to the first day of the month, and so
on.
3-8 Informix Guide to SQL: Reference

DATETIME
If you enter only a two-digit value for year, how Informix products fill in the
century digits depends on how you set the DBCENTURY environment
variable. For example, if you enter the year value as 95, whether that year
value is stored as 1995 or 2095 depends on the setting of your DBCENTURY
variable. If you do not set the DBCENTURY environment variable, then your
Informix products consider the present century as the default. For infor-
mation on how to set the DBCENTURY environment variable, refer to
page 4-18.

If you specify a locale other than the default locale, you can display culture-
specific formats for dates. The locales and the GL_DATE and DB_DATE
environment variables affect the display formatting of DATE values. They do
not affect the internal format used in a DATE column of a database. You can
change the default DATE format by setting the DBDATE or GL_DATE
environment variable. GLS functionality permits the display of international
DATE formats. For more information, see Chapter 2 of the Guide to GLS
Functionality. ♦

DATETIME
The DATETIME data type stores an instant in time expressed as a calendar
date and time of day. You choose how precisely a DATETIME value is stored;
its precision can range from a year to a fraction of a second.

The DATETIME data type is composed of a contiguous sequence of fields that
represents each component of time you want to record and uses the following
syntax:

DATETIME largest_qualifier TO smallest_qualifier

The largest_qualifier and smallest_qualifier can be any one of the fields listed in
Figure 3-2.

GLS
Data Types 3-9

DATETIME
Figure 3-2
DATETIME Field Qualifiers

A DATETIME column does not need to include all fields from YEAR to
FRACTION; it can include a subset of fields or even a single field. For example,
you can enter a value of MONTH TO HOUR into a column that is defined as
YEAR TO MINUTE, as long as each entered value contains information for a
contiguous sequence of fields. You cannot, however, define a column for just
MONTH and HOUR; this entry must also include a value for DAY.

For a detailed description of the DATETIME syntax, see the DATETIME field
qualifier segment in the Informix Guide to SQL: Syntax. If you are using the
DB-Access TABLE menu and you do not specify the DATETIME qualifiers, the
default DATETIME qualifier, YEAR TO YEAR, is assigned.

A valid DATETIME literal must include the DATETIME keyword, the values to
be entered, and the field qualifiers. (See the discussion of literal DATETIME in
Chapter 1 of the Informix Guide to SQL: Syntax.) You must include these quali-
fiers because, as noted earlier, the value you enter can contain fewer fields
than defined for that column. Acceptable qualifiers for the first and last fields
are identical to the list of valid DATETIME fields listed in Figure 3-2.

Qualifier Field Valid Entries

YEAR A year numbered from 1 to 9,999 (A.D.)

MONTH A month numbered from 1 to 12

DAY A day numbered from 1 to 31, as appropriate to the month

HOUR An hour numbered from 0 (midnight) to 23

MINUTE A minute numbered from 0 to 59

SECOND A second numbered from 0 to 59

FRACTION A decimal fraction of a second with up to 5 digits of precision.
The default precision is 3 digits (a thousandth of a second).
Other precisions are indicated explicitly by writing
FRACTION(n), where n is the desired number of digits from 1
to 5.
3-10 Informix Guide to SQL: Reference

DATETIME
Values for the field qualifiers are written as integers and separated by
delimiters. Figure 3-3 lists the delimiters that are used with DATETIME values
in the U.S. ASCII English locale.

Figure 3-3
Delimiters Used with DATETIME

Figure 3-4 shows a DATETIME YEAR TO FRACTION(3) value with delimiters.

When you enter a value with fewer fields than the defined column, the value
you enter is expanded automatically to fill all the defined fields. If you leave
out any more-significant fields, that is, fields of larger magnitude than any
value you supply, those fields are filled automatically with the current date.
If you leave out any less-significant fields, those fields are filled with zeros (or
a 1 for MONTH and DAY) in your entry.

Delimiter Placement in DATETIME Expression

hyphen Between the YEAR, MONTH, and DAY portions of the value

space Between the DAY and HOUR portions of the value

colon Between the HOUR and MINUTE and the MINUTE and SECOND
portions of the value

decimal point Between the SECOND and FRACTION portions of the value

Figure 3-4
Example DATETIME

Value with
Delimiters

93-08-16 12:42:06.001

fraction

secondhour

minute

month

dayyear
Data Types 3-11

DATETIME
You also can enter DATETIME values as character strings. However, the
character string must include information for each field defined in the
DATETIME column. The INSERT statement in the following example shows a
DATETIME value entered as a character string:

INSERT into cust_calls (customer_num, call_dtime, user_id,
call_code, call_descr)

VALUES (101, '1993-08-14 08:45', 'maryj', 'D',
'Order late - placed 6/1/92')

In this example, the call_dtime column is defined as DATETIME YEAR TO
MINUTE. This character string must include values for the year, month, day,
hour, and minute fields. If the character string does not contain information
for all defined fields (or adds additional fields), the database server returns
an error. For more information on entering DATETIME values as character
strings, see Chapter 1 of the Informix Guide to SQL: Syntax.

All fields of a DATETIME column are two-digit numbers except for the year
and fraction fields. The year field is stored as four digits. When you enter a
two-digit value in the year field, how the century digits are filled in and inter-
preted depends on the value you assign to the DBCENTURY environment
variable. For example, if you enter 95 as the year value, whether the year is
interpreted as 1995 or 2095 depends on the setting of the DBCENTURY
variable. If you do not set the DBCENTURY environment variable, then your
Informix products consider the present century to be the default. For infor-
mation on setting and using the DBCENTURY environment variable, see
page 4-18.

The fraction field requires n digits where 1 ≤ n ≤ 5, rounded up to an even
number. You can use the following formula (rounded up to a whole number
of bytes) to calculate the number of bytes required for a DATETIME value:

total number of digits for all fields/2 + 1

For example, a YEAR TO DAY qualifier requires a total of eight digits (four
for year, two for month, and two for day). This data value requires 5, or
(8/2) + 1, bytes of storage.

For information on using DATETIME data in arithmetic and relational expres-
sions, see “Range of Operations Using DATE, DATETIME, and INTERVAL”
on page 3-30. For information on using DATETIME as a constant expression,
see Chapter 1 of the Informix Guide to SQL: Syntax.
3-12 Informix Guide to SQL: Reference

DEC
If you specify a locale other than U.S. ASCII English, the locale defines the
culture-specific display formats for DATETIME values. For more information,
see the Guide to GLS Functionality. You can change the default display format
by changing the setting of the GL_DATETIME environment variable. With an
ESQL API, the DBTIME environment variable also affects DATETIME
formatting. For more information, see page 4-36. Locales and the GL_DATE
and DB_DATE environment variables affect the display of datetime data.
They do not affect the internal format used in a DATETIME column. ♦

DEC
The DEC data type is a synonym for DECIMAL.

DECIMAL
The DECIMAL data type can take two forms: DECIMAL(p) floating point, and
DECIMAL(p,s) fixed point.

DECIMAL Floating Point

The DECIMAL data type stores decimal floating-point numbers up to a
maximum of 32 significant digits, where p is the total number of significant
digits (the precision). Specifying precision is optional. If you do not specify the
precision (p), DECIMAL is treated as DECIMAL(16), a floating decimal with a
precision of 16 places. DECIMAL(p) has an absolute value range between
10-130 and 10124.

If you are using an ANSI-compliant database and specify DECIMAL(p), the
value defaults to DECIMAL(p, 0). See the following discussion for more infor-
mation about fixed-point decimal values.

GLS
Data Types 3-13

DECIMAL
DECIMAL Fixed Point

In fixed-point numbers, DECIMAL(p,s), the decimal point is fixed at a specific
place, regardless of the value of the number. When you specify a column of
this type, you write its precision (p) as the total number of digits it can store,
from 1 to 32. You write its scale (s) as the total number of digits that fall to the
right of the decimal point. All numbers with an absolute value less than
0.5 ∗ 10-s have the value zero. The largest absolute value of a variable of this
type that you can store without an error is 10p-s −10-s. A DECIMAL data type
column typically stores numbers with fractional parts that must be stored
and displayed exactly (for example, rates or percentages).

DECIMAL Storage

The database server uses 1 byte of disk storage to store two digits of a decimal
number. The database server uses an additional byte to store the exponent
and sign. The significant digits to left of the decimal and the significant digits
to the right of the decimal are stored on separate groups of bytes. This is best
illustrated with an example. If you specify DECIMAL(6,3), the data type
consists of three significant digits to the left of the decimal and three signif-
icant digits to the right of the decimal (for instance, 123.456). The three digits
to the left of the decimal are stored on 2 bytes (where one of the bytes only
holds a single digit) and the three digits to the right of the decimal are stored
on another 2 bytes as illustrated in Figure 3-5. (The exponent byte is not
shown.) With the additional byte required for the exponent and sign, this
data type requires a total of 5 bytes of storage.

You can use the following formulas (rounded down to a whole number of
bytes) to calculate the byte storage (N) for a decimal data type (N includes the
byte required to store the exponent and sign):

If the scale is odd: N = (precision + 4) / 2
If the scale is even: N = (precision + 3) / 2

Figure 3-5
Schematic

Illustrating the
Storage of Digits in

a Decimal Value

- 1 2 3 4 5 6 -

Byte 1 Byte 2 Byte 3 Byte 4

Significant digits to the left of
decimal

Significant digits to the right of
decimal
3-14 Informix Guide to SQL: Reference

DOUBLE PRECISION
For example, the data type DECIMAL(5,3) requires 4 bytes of storage (9/2
rounded down equals 4).

There is one caveat to these formulas. The maximum number of bytes the
database server uses to store a decimal value is 17. One byte is used to store
the exponent and sign leaving 16 bytes to store up to 32 digits of precision. If
you specify a precision of 32 and an odd scale, however, you lose 1 digit of
precision. Consider, for example, the data type DECIMAL(32,31). This
decimal is defined as 1 digit to the left of the decimal and 31 digits to the right.
The 1 digit to the left of the decimal requires 1 byte of storage. This leaves
only 15 bytes of storage for the digits to the right of the decimal. The 15 bytes
can accommodate only 30 digits, so 1 digit of precision is lost.

DOUBLE PRECISION
Columns defined as DOUBLE PRECISION behave the same as those defined as
FLOAT.

FLOAT(n)
The FLOAT data type stores double-precision floating-point numbers with up
to 16 significant digits. FLOAT corresponds to the double data type in C. The
range of values for the FLOAT data type is the same as the range of values for
the C double data type on your computer.

You can use n to specify the precision of a FLOAT data type, but SQL ignores
the precision. The value n must be a whole number between 1 and 14.

A column with the FLOAT data type typically stores scientific numbers that
can be calculated only approximately. Because floating-point numbers retain
only their most significant digits, the number you enter in this type of column
and the number the database server displays can differ slightly. This depends
on how your computer stores floating-point numbers internally. For
example, you might enter a value of 1.1000001 into a FLOAT field and, after
processing the SQL statement, the database server might display this value as
1.1. This occurs when a value has more digits than the floating-point number
can store. In this case, the value is stored in its approximate form with the
least significant digits treated as zeros.

FLOAT data types usually require 8 bytes per value.
Data Types 3-15

INT
INT
The INT data type is a synonym for INTEGER.

INTEGER
The INTEGER data type stores whole numbers that range from −2,147,483,647
to 2,147,483,647. The maximum negative number, −2,147,483,648, is a
reserved value and cannot be used. The INTEGER data type is stored as a
signed binary integer and is typically used to store counts, quantities, and so
on.

Arithmetic operations and sort comparisons are performed more efficiently
on integer data than on float or decimal data. However, INTEGER columns
can store only a limited range of values. If the data value exceeds the numeric
range, the database server does not store the value.

INTEGER data types require 4 bytes per value.

INTERVAL
The INTERVAL data type stores a value that represents a span of time.
INTERVAL types are divided into two classes: year-month intervals and
day-time intervals. A year-month interval can represent a span of years and
months, and a day-time interval can represent a span of days, hours, minutes,
seconds, and fractions of a second.

An INTERVAL value always is composed of one value, or a contiguous
sequence of values, that represents a component of time. An INTERVAL data
type is defined using the following example:

INTERVAL largest_qualifier(n) TO smallest_qualifier(n)

In this example, the largest_qualifier and smallest_qualifier fields are taken from
one of the two INTERVAL classes shown in Figure 3-6, and n optionally
specifies the precision of the largest field (and smallest field if it is a
FRACTION).
3-16 Informix Guide to SQL: Reference

INTERVAL
Figure 3-6
Interval Classes

As with a DATETIME column, you can define an INTERVAL column to include
a subset of the fields you need; however, because the INTERVAL data type
represents a span of time that is independent of an actual date, you cannot
combine the two INTERVAL classes. For example, because the number of days
in a month depends on which month it is, a single INTERVAL data value
cannot combine months and days.

A value entered into an INTERVAL column need not include all fields
contained in the column. For example, you can enter a value of HOUR TO
SECOND into a column defined as DAY TO SECOND. However, a value must
always consist of a contiguous sequence of fields. In the previous example,
you cannot enter just HOUR and SECOND values; you must also include
MINUTE values.

A valid INTERVAL literal contains the INTERVAL keyword, the values to be
entered, and the field qualifiers. (See the discussion of the Literal Interval
segment in Chapter 1 of the Informix Guide to SQL: Syntax.) When a value
contains only one field, the largest and smallest fields are the same.

Interval Class Qualifier Field Valid Entry

YEAR-MONTH
INTERVAL

YEAR A number of years

MONTH A number of months

DAY-TIME
INTERVAL

DAY A number of days

HOUR A number of hours

MINUTE A number of minutes

SECOND A number of seconds

FRACTION A decimal fraction of a second, with up to
5 digits of precision. The default precision
is 3 digits (thousandth of a second). Other
precisions are indicated explicitly by
writing FRACTION(n), where n is the
desired number of digits from 1 to 5.
Data Types 3-17

INTERVAL
When you enter a value in an INTERVAL column, you must specify the largest
and smallest fields in the value, just as you do for DATETIME values. In
addition, you can use n optionally to specify the precision of the first field
(and the last field if it is a FRACTION). If the largest and smallest field quali-
fiers are both FRACTIONS, you can specify only the precision in the last field.
Acceptable qualifiers for the largest and smallest fields are identical to the list
of INTERVAL fields displayed in Figure 3-6.

If you are using the DB-Access TABLE menu and you do not specify the
INTERVAL field qualifiers, the default INTERVAL qualifier, YEAR TO YEAR, is
assigned.

The largest_qualifier in an INTERVAL value can be up to nine digits (except for
FRACTION, which cannot be more than five digits), but if the value you want
to enter is greater than the default number of digits allowed for that field, you
must explicitly identify the number of significant digits in the value you are
entering. For example, to define an INTERVAL of DAY TO HOUR that can store
up to 999 days, you could specify it as shown in the following example:

INTERVAL DAY(3) TO HOUR

INTERVAL values use the same delimiters as DATETIME values. The
delimiters are shown in Figure 3-7.

Figure 3-7
INTERVAL Delimiters

Delimiter Placement in DATETIME Expression

hyphen Between the YEAR and MONTH portions of the value

space Between the DAY and HOUR portions of the value

colon Between the HOUR and MINUTE and the MINUTE and SECOND
portions of the value

decimal point Between the SECOND and FRACTION portions of the value
3-18 Informix Guide to SQL: Reference

MONEY(p,s)
You also can enter INTERVAL values as character strings. However, the
character string must include information for the identical sequence of fields
defined for that column. The INSERT statement in the following example
shows an INTERVAL value entered as a character string:

INSERT INTO manufact (manu_code, manu_name, lead_time)
VALUES ('BRO', 'Ball-Racquet Originals', '160')

Because the lead_time column is defined as INTERVAL DAY(3) TO DAY, this
INTERVAL value requires only one field, the span of days required for lead
time. If the character string does not contain information for all fields (or
adds additional fields), the database server returns an error. For more infor-
mation on entering INTERVAL values as character strings, see Chapter 1 of the
Informix Guide to SQL: Syntax.

By default, all fields of an INTERVAL column are two-digit numbers except
for the year and fraction fields. The year field is stored as four digits. The
fraction field requires n digits where 1 ≤ n ≤ 5, rounded up to an even number.
You can use the following formula (rounded up to a whole number of bytes)
to calculate the number of bytes required for an INTERVAL value:

total number of digits for all fields/2 + 1

For example, a YEAR TO MONTH qualifier requires a total of six digits (four
for year and two for month). This data value requires 4, or (6/2) + 1, bytes of
storage.

For information on using INTERVAL data in arithmetic and relational
operations, see “Range of Operations Using DATE, DATETIME,
and INTERVAL” on page 3-30. For information on using INTERVAL as a
constant expression, see the description of the INTERVAL Field Qualifier
segment in Chapter 1 of the Informix Guide to SQL: Syntax.

MONEY(p,s)
The MONEY data type stores currency amounts. As with the DECIMAL data
type, the MONEY data type stores fixed-point numbers up to a maximum of
32 significant digits, where p is the total number of significant digits (the
precision) and s is the number of digits to the right of the decimal point (the
scale).
Data Types 3-19

MONEY(p,s)
Unlike the DECIMAL data type, the MONEY data type always is treated as a
fixed-point decimal number. The database server defines the data type
MONEY(p) as DECIMAL(p,2). If the precision and scale are not specified, the
database server defines a MONEY column as DECIMAL(16,2).

You can use the following formula (rounded up to a whole number of bytes)
to calculate the byte storage for a MONEY data type:

If the scale is odd: N = (precision + 4) / 2
If the scale is even: N = (precision + 3) / 2

For example, a MONEY data type with a precision of 16 and a scale of 2
(MONEY(16,2)) requires 10, or (16 + 3)/2, bytes of storage.

 The default value that the database server uses for scale is locale-dependent.
The default locale specifies a default scale of two. For nondefault locales, if
the scale is omitted from the declaration, the database server creates MONEY
values with a locale-specific scale. For more information, see Chapter 3 of the
Guide to GLS Functionality. ♦

Client applications format values in MONEY columns with the following
currency notation:

■ A currency symbol: a dollar sign ($) at the front of the value

■ A thousands separator: a comma (,) that separates every three digits
of the value

■ A decimal point: a period (.)

The currency notation that client applications use is locale-dependent. If you
specify a nondefault locale, the client uses a culture-specific format for
MONEY values. For more information, see Chapter 1 of the Guide to GLS
Functionality. ♦

You can change the format for MONEY values by changing the DBMONEY
environment variable. See page 4-27 for information on how to set the
DBMONEY environment variable.

GLS

GLS
3-20 Informix Guide to SQL: Reference

NCHAR(n)
NCHAR(n)
The NCHAR data type stores fixed-length character data. This data can be a
sequence of single-byte or multibyte letters, numbers, and symbols. The
main difference between CHAR and NCHAR data types is the collation order.
While the collation order of the CHAR data type is defined by the code-set
order, the collation order of the NCHAR data type depends on the locale-
specific localized order. For more information about the NCHAR data type,
see Chapter 3 of the Guide to GLS Functionality. ♦

NUMERIC(p,s)
The NUMERIC data type is a synonym for fixed-point DECIMAL.

NVARCHAR(m,r)
The NVARCHAR data type stores character data of varying lengths. This data
can be a sequence of single-byte or multibyte letters, numbers, and symbols.
The main difference between VARCHAR and NVARCHAR data types is the
collation order. While the collation order of the VARCHAR data type is
defined by the code-set order, the collation order of the NVARCHAR data type
depends on the locale-specific localized order. For more information about
the NVARCHAR data type, see Chapter 3 of the Guide to GLS Functionality. ♦

REAL
The REAL data type is a synonym for SMALLFLOAT.

SERIAL(n)
The SERIAL data type stores a sequential integer assigned automatically by
the database server when a row is inserted. (For more information on
inserting values into SERIAL columns, see Chapter 1 of the Informix Guide to
SQL: Syntax.) You can define only one SERIAL column in a table.

The SERIAL data type is not automatically a unique column. You must apply
a unique index to this column to prevent duplicate serial numbers.

GLS

GLS
Data Types 3-21

SMALLFLOAT
If you are using the interactive schema editor in DB-Access to define the table,
a unique index is applied automatically to a SERIAL column.

The default serial starting number is 1, but you can assign an initial value, n,
when you create or alter the table. You can assign any number greater than 0
as your starting number. The highest serial number you can assign is
2,147,483,647. If you assign a number greater than 2,147,483,647, you receive
a syntax error.

Once a nonzero number is assigned, it cannot be changed. You can, however,
insert a value into a SERIAL column (using the INSERT statement) or reset the
serial value n (using the ALTER TABLE statement), as long as that value does
not duplicate any existing values in the table. When you insert a number into
a SERIAL column or reset the next value of a SERIAL column, your database
server assigns the next number in sequence to the number entered. However,
if you reset the next value of a SERIAL column to a value that is less than the
values already in that column, the next value is computed using the
following formula:

maximum existing value in SERIAL column + 1

For example, if you reset the serial value of the customer_num column in the
customer table to 50 and the highest-assigned customer number is 128, the
next customer number assigned is 129.

A SERIAL data column is commonly used to store unique numeric codes (for
example, order, invoice, or customer numbers). SERIAL data values require
4 bytes of storage.

SMALLFLOAT
The SMALLFLOAT data type stores single-precision floating-point numbers
with approximately eight significant digits. SMALLFLOAT corresponds to the
float data type in C. The range of values for a SMALLFLOAT data type is the
same as the range of values for the C float data type on your computer.
3-22 Informix Guide to SQL: Reference

SMALLINT
A SMALLFLOAT data type column typically stores scientific numbers that can
be calculated only approximately. Because floating-point numbers retain
only their most significant digits, the number you enter in this type of column
and the number the database displays might differ slightly depending on
how your computer stores floating-point numbers internally. For example,
you might enter a value of 1.1000001 into a SMALLFLOAT field and, after
processing the SQL statement, the application development tool might
display this value as 1.1. This difference occurs when a value has more digits
than the floating-point number can store. In this case, the value is stored in its
approximate form with the least significant digits treated as zeros.

SMALLFLOAT data types usually require 4 bytes per value.

SMALLINT
The SMALLINT data type stores small whole numbers that range from
−32,767 to 32,767. The maximum negative number, −32,768, is a reserved
value and cannot be used. The SMALLINT value is stored as a signed binary
integer.

Integer columns typically store counts, quantities, and so on. Because the
SMALLINT data type takes up only 2 bytes per value, arithmetic operations
are performed very efficiently. However, this data type stores a limited range
of values. If the values exceed the range between the minimum and
maximum numbers, the database server does not store the value and
provides you with an error message.

TEXT
The TEXT data type stores any kind of text data. It can contain both single and
multi-byte characters. For more information on multibyte characters of TEXT
data type, see “Multibyte Characters with TEXT” on page 3-25.

The TEXT data type has no maximum size. A TEXT column has a theoretical
limit of 231 bytes and a practical limit determined by your available disk
storage.

Important: The INFORMIX-SE database server does not support this data type.
Data Types 3-23

TEXT
TEXT columns typically store memos, manual chapters, business documents,
program source files, and so on. In the default locale U.S. ASCII English, data
object of type TEXT can contain a combination of printable ASCII characters
and the following control characters:

■ Tabs (CTRL-I)

■ New lines (CTRL-J)

■ New pages (CTRL-L)

You can store, retrieve, update, or delete the contents of a TEXT column.
However, you cannot use TEXT data items in arithmetic or string operations,
or assign literals to TEXT items with the SET clause of the UPDATE statement.
You also cannot use TEXT items in the following ways:

■ With aggregate functions

■ With the IN clause

■ With the MATCHES or LIKE clauses

■ With the GROUP BY clause

■ With the ORDER BY clause

You can use TEXT objects in Boolean expressions only if you are testing for
null values.

You can insert data into TEXT columns in the following ways:

■ With the dbload or onload utilities

■ With the LOAD statement (DB-Access)

■ From TEXT host variables (INFORMIX-ESQL/C)

■ By declaring a FILE (INFORMIX-ESQL/COBOL)

You cannot use a quoted text string, number, or any other actual value to
insert or update TEXT columns.

When you select a TEXT column, you can choose to receive all or part of it. To
see all of a column, use the regular syntax for selecting a column into a
variable. You also can select any part of a TEXT column by using subscripts,
as shown in the following example:

SELECT cat_descr [1,75] FROM catalog WHERE catalog_num = 10001
3-24 Informix Guide to SQL: Reference

VARCHAR(m,r)
This statement reads the first 75 bytes of the cat_descr column associated
with catalog number 10001.

Nonprintable Characters with TEXT

Both printable and non-printable characters can be inserted into text
columns. Informix products do not do any chekcing of the data that is
inserted into a column with the TEXT data type. For detailed information on
entering and displaying nonprintable characters, refer to “Nonprintable
Characters with CHAR” on page 3-7.

Multibyte Characters with TEXT

Multibyte TEXT characters must be supported by the database locale. For
more information, see Chapter 1 of the Guide to GLS Functionality. ♦

Collating TEXT Data

Text data type is collated in code-set order. For more information on collation
orders, see Chapter 1 of the Guide to GLS Functionality.

VARCHAR(m,r)
The VARCHAR data type stores single-byte and multibyte character
sequences of varying length, where m is the maximum byte size of the
column and r is the minimum amount of byte space reserved for that column.
For more information on multibyte VARCHAR sequences, see “Multibyte
Characters with VARCHAR” on page 3-26.

The VARCHAR data type is the Informix implementation of a character
varying data type.

Important: The INFORMIX-SE database server does not support this data type.

The ANSI standard data type for varying character strings is CHARACTER
VARYING, described on page 3-8.

GLS
Data Types 3-25

VARCHAR(m,r)
You must specify the maximum size (m) of the VARCHAR column. The size of
this parameter can range from 1 to 255 bytes. If you are placing an index on
a VARCHAR column, the maximum size is 254 bytes. You can store shorter,
but not longer, character strings than the value you specify.

Specifying the minimum reserved space (r) parameter is optional. This value
can range from 0 to 255 bytes but must be less than the maximum size (m) of
the VARCHAR column. If you do not specify a minimum space value, it
defaults to 0. You should specify this parameter when you initially intend to
insert rows with short or null data in this column, but later expect the data to
be updated with longer values.

Although the use of VARCHAR economizes on space used in a table, it has no
effect on the size of an index. In an index based on a VARCHAR column, each
index key has length m, the maximum size of the column.

When you store a VARCHAR value in the database, only its defined characters
are stored. The database server does not strip a VARCHAR object of any user-
entered trailing blanks, nor does the database server pad the VARCHAR to the
full length of the column. However, if you specify a minimum reserved space
(r) and some data values are shorter than that amount, some space reserved
for rows goes unused.

VARCHAR values are compared to other VARCHAR values and to character
values in the same way that character values are compared. The shorter value
is padded on the right with spaces until the values have equal lengths; then
they are compared for the full length.

Multibyte Characters with VARCHAR

Multibyte VARCHAR characters must be supported by the database locale. If
you are storing multibyte characters, make sure to calculate the number of
bytes needed. For more information, see Chapter 1 of the Guide to GLS
Functionality. ♦

GLS
3-26 Informix Guide to SQL: Reference

Data Type Conversions
Collating VARCHAR

The main difference between the NVARCHAR and the VARCHAR data types
is the difference in collation sequencing. Collation order of NVARCHAR
characters depends on the GLS locale chosen, while collation of VARCHAR
characters depends on the code set. For more information, see Chapter 1 of
the Guide to GLS Functionality. ♦

Nonprintable Characters with VARCHAR

Nonprintable VARCHAR characters are entered, displayed, and treated in the
same way as nonprintable CHAR characters are. For detailed information on
entering and displaying nonprintable characters, refer to “Nonprintable
Characters with CHAR” on page 3-7.

Storing Numeric Values in a VARCHAR Column

When you insert a numeric value into a VARCHAR column, the stored value
does not get padded with trailing blanks to the maximum length of the
column. The number of digits in a numeric VARCHAR value is the number of
characters that you need to store that value. For example, given the following
statement, the value that gets stored in table mytab is 1.

create table mytab (col1 varchar(10));
insert into mytab values (1);

Tip: VARCHAR treats C null (binary 0) and string terminators as termination
characters for nonprintable characters.

Data Type Conversions
You might want to change the data type of a column when you need to store
larger values than the current data type can accommodate. For example, if
you create a SMALLINT column and later find that you need to store integers
larger than 32,767, you must change the data type of that column to store the
larger value. You can use the ALTER TABLE statement to change the data type
of that column.

GLS
Data Types 3-27

Converting from Number to Number
If you change data types, the new data type must be able to store all the old
values. For example, if you try to convert a column from the INTEGER data
type to the SMALLINT data type and the following values exist in the
INTEGER column, the database server does not change the data type because
SMALLINT columns cannot accommodate numbers greater than 32,768:

100 400 700 50000700

The same situation might occur if you attempt to transfer data from FLOAT or
SMALLFLOAT columns to INTEGER, SMALLINT, or DECIMAL columns.

Converting from Number to Number
When you convert columns from one number data type to another, you
occasionally find rounding errors. Figure 3-8 indicates which numeric data
type conversions are acceptable and what kinds of errors you can encounter
when you convert between certain numeric data types.

Figure 3-8
Numeric Data Type Conversion Chart

From: To:

SMALLINT INTEGER SMALLFLOAT FLOAT DECIMAL

SMALLINT OK OK OK OK O

INTEGER X OK X OK O

SMALLFLOAT X X OK OK O

FLOAT X X F OK O

DECIMAL X X F F O

Legend:
 OK = No error
 O = An error can occur depending on precision of the decimal
X = An error can occur depending on data
 F = No error, but less significant digits might be lost
3-28 Informix Guide to SQL: Reference

Converting Between Number and CHAR
For example, if you convert a FLOAT column to DECIMAL(4,2), your database
server rounds off the floating-point numbers before storing them as decimal
numbers. This conversion can result in an error depending on the precision
assigned to the DECIMAL column.

Converting Between Number and CHAR
You can convert a CHAR (or NCHAR) column to a number column and vice
versa. However, if the CHAR or NCHAR column contains any characters that
are not valid in a number column (for example, the letter l instead of the
number 1), your database server cannot complete the ALTER TABLE
statement and leaves the column values as characters. You receive an error
message and the statement is rolled back (whether you are in a transaction or
not).

In INFORMIX-SE, the original table is unchanged, but the system catalog
tables might be in an inconsistent state.

Converting Between DATE and DATETIME
You can convert DATE columns to DATETIME columns. However, if the
DATETIME column contains more fields than the DATE column, the database
server either ignores the fields or fills them with zeros. The illustrations in the
following list show how these two data types are converted (assuming that
the default date format is mm/dd/yyyy):

■ If you convert DATE to DATETIME YEAR TO DAY, the database server
converts the existing DATE values to DATETIME values. For example,
the value 08/15/1994 becomes 1994-08-15.

■ If you convert DATETIME YEAR TO DAY to the DATE format, the value
1994-08-15 becomes 08/15/1994.

■ If you convert DATE to DATETIME YEAR TO SECOND, the database
server converts existing DATE values to DATETIME values and fills in
the additional DATETIME fields with zeros. For example, 08/15/1994
becomes 1994-08-15 00:00:00.

■ If you convert DATETIME YEAR TO SECOND to DATE, the database
server converts existing DATETIME to DATE values but drops fields
more precise than DAY. For example, 1994-08-15 12:15:37 becomes
08/15/1994.
Data Types 3-29

Range of Operations Using DATE, DATETIME, and INTERVAL
Range of Operations Using DATE, DATETIME,
and INTERVAL
You can use DATE, DATETIME, and INTERVAL data in a variety of arithmetic
and relational expressions. You can manipulate a DATETIME value with
another DATETIME value, an INTERVAL value, the current time (identified by
the keyword CURRENT), or a specified unit of time (identified by the
keyword UNITS). In most situations, you can use a DATE value wherever it is
appropriate to use a DATETIME value and vice versa. You also can manip-
ulate an INTERVAL value with the same choices as a DATETIME value. In
addition, you can multiply or divide an INTERVAL value by a number.

An INTERVAL column can hold a value that represents the difference between
two DATETIME values or the difference between (or sum of) two INTERVAL
values. In either case, the result is a span of time, which is an INTERVAL value.
On the other hand, if you add or subtract an INTERVAL value from a
DATETIME value, another DATETIME value is produced because the result is
a specific point in time.

Figure 3-9 indicates the range of expressions that you can use with DATE,
DATETIME, and INTERVAL data, along with the data type that results from
each expression.

Figure 3-9
Range of Expressions for DATE, DATETIME, and INTERVAL

Data Type of Operand 1 Operator Data Type of Operand 2 Result

DATE − DATETIME INTERVAL

DATETIME − DATE INTERVAL

DATE + or − INTERVAL DATETIME

DATETIME − DATETIME INTERVAL

DATETIME + or − INTERVAL DATETIME

INTERVAL + DATETIME DATETIME

INTERVAL + or − INTERVAL INTERVAL

 (1 of 2)
3-30 Informix Guide to SQL: Reference

Manipulating DATETIME Values
No other combinations are allowed. You cannot add two DATETIME values
because this operation does not produce either a point in time or a span of
time. For example, you cannot add December 25 and January 1, but you can
subtract one from the other to find the time span between them.

Manipulating DATETIME Values
You can subtract most DATETIME values from each other. Dates can be in any
order and the result is either a positive or a negative INTERVAL value. The
first DATETIME value determines the field precision of the result.

If the second DATETIME value has fewer fields than the first, the shorter value
is extended automatically to match the longer one. (See the discussion of the
EXTEND function in the “Expression” segment in Chapter 1 of the Informix
Guide to SQL: Syntax.) In the following example, subtracting the DATETIME
YEAR TO HOUR value from the DATETIME YEAR TO MINUTE value results in
a positive interval value of 60 days, 1 hour, and 30 minutes. Because minutes
were not included in the second value, the database server sets the minutes
for the result to 0.

DATETIME (1994-9-30 12:30) YEAR TO MINUTE
- DATETIME (1994-8-1 11) YEAR TO HOUR

Result: INTERVAL (60 01:30) DAY TO MINUTE

DATETIME − CURRENT INTERVAL

CURRENT − DATETIME INTERVAL

INTERVAL + CURRENT DATETIME

CURRENT + or − INTERVAL DATETIME

DATETIME + or − UNITS DATETIME

INTERVAL + or − UNITS INTERVAL

INTERVAL ∗ or / NUMBER INTERVAL

Data Type of Operand 1 Operator Data Type of Operand 2 Result

 (2 of 2)
Data Types 3-31

Manipulating DATETIME with INTERVAL Values
If the second DATETIME value has more fields than the first (regardless of
whether the precision of the extra fields is larger or smaller than those in the
first value), the additional fields in the second value are ignored in the
calculation.

In the following expression (and result), the year is not included for the
second value. Therefore, the year is set automatically to the current year, in
this case 1994, and the resulting INTERVAL is negative, indicating that the
second date is later than the first.

DATETIME (1994-9-30) YEAR TO DAY
- DATETIME (10-1) MONTH TO DAY

Result: INTERVAL (1) DAY TO DAY [assuming current year
is 1994]

Manipulating DATETIME with INTERVAL Values
INTERVAL values can be added to or subtracted from DATETIME values. In
either case, the result is a DATETIME value. If you are adding an INTERVAL
value to a DATETIME value, the order of values is unimportant; however, if
you are subtracting, the DATETIME value must come first. Adding or
subtracting an INTERVAL value simply moves the DATETIME value forward
or backward in time. The expression shown in the following example moves
the date ahead three years and five months:

DATETIME (1991-8-1) YEAR TO DAY
+ INTERVAL (3-5) YEAR TO MONTH

Result: DATETIME (1995-01-01) YEAR TO DAY

Important: Evaluate the logic of your addition or subtraction. Remember that
months can be 28, 29, 30, or 31 days and that years can be 365 or 366 days.
3-32 Informix Guide to SQL: Reference

Manipulating DATE with DATETIME and INTERVAL Values
In most situations, the database server automatically adjusts the calculation
when the initial values do not have the same precision. However, in certain
situations, you must explicitly adjust the precision of one value to perform
the calculation. If the INTERVAL value you are adding or subtracting has
fields that are not included in the DATETIME value, you must use the EXTEND
function to explicitly extend the field qualifier of the DATETIME value. (For
more information on the EXTEND function, see the Expression segment in
Chapter 1 of the Informix Guide to SQL: Syntax.) For example, you cannot
subtract a minute INTERVAL value from the DATETIME value in the previous
example that has a YEAR TO DAY field qualifier. You can, however, use the
EXTEND function to perform this calculation, as shown in the following
example:

EXTEND (DATETIME (1994-8-1) YEAR TO DAY, YEAR TO MINUTE)
- INTERVAL (720) MINUTE(3) TO MINUTE

Result: DATETIME (1994-07-31 12:00) YEAR TO MINUTE

The EXTEND function allows you to explicitly increase the DATETIME
precision from YEAR TO DAY to YEAR TO MINUTE. This allows the database
server to perform the calculation, with the resulting extended precision of
YEAR TO MINUTE.

Manipulating DATE with DATETIME and INTERVAL Values
You can use DATE values in arithmetic expressions with DATETIME or
INTERVAL values by writing expressions that allow the manipulations shown
in Figure 3-10.

Figure 3-10
Results of Expressions That Manipulate DATE with DATETIME or INTERVAL Values

Expression Result

DATE – DATETIME INTERVAL

DATETIME – DATE INTERVAL

DATE + or – INTERVAL DATETIME
Data Types 3-33

Manipulating DATE with DATETIME and INTERVAL Values
In the cases shown in Figure 3-10, DATE values are first converted to their
corresponding DATETIME equivalents, and then the expression is computed
normally.

Although you can interchange DATE and DATETIME values in many
situations, you must indicate whether a value is a DATE or a DATETIME data
type. A DATE value can come from the following sources:

■ A column or program variable of type DATE

■ The TODAY keyword

■ The DATE() function

■ The MDY function

■ A DATE literal

A DATETIME value can come from the following sources:

■ A column or program variable of type DATETIME

■ The CURRENT keyword

■ The EXTEND function

■ A DATETIME literal

When you represent DATE and DATETIME values as quoted character strings,
the fields in the strings must be in proper order. In other words, when a DATE
value is expected, the string must be in DATE format and when a DATETIME
value is expected, the string must be in DATETIME format. For example, you
can use the string '10/30/1994' as a DATE string but not as a DATETIME
string. Instead, you must use '1994-10-30' or '94-10-30' as the DATETIME
string.

You also can subtract one DATE value from another DATE value, but the result
is a positive or negative INTEGER value rather than an INTERVAL value. If an
INTERVAL value is required, you can either convert the INTEGER value into
an INTERVAL value or one of the DATE values into a DATETIME value before
subtracting.
3-34 Informix Guide to SQL: Reference

Manipulating INTERVAL Values
For example, the following expression uses the DATE() function to convert
character string constants to DATE values, calculates their difference, and
then uses the UNITS DAY keywords to convert the INTEGER result into an
INTERVAL value:

(DATE ('5/2/1994') - DATE ('4/6/1955')) UNITS DAY

Result: INTERVAL (12810) DAY(5) TO DAY

If you need YEAR TO MONTH precision, you can use the EXTEND function on
the first DATE operand, as shown in the following example:

EXTEND (DATE ('5/2/1994'), YEAR TO MONTH) - DATE ('4/6/1955')

Result: INTERVAL (39-01) YEAR TO MONTH

The resulting INTERVAL precision is YEAR TO MONTH because the DATETIME
value came first. If the DATE value had come first, the resulting INTERVAL
precision would have been DAY(5) TO DAY.

Manipulating INTERVAL Values
You can add or subtract INTERVAL values as long as both values are from the
same class; that is, both are year-month or both are day-time. In the following
example, a SECOND TO FRACTION value is subtracted from a MINUTE TO
FRACTION value:

INTERVAL (100:30.0005) MINUTE(3) TO FRACTION(4)
- INTERVAL (120.01) SECOND(3) TO FRACTION

Result: INTERVAL (98:29.9905) MINUTE TO FRACTION(4)

Note the use of numeric qualifiers to alert the database server that the
MINUTE and FRACTION in the first value and the SECOND in the second
value exceed the default number of digits.

When you add or subtract INTERVAL values, the second value cannot have a
field with greater precision than the first. The second INTERVAL, however,
can have a field of smaller precision than the first. For example, the second
INTERVAL can be HOUR TO SECOND when the first is DAY TO HOUR. The
additional fields (in this case MINUTE and SECOND) in the second INTERVAL
value are ignored in the calculation.
Data Types 3-35

Multiplying or Dividing INTERVAL Values
Multiplying or Dividing INTERVAL Values
You can multiply or divide INTERVAL values by a number that can be an
integer or a fraction. However, any remainder from the calculation is ignored
and the result is truncated. The following expression multiplies an INTERVAL
by a fraction:

INTERVAL (15:30.0002) MINUTE TO FRACTION(4) * 2.5

Result: INTERVAL (38:45.0005) MINUTE TO FRACTION(4)

In this example, 15 ∗ 2.5 = 37.5 minutes, 30 ∗ 2.5 = 75 seconds, and
2 ∗ 2.5 = 5 fraction(4). The 0.5 minute is converted into 30 seconds and
60 seconds are converted into 1 minute, which produces the final result of
38 minutes, 45 seconds, and 0.0005 of a second. The results of any calculation
include the same amount of precision as the original INTERVAL value.
3-36 Informix Guide to SQL: Reference

4
Chapter
Environment Variables
Types of Environment Variables 4-5

Where to Set Environment Variables 4-6
Setting Environment Variables at the System Prompt. 4-6
Setting Environment Variables in an Environment-Configuration File 4-6
Setting Environment Variables at Login Time 4-7

Manipulating Environment Variables 4-8
Setting Environment Variables 4-8
Viewing Your Current Settings 4-9
Unsetting Environment Variables 4-9
Modifying the Setting of an Environment Variable 4-9

Checking Environment Variables with the chkenv Utility 4-10

Rules of Precedence 4-11

List of Environment Variables 4-12

Environment Variables 4-15
ARC_DEFAULT 4-15
ARC_KEYPAD 4-16
DBANSIWARN. 4-17
DBBLOBBUF 4-18
DBCENTURY 4-18
DBDATE . 4-21
DBDELIMITER 4-24
DBEDIT . 4-24
DBFLTMASK 4-25
DBLANG . 4-25
DBMONEY . 4-27
DBONPLOAD 4-28
DBPATH . 4-29

4-2 Infor
DBPRINT . 4-32
DBREMOTECMD 4-33
DBSPACETEMP 4-34
DBTEMP . 4-35
DBTIME . 4-36
DBUPSPACE. 4-39
DELIMIDENT 4-39
ENVIGNORE 4-40
FET_BUF_SIZE 4-41
INFORMIXC . 4-41
INFORMIXCOB 4-42
INFORMIXCOBDIR 4-43
INFORMIXCOBSTORE 4-43
INFORMIXCOBTYPE 4-44
INFORMIXCONRETRY 4-44
INFORMIXCONTIME 4-45
INFORMIXDIR 4-46
INFORMIXOPCACHE 4-47
INFORMIXSERVER 4-47
INFORMIXSHMBASE 4-48
INFORMIXSQLHOSTS 4-49
INFORMIXSTACKSIZE 4-49
INFORMIXTERM 4-50
INF_ROLE_SEP. 4-51
NODEFDAC . 4-51
ONCONFIG . 4-52
OPTCOMPIND 4-53
PATH . 4-54
PDQPRIORITY 4-54
PLCONFIG . 4-55
PSORT_DBTEMP 4-56
PSORT_NPROCS 4-57

Default Values for Ordinary Sorts 4-57
Default Values for Attached Indexes 4-58

SQLEXEC . 4-58
SQLRM . 4-59
SQLRMDIR . 4-59
TERM . 4-60
mix Guide to SQL: Reference

TERMCAP . 4-60
TERMINFO. 4-61
THREADLIB . 4-61

Index of Environment Variables 4-62
Environment Variables 4-3

4-4 Infor
mix Guide to SQL: Reference

Various environment variables affect the functionality of your Informix
products. You can set environment variables that identify your terminal,
specify the location of your software, and define other parameters. The
environment variables discussed in this chapter are grouped and listed
alphabetically beginning on page 4-12. In addition, an index of environment
variables is included at the end of this chapter, on page 4-62.

Some environment variables are required, and others are optional. For
example, you must set—or accept the default setting for—certain UNIX
environment variables.

This chapter describes how to use the environment variables that apply to
one or more Informix products and shows how to set them.

Types of Environment Variables
The environment variables discussed in this chapter fall into the following
categories:

■ Informix environment variables

Set these standard environment variables when you want to work
with Informix products. Each product manual specifies the
environment variables that you must set to use that product.

■ UNIX environment variables

Informix products rely on the correct setting of certain standard
UNIX system environment variables. The PATH and TERM
environment variables must always be set. You might also have to set
the TERMCAP or TERMINFO environment variable to use some
products effectively.
Environment Variables 4-5

Where to Set Environment Variables
The GLS environment variables that allow you to work in a nondefault locale
are described in Chapter 2 of the Guide to GLS Functionality. However, these
variables are included in the list of environment variables on page 4-12 and
in the index table in Figure 4-2 on page 4-62. ♦

Where to Set Environment Variables
You can set environment variables in the following ways:

■ At the system prompt on the command line

■ In an environment-configuration file

■ In a login file

Setting Environment Variables at the System Prompt
When you set an environment variable at the system prompt, you must
reassign it the next time you log in to the system. For more information about
how to do this, see “Manipulating Environment Variables” on page 4-8.

Setting Environment Variables in an Environment-
Configuration File
The environment-configuration file is a common or private file where you
can define all the environment variables that are used by Informix products.
Using an environment-configuration file reduces the number of environment
variables that you must set at the command line or in a shell file.

The common (shared) environment-configuration file resides in the
$INFORMIXDIR/etc/informix.rc file. The permission for this shared file must
be set to 644. A user can override the system or common environment
variables by setting variables in a private environment-configuration file. The
private environment-configuration file must have the following
characteristics:

■ The file is stored in the user’s home directory

■ The file is named .informix

GLS
4-6 Informix Guide to SQL: Reference

Setting Environment Variables at Login Time
■ Permissions are set, by the user, to readable

An environment-configuration file can contain comment lines (preceded by
#) and variable lines and their values (separated by blanks and tabs), as
shown in the following example:

This is an example of an environment-configuration file
#
DBDATE DMY4-
#
These are ESQL/COBOL environment variable settings
#
INFORMIXCOB rmcobol
INFORMIXCOBTYPE rm85
INFORMIXCOBDIR /usr/lib/rmcobol

You can use the ENVIGNORE environment variable to override one or more
entries in this file. Use the Informix chkenv utility to perform a sanity check
on the contents of an environment-configuration file. The chkenv utility
returns an error message if the file contains a bad environment-variable entry
or if the file is too large. The chkenv utility is described on page 4-10.

The first time you set an environment variable in a shell file or configuration
file, before you work with your Informix product you should source the file
(if you are using a C shell) or use a period (.) to execute an environment-
configuration file (if you are using a Bourne or Korn shell). This procedure
tells the shell process to read your entry.

Setting Environment Variables at Login Time
When you set an environment variable in your .login, .cshrc, or .profile file,
it is assigned automatically every time you log in to the system.

Add the commands that set your environment variables to the following
login file:

For the C shell .login or .cshrc
For the Bourne shell or Korn shell .profile
Environment Variables 4-7

Manipulating Environment Variables
Manipulating Environment Variables
The following sections discuss setting, unsetting, viewing, and modifying
environment variables. If you are already using an Informix product, some or
all of the appropriate environment variables might already be set.

Setting Environment Variables
Use standard UNIX commands to set environment variables. Depending on
the type of shell you use, Figure 4-1 shows how you set the ABCD
environment variable to value. The environment variables are case-sensitive.

Figure 4-1
Different Shell Settings

Korn-shell syntax supports a shortcut, as shown in the last line of Figure 4-1.

The following diagram shows how the syntax for setting an environment
variable is represented throughout this chapter. These diagrams indicate the
setting for the C shell; for the Bourne or Korn shells, use the syntax shown in
Figure 4-1.

For more information on how to read syntax diagrams, see “Command-Line
Conventions” in the Introduction.

Shell Command

C setenv ABCD values

Bourne ABCD=value
export ABCD

Korn ABCD=value
export ABCD

Korn export ABCD=value

ABCD valuesetenv
4-8 Informix Guide to SQL: Reference

Viewing Your Current Settings
Viewing Your Current Settings
After one or more Informix products have been installed, enter the following
command at the system prompt to view your current environment settings:

Unsetting Environment Variables
To unset an environment variable, enter the following command:

Modifying the Setting of an Environment Variable
Sometimes you must add information to an environment variable that is
already set. For example, the PATH environment variable is always set in
UNIX environments. When you use an Informix product, you must add to the
PATH the name of the directory where the executable files for the Informix
products are stored.

In the following example, the INFORMIXDIR is /usr/informix. (That is,
during installation, the Informix products were installed in the /usr /informix
directory.) The executable files are in the bin subdirectory, /usr/informix/bin.
To add this directory to the front of the C shell PATH environment variable,
use the following command:

setenv PATH /usr/informix/bin:$PATH

UNIX Version Command

BSD UNIX env

UNIX System V printenv

Shell Command

C unsetenv ABCD

Bourne or Korn unset ABCD
Environment Variables 4-9

Checking Environment Variables with the chkenv Utility
Rather than entering an explicit pathname, you can use the value of the
INFORMIXDIR environment variable (represented as $INFORMIXDIR), as
shown in the following example:

setenv INFORMIXDIR /usr/informix
setenv PATH $INFORMIXDIR/bin:$PATH

You might prefer to use this version to ensure that your PATH entry does not
contradict the path that was set in INFORMIXDIR and so that you do not have
to reset PATH whenever you change INFORMIXDIR.

If you set the PATH environment variable on the C shell command line, you
might need to include curly braces with the existing INFORMIXDIR and
PATH, as shown in the following command:

setenv PATH ${INFORMIXDIR}/bin:${PATH}

For more information about setting and modifying environment variables,
refer to the manuals for your operating system.

Checking Environment Variables with the chkenv
Utility
The chkenv utility checks the validity of shared or private environment-
configuration files. Use it to provide debugging information when you
define, in an environment-configuration file, all the environment variables
that are used by your Informix products.

The common environment-configuration file is stored in
$INFORMIXDIR/etc/informix.rc. A private environment-configuration
file is stored in the user’s home directory as .informix.

Element Purpose Key Considerations
filename Specifies the name of the

environment-configuration file
that you want to debug.

None.

chkenv filename
4-10 Informix Guide to SQL: Reference

Rules of Precedence
Issue the following command to check the contents of the shared
environment-configuration file:

chkenv informix.rc

The chkenv utility returns an error message if it finds a bad environment-
variable entry in the file or if the file is too large. You can modify the file and
rerun the utility to check the modified environment-variable settings.

Informix products ignore all lines in the environment-configuration file,
starting at the point of the error, if the chkenv utility returns the following
message:

-33500 filename: Bad environment variable on line number.

If you want the product to ignore specified environment-variable settings in
the file, you can also set the ENVIGNORE environment variable. For a
discussion of the use and format of environment-configuration files and the
ENVIGNORE environment variable, see page 4-40.

Rules of Precedence
When an Informix product accesses an environment variable, normally the
following rules of precedence apply:

1. The highest precedence goes to the value that has been defined in the
environment (shell) by explicitly setting the value at the shell
prompt.

2. The second-highest precedence goes to the value that has been
defined in the private environment-configuration file in the user’s
home directory
(~/.informix).

3. The next-highest precedence goes to the value that has been defined
in the common environment-configuration file
($INFORMIXDIR/etc/informix.rc).

4. The next highest precedence goes to the value that has been defined
in your .login file.

5. The lowest precedence goes to the default value.
Environment Variables 4-11

List of Environment Variables
For precedence information about GLS environment variables, see Chapter 2
of the Guide to GLS Functionality. ♦

List of Environment Variables
The following table contains an alphabetical list of the environment variables
that you can set for an Informix database server and SQL API products. Most
of these environment variables are described in this chapter on the pages
listed in the last column.

The GLS environment variables are discussed in Chapter 2 of the Guide to GLS
Functionality. ♦

GLS

GLS

Environment Variable Restrictions Page

ARC_DEFAULT OnLine only 4-15

ARC_KEYPAD OnLine only 4-15

CC8BITLEVEL ESQL/C only Guide to GLS
Functionality

CLIENT_LOCALE Guide to GLS
Functionality

DBANSIWARN 4-17

DBBLOBBUF OnLine only 4-18

DBCENTURY SQL APIs only 4-18

DBDATE 4-21; Guide to
GLS Functionality

DBDELIMITER 4-24

DBEDIT 4-24

DBFLTMASK DB-Access only 4-25

DBLANG 4-25; Guide to
GLS Functionality

 (1 of 4)
4-12 Informix Guide to SQL: Reference

List of Environment Variables
DBMONEY 4-27; Guide to
GLS Functionality

DBONPLOAD High-Performance Loader only 4-28

DBPATH 4-29

DBPRINT 4-32

DBREMOTECMD OnLine only 4-33

DBSPACETEMP OnLine only 4-34

DBTEMP SE only 4-35

DBTIME SQL APIs only 4-36; Guide to
GLS Functionality

DBUPSPACE 4-39

DB_LOCALE Guide to GLS
Functionality

DELIMIDENT 4-39

ENVIGNORE 4-40

ESQLMF Guide to GLS
Functionality

FET_BUF_SIZE SQL APIs and DB-Access only 4-41

GLS8BITSYS Guide to GLS
Functionality

GL_DATE Guide to GLS
Functionality

GL_DATETIME Guide to GLS
Functionality

INFORMIXC ESQL/C only 4-41

INFORMIXCOB ESQL/COBOL only 4-42

INFORMIXCOBDIR ESQL/COBOL only 4-43

Environment Variable Restrictions Page

 (2 of 4)
Environment Variables 4-13

List of Environment Variables
INFORMIXCOBSTORE ESQL/COBOL only 4-43

INFORMIXCOBTYPE ESQL/COBOL only 4-44

INFORMIXCONRETRY 4-44

INFORMIXCONTIME 4-45

INFORMIXDIR 4-46

INFORMIXOPCACHE OnLine/Optical only 4-47

INFORMIXSERVER 4-47

INFORMIXSHMBASE OnLine only 4-48

INFORMIXSQLHOSTS 4-49

INFORMIXSTACKSIZE OnLine only 4-49

INFORMIXTERM DB-Access only 4-50

INF_ROLE_SEP OnLine only 4-51

NODEFDAC 4-51

ONCONFIG OnLine only 4-52

OPTCOMPIND OnLine only 4-53

PATH 4-54

PDQPRIORITY OnLine only 4-54

PLCONFIG High-Performance Loader 4-55

PSORT_DBTEMP OnLine only 4-56

PSORT_NPROCS OnLine only 4-57

SERVER_LOCALE Guide to GLS
Functionality

SQLEXEC 4-58

SQLRM (obsolete) 4-59

Environment Variable Restrictions Page

 (3 of 4)
4-14 Informix Guide to SQL: Reference

Environment Variables
Environment Variables
The following sections discuss the environment variables used by Informix
products.

ARC_DEFAULT
When you use the ON-Archive archive and tape-management system for
INFORMIX-OnLine Dynamic Server, you can set the ARC_DEFAULT
environment variable to indicate where a personal default qualifier file is
located.

For example, to set the ARC_DEFAULT environment variable to specify the
file /usr/jane/arcdefault.janeroe, enter the following command:

setenv ARC_DEFAULT /usr/jane/arcdefault.janeroe

For more information on archiving, see the INFORMIX-OnLine Dynamic
Server Archive and Backup Guide.

SQLRMDIR (obsolete) 4-59

TERM 4-60

TERMCAP 4-60

TERMINFO 4-61

THREADLIB ESQL/C only 4-61

Environment Variable Restrictions Page

 (4 of 4)

setenv ARC_DEFAULT pathname

pathname is the full pathname of the personal default qualifier file.
Environment Variables 4-15

ARC_KEYPAD
ARC_KEYPAD
If you use the ON-Archive archive and tape-management system for the
INFORMIX-OnLine Dynamic Server, you can set your ARC_KEYPAD
environment variable to point to a tctermcap file that is different from the
default tctermcap file. The default is the $INFORMIXDIR/etc/tctermcap file,
and it contains instructions on how to modify the tctermcap file.

The tctermcap file serves the following purposes for the ON-Archive menu
interface:

■ It defines the terminal control attributes that allow ON-Archive to
manipulate the screen and cursor.

■ It defines the mappings between commands and key presses.

■ It defines the characters used in drawing menus and borders for an
API.

For example, to set the ARC_KEYPAD environment variable to specify the file
/usr/jane/tctermcap.janeroe, enter the following command:

setenv ARC_KEYPAD /usr/jane/tctermcap.janeroe

For more information on archiving, see the INFORMIX-OnLine Dynamic
Server Archive and Backup Guide.

setenv ARC_KEYPAD pathname

pathname is the pathname for a tctermcap file.
4-16 Informix Guide to SQL: Reference

DBANSIWARN
DBANSIWARN
Setting the DBANSIWARN environment variable indicates that you want to
check for Informix extensions to ANSI standard syntax. Unlike most
environment variables, you do not need to set DBANSIWARN to a value—
setting it to any value or to no value, as shown in the following diagram, is
sufficient.

Setting the DBANSIWARN environment variable for DB-Access is
functionally equivalent to including the -ansi flag when invoking the utility
from the command line. If you set DBANSIWARN before you run DB-Access,
warnings are displayed on the screen within the SQL menu.

Set the DBANSIWARN environment variable before you compile an
INFORMIX-ESQL/C or INFORMIX-ESQL/COBOL program to check for
Informix extensions to ANSI standard syntax. When Informix extensions to
ANSI standard syntax are encountered in your program at compile time,
warning messages are written to the screen.

At run time, the DBANSIWARN environment variable causes the SQL
Communication Area (SQLCA) variable sqlca.sqlwarn.sqlwarn5 to be set to
W when a statement that is not ANSI-compliant is executed. (For more infor-
mation on SQLCA, see the INFORMIX-ESQL/C Programmer’s Manual or the
INFORMIX-ESQL/COBOL Programmer’s Manual.)

Once you set DBANSIWARN, Informix extension checking is automatic until
you log out or unset DBANSIWARN. To turn off Informix extension checking,
unset the DBANSIWARN environment variable by entering the following
command:

unsetenv DBANSIWARN

setenv DBANSIWARN
Environment Variables 4-17

DBBLOBBUF
DBBLOBBUF
The DBBLOBBUF environment variable controls whether a blob is stored
temporarily in memory or in a file while being unloaded with the UNLOAD
statement.

If the blob is smaller than the default of 10 coagulates or the setting of the
DBBLOBBUF environment variable, it is temporarily stored in memory. If the
blob is larger than the default or the setting of the environment variable, it is
written to a temporary file. This environment variable applies to the
UNLOAD command only.

For instance, to set a buffer size of 15 kilobytes, set the DBBLOBBUF
environment variable as shown in the following example:

setenv DBBLOBBUF 15

In the example, any blobs smaller than 15 kilobytes are stored temporarily in
memory. Blobs larger than 15 kilobytes are stored temporarily in a file.

DBCENTURY
The environment variable DBCENTURY allows you to choose the appropriate
expansion for two-digit year DATE and DATETIME values.

setenv DBBLOBBUF n

n represents the maximum size of a blob in kilobytes.

C

R

F

DBCENTURYsetenv P
4-18 Informix Guide to SQL: Reference

DBCENTURY
Previously, if only the decade was provided for a literal DATE or DATETIME
value in a table column, the present century was used to expand the year. For
example, 12/31/96 would have been expanded to 12/31/1996. With this
release, three new algorithms are added to complete the century value of a
year: past (P), future (F), and closest (C).

When the DBCENTURY environment variable is not set, the current century
is used as the system default.

You can override the default by specifying all four digits.

The following examples illustrate how the DBCENTURY environment
variable expands DATE and DATETIME year formats.

Algorithm Explanation

P = Past The past and present centuries are used to expand the
year value. These two dates are compared against the
current date, and the date that is prior to the current
date is chosen. If both dates are prior to the current
date, the date that is closest to the current date is
chosen.

F = Future The present and the next centuries are used to expand
the year value. These two dates are compared against
the current date, and the date that is after the current
date is chosen. If both the expansions are after the
current date, the date that is closest to the current date
is chosen.

C = Closest The past, present, and next centuries are used to
expand the year value, and the date that is closest to the
current date is used.

R = Present The present century is used to expand the year value.
Environment Variables 4-19

DBCENTURY
Behavior of DBCENTURY = P

Example data type: DATE
Current date: 4/6/1996
User enters: 1-1-1
DBCENTURY = P, Past century algorithm
Previous century expansion : 1/1/1801
Present century expansion: 1/1/1901
Analysis: Both results are prior to the current date, but 1/1/1901 is closer to
the current date. 1/1/1901 is chosen.

Behavior of DBCENTURY = F

Example data type: DATETIME year to month
Current date: 5/7/2005
User enters: 1/1/1
DBCENTURY = F, Future century algorithm
Present century expansion: 2001-1
Next century expansion: 2101-1
Analysis: Only date 2101-1 is after the current date and it is chosen as the
expansion of the year value.

Behavior of DBCENTURY = C

Example data type: DATE
Current date: 4/6/1996
User enters: 1-1-1
DBCENTURY = C, Closest century algorithm
Previous century expansion : 1/1/1801
Present century expansion: 1/1/1901
Next century expansion: 1/1/2001
Analysis: Because the next century expansion is the closest to the current date,
1/1/2001 is chosen.

Behavior of DBCENTURY = R

Example data type: DATETIME year to month
Current date: 4/6/1996
User enters: 1/1/1
DBCENTURY = R, Present century algorithm
Present century expansion: 1901-1
Analysis: The present century expansion is used.
4-20 Informix Guide to SQL: Reference

DBDATE
DBDATE
The DBDATE environment variable specifies the end-user formats of DATE
values. End-user formats affect the following situations:

■ When you input DATE values, Informix products use the DBDATE
environment variable to interpret the input. For example, if you
specify a literal DATE value in an INSERT statement, Informix
database servers expect this literal value to be compatible with the
format specified by DBDATE. Similarly, the database server inter-
prets the date you are specifying as input to the DATE() function in
the format specified by the DBDATE environment variable.

■ When you display DATE values, Informix products use the DBDATE
environment variable to format the output. For example, if you use
the INFORMIX-ESQL/COBOL function ECO-DAT to format an internal
date value, Informix SQL API products use the DBDATE setting to
create the string version of the date.

This section describes standard DBDATE formats. For a description of era-
based formats, see Chapter 2 of the Guide to GLS Functionality. ♦

DBDATE Standard
DBDATE
Formats

Era-Based
DBDATE Formats,
see Guide to GLS

setenv

GLS
Environment Variables 4-21

DBDATE
With standard formats, you can specify the following attributes:

■ The order of the month, day, and year in a date

■ Whether the year should be printed with two digits (Y2) or four
digits (Y4)

■ The separator between the month, day, and year

For the U.S. ASCII English locale, the default setting for DBDATE is MDY4/,
where M represents the month, D represents the day, Y4 represents a four-digit
year, and slash (/) is a separator (for example, 10/08/1994).

Other acceptable characters for the separator are a hyphen (-), a period (.), or
a zero (0). Use the zero to indicate no separator.

The slash (/) appears if you attempt to use a character other than a hyphen,
period, or zero as a separator, or if you do not include a separator character
in the DBDATE definition.

-

.
0

MD /

Y4 M D

Y2

Y2 D M

Standard
DBDATE
Formats

DM Y4

- . / are characters that can be used as separators in a date
format.

0 indicates that no separator is displayed.
D, M are characters representing the day and the month.
Y2, Y4 are characters that represent the year and the number of

digits in the year.
4-22 Informix Guide to SQL: Reference

DBDATE
The following table shows a few variations of setting the DBDATE
environment variable.

Notice that the formats Y4MD* (the asterisk is an unacceptable separator) and
MDY4 (no separator is defined) both display the default (slash) as a separator.

Important: If you use the Y2 format, understand that the setting of the DBCENTURY
environment variable affects how the DATE values are expanded.

Also, certain routines called by INFORMIX-ESQL/COBOL or INFORMIX-ESQL/C
can use the DBTIME variable, rather than DBDATE, to set DATETIME formats to
international specifications. For more information, see the discussion of the DBTIME
environment variable on page 4-36 and the “INFORMIX-ESQL/C Programmer’s
Manual” or the “INFORMIX-ESQL/COBOL Programmer’s Manual.”

The setting of the DBDATE variable takes precedence over that of the
GL_DATE environment variable, as well as over the default DATE formats as
specified by CLIENT_LOCALE. For information about the GL_DATE and
CLIENT_LOCALE environment variables, see the Guide to GLS Functionality. ♦

Variation October 8, 1994, appears as:

MDY4/ 10/08/1994

DMY2- 08-10-94

MDY4 10/08/1994

Y2DM. 94.08.10

MDY20 100894

Y4MD* 1994/10/08

GLS
Environment Variables 4-23

DBDELIMITER
DBDELIMITER
The DBDELIMITER environment variable specifies the field delimiter used
by the dbexport utility and with the LOAD and UNLOAD statements.

The delimiter can be any single character, except the characters in the
following list:

■ Hexadecimal numbers (0 through 9, a through f, A through F)

■ NEWLINE or CTRL-J

■ The backslash symbol (\)

The vertical bar (|=ASCII 124) is the default. To change the field delimiter to
a plus (+), set the DBDELIMITER environment variable, as shown in the
following example:

setenv DBDELIMITER '+'

DBEDIT
The DBEDIT environment variable lets you name the text editor that you
want to use to work with SQL statements and command files in DB-Access. If
DBEDIT is set, the specified editor is called directly. If DBEDIT is not set, you
are prompted to specify an editor as the default for the rest of the session.

For most systems, the default editor is vi. If you use another editor, be sure
that it creates flat ASCII files. Some word processors in document mode
introduce printer control characters that can interfere with operation of your
Informix product.

setenv 'delimiter'DBDELIMITER

delimiter is the field delimiter for unloaded data files.

setenv DBEDIT editor

editor is the name of the text editor you want to use.
4-24 Informix Guide to SQL: Reference

DBFLTMASK
To specify the EMACS text editor, set the DBEDIT environment variable by
entering the following command:

setenv DBEDIT emacs

DBFLTMASK
By default, Informix client applications (including DB-Access utility or any
ESQL program) display the floating-point values of data types FLOAT,
SMALLFLOAT, and DECIMAL with 16 digits to the right of the decimal point.
However, the actual number of decimal digits displayed depends on the size
of the character buffer.

To override the default number of decimal digits in the display, you can set
the DBFLTMASK environment variable to the number of digits desired.

DBLANG
The DBLANG environment variable specifies the subdirectory of
$INFORMIXDIR or the full pathname of the directory that contains the
compiled message files used by an Informix product.

setenv DBFLTMASK n

n is the number of decimal digits you want the Informix
client application to display in the floating-point values.

setenv DBLANG relative_path

full_path

relative_path is the subdirectory of $INFORMIXDIR.

full_path is the full pathname of the directory that contains the
compiled message files.
Environment Variables 4-25

DBLANG
By default, Informix products put compiled messages in a locale-specific
subdirectory of the $INFORMIXDIR/msg directory. These compiled message
files have the suffix .iem. If you want to use a message directory other than
$INFORMIXDIR/msg, where, for example, you can store message files that
you have created, perform the following steps:

1. Use the mkdir command to create the appropriate directory for the
message files. You can make this directory under the directory
$INFORMIXDIR or $INFORMIXDIR/msg or you can make it under
any other directory.

2. Set the owner and group of the new directory to informix and the
access permission for this directory to 755.

3. Set the DBLANG environment variable to the new directory. If this
directory is a subdirectory of $INFORMIXDIR or
$INFORMIXDIR/msg, you only need to list the relative path to the
new directory. Otherwise, you must specify the full pathname of the
directory.

4. Copy the .iem files or the message files that you created to the new
message directory specified by $DBLANG. All the files in the mes-
sage directory should have the owner and group informix and
access permission 644.

Informix products that use the default, U.S. ASCII English, search for message
files in the following order:

1. In $DBLANG, if DBLANG is set to a full pathname

2. In $INFORMIXDIR/msg/$DBLANG, if DBLANG is set to a relative
pathname

3. In $INFORMIXDIR/$DBLANG, if DBLANG is set to a relative
pathname

4. In $INFORMIXDIR/msg/en_us/0333

5. In $INFORMIXDIR/msg/en_us.8859-1

6. In $INFORMIXDIR/msg

7. In $INFORMIXDIR/msg/english

For more information on access paths for messages, see the description of
DBLANG in the Guide to GLS Functionality. ♦

GLS
4-26 Informix Guide to SQL: Reference

DBMONEY
DBMONEY
The DBMONEY environment variable specifies the display format of
monetary values using FLOAT, DECIMAL, or MONEY data types.

If you use any character except an alphabetic character for front or back, you
must enclose the character in quotes.

When you display MONEY values, Informix products use the DBMONEY
environment variable to format the output. For example, if you use the
INFORMIX-ESQL/COBOL function ECO-FIN to format an internal monetary
value, Informix SQL API products use the DBMONEY setting to format the
value.

Tip: The setting of DBMONEY does not affect the internal format of the MONEY
column in the database.

,

.

back

DBMONEYsetenv

'$'

front

$ is the default symbol that precedes the MONEY value.
, is an optional symbol (comma) that separates the integral from the

fractional part of the MONEY value.
. is the default symbol that separates the integral from the fractional

part of the MONEY value.
back represents the optional symbol that follows the MONEY value. The

back symbol can be up to seven characters and can contain any
character except an integer, a comma, or a period. If back contains a
dollar sign ($), you must enclose the whole string in single quotes
(').

front is the optional symbol that precedes the MONEY value. The front
symbol can be up to seven characters and can contain any character
except an integer, a comma, or a period. If front contains a dollar
sign ($), you must enclose the whole string in single quotes (').
Environment Variables 4-27

DBONPLOAD
If you do not set DBMONEY, then MONEY values for the default locale, U.S.
ASCII English, are formatted with a dollar sign ($) preceding the MONEY
value, a period (.) separating the integral from the fractional part of the
MONEY value, and no back symbol. For example, 10050 is formatted as
$100.50.

Suppose you want to represent MONEY values in DM (Deutsche Mark),
which uses the currency symbol DM and a comma. Set the DBMONEY
environment variable by entering the following command:

setenv DBMONEY DM,

Here, DM is the currency symbol preceding the MONEY value, and a comma
separates the integral from the fractional part of the MONEY value. As a
result, the amount 10050 is displayed as DM100,50.

For more information about how the DBMONEY environment variable
handles MONEY formats for nondefault locales, see the Chapter 2 of the Guide
to GLS Functionality. ♦

DBONPLOAD
The DBONPLOAD environment variable specifies the name of the database
that the onpload utility of the High-Performance Loader uses. If the
DBONPLOAD environment variable is set, the specified name is the name of
the database. If the DBONPLOAD environment variable is not set, the default
name of the database is onpload.

For example, to specify the name load_db as the name of the database, enter
the following command:

setenv DBONPLOAD load_db

GLS

setenv DBONPLOAD dbname

dbname specifies the name of the database to be used by the onpload
utility.
4-28 Informix Guide to SQL: Reference

DBPATH
DBPATH
Use DBPATH to identify the database servers that contain databases (if you
are using the INFORMIX-OnLine Dynamic Server), or the directories and/or
database servers that contain databases (if you are using INFORMIX-SE). The
DBPATH environment variable also specifies a list of directories (in addition
to the current directory) in which DB-Access looks for command scripts (.sql
files).

The CONNECT, DATABASE, START DATABASE, and DROP DATABASE
statements use DBPATH to locate the database under two conditions:

■ If the location of a database is not explicitly stated

■ If the database cannot be located in the default server or, for
INFORMIX-SE, the default directory

The CREATE DATABASE statement does not use DBPATH.

To add a new DBPATH entry to existing entries, see “Modifying the Setting of
an Environment Variable” on page 4-9.

DBPATH can contain up to 16 entries. Each entry (full_pathname, servername,
or servername and full_pathname) must be less than 128 characters. In addition,
the maximum length of DBPATH depends on the hardware platform on
which you are setting DBPATH.

setenv

:
DBPATH

//servername

/ full_pathname

/ / servername / /full_pathname

full_pathname is a valid full pathname of a directory in which .sql files
are stored or in which INFORMIX-SE databases are stored.

servername is the name of an INFORMIX-OnLine Dynamic Server or
INFORMIX-SE database server on which databases are
stored. You cannot reference database files with a
servername.
Environment Variables 4-29

DBPATH
When you access a database using the CONNECT, DATABASE, START
DATABASE, or DROP DATABASE statement, the search for the database is
done first in the directory and/or database server specified in the statement.
If no database server is specified, the default database server as set in the
INFORMIXSERVER environment variable is used. For INFORMIX-SE, if no
directory is specified in the statement, the default directory is searched for the
database. (The default directory is the current working directory if the
database server is on the local computer or your login directory if the
database server is on a remote computer.) If a directory is specified but is not
a full path, the directory is considered to be relative to the default directory.

If the database is not located during the initial search, and if DBPATH is set,
the database servers and/or directories in DBPATH are searched for the
indicated database. The entries to DBPATH are considered in order.

Using DBPATH with DB-Access

If you are using DB-Access and you use the Choose option of the SQL menu
without having already selected a database, you see a list of all the .sql files
in the directories listed in your DBPATH. Once you select a database, the
DBPATH is not used to find the .sql files: For INFORMIX-OnLine Dynamic
Server databases, only the .sql files in the current working directory are
displayed; for INFORMIX-SE databases, the .sql files in the directory
containing the selected database are displayed.

Searching Local Directories

Use a pathname without a database server name to have the database server
search for databases or .sql scripts on your local computer. If you are using
DB-Access with INFORMIX-SE, you can search for a database and .sql scripts;
with the INFORMIX-OnLine Dynamic Server, you can look only for .sql
scripts.

In the following example, the DBPATH setting causes DB-Access to search for
the database files in your current directory and then in Joachim’s and Sonja’s
directories on the local computer:

setenv DBPATH /usr/joachim:/usr/sonja
4-30 Informix Guide to SQL: Reference

DBPATH
As shown in the previous example, if the pathname specifies a directory
name but not a database server name, the directory is sought on the computer
running the default database server as specified by the INFORMIXSERVER
environment variable. (See page 4-47.) For instance, with the previous
example, if INFORMIXSERVER is set to quality, the DBPATH value is
interpreted as shown in the following example, where the double slash
precedes the database server name:

setenv DBPATH //quality/usr/joachim://quality/usr/sonja

Searching Networked Computers for Databases

If you are using more than one database server, you can set DBPATH to
explicitly contain the database server and/or directory names that you want
to search for databases. For example, if INFORMIXSERVER is set to quality
but you also want to search the marketing database server for /usr/joachim,
set DBPATH as shown in the following example:

setenv DBPATH //marketing/usr/joachim:/usr/sonja

Specifying a Servername

You can set DBPATH to contain only database server names. This setting
allows you to locate only databases and not locate command files.

The OnLine or SE administrator must include each database server
mentioned by DBPATH in the $INFORMIXDIR/etc/sqlhosts file. For infor-
mation on communication-configuration files and dbservernames, see the
INFORMIX-OnLine Dynamic Server Administrator’s Guide or the
INFORMIX-SE Administrator’s Guide.

For example, if INFORMIXSERVER is set to quality, you can search for an
INFORMIX-OnLine Dynamic Server database first on the quality database
server and then on the marketing database server by setting DBPATH shown
in the following example:

setenv DBPATH //marketing

If you are using DB-Access in this example, the names of all the databases on
the quality and marketing database servers are displayed with the Select
option of the DATABASE menu.
Environment Variables 4-31

DBPRINT
For INFORMIX-SE, you can set DBPATH to contain only the database server
names (and no directory names) if you want to locate databases and not
command scripts:

■ If you specify a local SE database server, the current working
directory is searched for databases.

■ If you specify a remote SE database server, the search for databases is
done in the login directory of the user on the computer where the
database server is running.

DBPRINT
The DBPRINT environment variable specifies the printing program that you
want to use.

The default program is found in one of two places:

■ For most BSD UNIX systems, the default program is lpr.

■ For UNIX System V, the default program is usually lp.

Set the DBPRINT environment variable to specify the myprint print program
by entering the following command:

setenv DBPRINT myprint

setenv programDBPRINT

program names any command, shell script, or UNIX utility that
handles standard ASCII input.
4-32 Informix Guide to SQL: Reference

DBREMOTECMD
DBREMOTECMD
You can set the DBREMOTECMD environment variable to override the
default remote shell used when you perform remote tape operations with the
INFORMIX-OnLine Dynamic Server. Set it using either a simple command or
the full pathname. If you use the full pathname, the database server searches
your PATH for the specified command.

Informix highly recommends the use of the full pathname syntax on the
interactive UNIX platform to avoid problems with similarly named programs
in other directories and possible confusion with the restricted shell
(/usr/bin/rsh).

Set the DBREMOTECMD environment variable for a simple command name
by entering the following command:

setenv DBREMOTECMD rcmd

Set the DBREMOTECMD environment variable to specify the full pathname
by entering the following command:

setenv DBREMOTECMD /usr/bin/remsh

For more information on DBREMOTECMD, see the discussion in the
INFORMIX-OnLine Dynamic Server Archive and Backup Guide about using
remote tape devices with the INFORMIX-OnLine Dynamic Server for archives,
restores, and logical-log backups.

setenv

pathname

commandDBREMOTECMD

command is the command to override the default remote shell.
pathname is the pathname to override the default remote shell.
Environment Variables 4-33

DBSPACETEMP
DBSPACETEMP
If you are using OnLine, you can set your DBSPACETEMP environment vari-
able to specify the dbspaces in which temporary tables are to be built. You can
specify multiple dbspaces to spread temporary space across any number of
disks.

The DBSPACETEMP environment variable overrides the default dbspaces
specified by the DBSPACETEMP configuration parameter in the OnLine
configuration file.

For example, you might set DBSPACETEMP environment variable by
entering the following command:

setenv DBSPACETEMP sorttmp1:sorttemp2:sorttmp3

Separate the dbspace entries with either colons or commas. The number of
dbspaces is limited by the maximum size of the environment variable, as
defined by the UNIX shell. OnLine does not create a dbspace specified by the
environment variable if the dbspace does not exist.

There are two classes of temporary tables: explicit temporary tables that are
created by the user and implicit temporary tables that are created by OnLine.
You use the DBSPACETEMP environment variable to specify the dbspaces for
both types of temporary tables.

If you create an explicit temporary table with the CREATE TEMP TABLE
statement and do not specify a dbspace for the table either in the IN dbspace
clause or in the FRAGMENT BY clause, OnLine uses the settings in the
DBSPACETEMP environment variable to determine where to create the table.
If the DBSPACETEMP environment variable is not set, OnLine uses the
ONCONFIG parameter DBSPACETEMP. If this parameter is not set, OnLine
creates the temporary table in the same dbspace where the database resides.

setenv DBSPACETEMP temp_dbspace

punct

punct can be either colons or commas.
temp_dbspace is a valid existing temporary dbspace.
4-34 Informix Guide to SQL: Reference

DBTEMP
If you create an explicit temporary table with the SELECT INTO TEMP
statement, OnLine uses the settings in the DBSPACETEMP environment
variable to determine where to create the table. If the DBSPACETEMP
environment variable is not set, OnLine uses the ONCONFIG parameter
DBSPACETEMP. If this parameter is not set, OnLine creates the temporary
table in the root dbspace.

OnLine creates implicit temporary tables for its own use while executing join
operations, SELECT statements with the GROUP BY clause, SELECT state-
ments with the ORDER BY clause, and index builds. When it creates these
implicit temporary tables, OnLine uses disk space for writing the temporary
data, in the following order:

1. The operating system directory or directories specified by the
environment variable PSORT_DBTEMP, if it is set

2. The dbspace or dbspaces specified by the environment variable
DBSPACETEMP, if it is set

3. The dbspace or dbspaces specified by the ONCONFIG parameter
DBSPACETEMP

4. The operating-system file space in /tmp

DBTEMP
Set the DBTEMP environment variable to specify the full pathname of the
directory into which you want INFORMIX-SE or INFORMIX-Gateway
products to place their temporary files and temporary tables.

Set the DBTEMP environment variable to specify the pathname
usr/magda/mytemp by entering the following command:

setenv DBTEMP usr/magda/mytemp

setenv pathnameDBTEMP

pathname is the full pathname of the directory for temporary files
and temporary tables.
Environment Variables 4-35

DBTIME
If you do not set DBTEMP, temporary files are created in /tmp. If DBTEMP is
not set, temporary tables are created in the directory of the database (that is,
the .dbs directory).

OnLine uses DBSPACETEMP to specify the location of temporary files.

DBTIME
The DBTIME environment variable specifies the end-user formats of
DATETIME values for a set of SQL API library functions.

You can set the DBTIME environment variable to manipulate DATETIME
formats so that the formats conform more closely to various international or
local TIME conventions. DBTIME takes effect only when you call certain
INFORMIX-ESQL/C or INFORMIX-ESQL/COBOL DATETIME routines;
otherwise, use the DBDATE environment variable. (See the
INFORMIX-ESQL/C Programmer’s Manual or the INFORMIX-ESQL/COBOL
Programmer’s Manual for details.)

You can set DBTIME to specify the exact format of an input/output (I/O)
DATETIME string field by using the formatting directives described in the
following list. Otherwise, the behavior of the DATETIME formatting routine
is undefined.

DBTIME Standard
DBTIME
Formats

Era-Based
DBTIME Formats,
see Guide to GLS

setenv

Standard
DBTIME
Formats

'string'
4-36 Informix Guide to SQL: Reference

DBTIME
For example, consider how to convert a DATETIME YEAR TO SECOND to the
following ASCII string format:

Mar 21, 1994 at 16 h 30 m 28 s

string The formatting directives that you can use are described in the
following list:

%b is replaced by the abbreviated month name.

%B is replaced by the full month name.

%d is replaced by the day of the month as a decimal number
[01,31].

%Fn is replaced by the value of the fraction with precision
specified by the integer n. The default value of n is 2; the
range of n is 0 ≤ n ≤ 5.

%H is replaced by the hour (24-hour clock).

%I is replaced by the hour (12-hour clock).

%M is replaced by the minute as a decimal number [00,59].

%m is replaced by the month as a decimal number [01,12].

%p is replaced by A.M. or P.M. (or the equivalent in the local
standards).

%S is replaced by the second as a decimal number [00,59].

%y is replaced by the year as a four-digit decimal number.
If the user enters a two-digit value, the format of this value
is affected by the setting of the DBCENTURY environment
variable. If DBCENTURY is not set, then the current
century is used for the century digits.

%Y is replaced by the year as a four-digit decimal number.
User must enter a four-digit value.

%% is replaced by % (to allow % in the format string).
Environment Variables 4-37

DBTIME
You set DBTIME as shown in the following list:

setenv DBTIME '%b %d, %Y at %H h %M m %S s'

The default DBTIME produces the conventional ANSI SQL string format
shown in the following line:

1994-03-21 16:30:28

The default DBTIME is set as shown in the following example:

setenv DBTIME '%Y-%m-%d %H:%M:%S'

An optional field width and precision specification can immediately follow
the percent (%) character; it is interpreted as described in the following list:

When you use field width and precision specifications, the following
limitations apply:

■ If a conversion specification supplies fewer digits than specified by a
precision, it is padded with leading zeros.

■ If a conversion specification supplies more characters than specified
by a precision, excess characters are truncated on the right.

■ If no field width or precision is specified for d, H, I, m, M, S, or y
conversions, a default of 0.2 is used. A default of 0.4 is used for Y
conversions.

The F conversion does not follow the field width and precision format
conversions that are described earlier.

See the discussion of DBDATE on page 4-21 for related information.

[-|0]w where w is a decimal digit string specifying the minimum field
width. By default, the value is right justified with spaces on the left.
If - is specified, it is left justified with spaces on the right.
If 0 is specified, it is right justified and padded with zeros on the left.

.p where p is a decimal digit string specifying the number of digits to
appear for d, H, I, m, M, S, y, and Y conversions, and the maximum
number of characters to be used for b and B conversions. A
precision specification is significant only when converting a
DATETIME value to an ASCII string and not vice versa.
4-38 Informix Guide to SQL: Reference

DBUPSPACE
DBUPSPACE
The DBUPSPACE environment variable lets you specify and constrain the
amount of system disk space that the UPDATE STATISTICS statement can use
when trying to simultaneously construct multiple column distributions.

For example, to set DBUPSPACE to 2,500 kilobytes, enter the following
command:

setenv DBUPSPACE 2500

Then no more than 2,500 kilobytes of disk space can be used during the
execution of an UPDATE STATISTICS statement. If a table requires 5 megabytes
of disk space for sorting, then UPDATE STATISTICS accomplishes the task in
two passes; the distributions for one half of the columns are constructed with
each pass.

If you try to set DBUPSPACE to any value less than 1,024 kilobytes, it is
automatically set to 1,024 kilobytes, but no error message is returned. If this
value is not large enough to allow more than one distribution to be
constructed at a time, at least one distribution is done, even if the amount of
disk space required for the one is greater than specified in DBUPSPACE.

DELIMIDENT
The DELIMIDENT environment variable specifies that strings set off by
double quotes are delimited identifiers.

setenv DBUPSPACE value

value represents a disk space amount in kilobytes.

setenv DELIMIDENT
Environment Variables 4-39

ENVIGNORE
You can use delimited identifiers to specify identifiers that are identical to
reserved keywords, such as TABLE or USAGE. You can also use them to
specify database identifiers that contain nonalpha characters, but you cannot
use them to specify storage identifiers that contain non-alpha characters.
Note that database identifiers are names for database objects such as tables
and columns, and storage identifiers are names for storage objects such as
dbspaces and blobspaces.

Delimited identifiers are case sensitive.

To use delimited identifiers, applications in ESQL /C and ESQL /COBOL must
set the DELIMIDENT environment variable at compile time and execute time.

ENVIGNORE
Use the ENVIGNORE environment variable to deactivate specified
environment variable entries in the common (shared) and private
environment-configuration files, informix.rc and .informix respectively.

For example, to ignore the DBPATH and DBMONEY entries in the
environment-configuration files, enter the following command:

setenv ENVIGNORE DBPATH:DBMONEY

The common environment-configuration file is stored in
$INFORMIXDIR/etc/informix.rc. The private environment-configuration file
is stored in the user’s home directory as .informix. For information on
creating or modifying an environment-configuration file, see “Setting
Environment Variables in an Environment-Configuration File” on page 4-6.

ENVIGNORE cannot be set in an environment-configuration file.

setenv ENVIGNORE variable

:

variable is the list of environment variables that you want to deactivate.
4-40 Informix Guide to SQL: Reference

FET_BUF_SIZE
FET_BUF_SIZE
The FET_BUF_SIZE environment variable lets you override the default setting
for the size of the fetch buffer for all data except blobs. When set,
FET_BUF_SIZE is effective for the entire environment.

When set to a valid value, the environment variable overrides the previously
set value. The default setting for the fetch buffer is dependent on row size.

If the buffer size is set to less than the default size or is out of the range of the
small integer value, no error is raised. The new buffer size is ignored.

For example, to set a buffer size to 5,000 bytes, set the FET_BUF_SIZE
environment variable by entering the following command:

setenv FET_BUF_SIZE 5000

INFORMIXC
The INFORMIXC environment variable specifies the name or pathname of the
C compiler to be used to compile files generated by INFORMIX-ESQL/C. If
INFORMIXC is not set, the default compiler is cc.

For example, to specify the GNU C compiler, enter the following command:
setenv INFORMIXC gcc

The setting is required only during the C compilation stage.

setenv FET_BUF_SIZE n

n represents the size of the buffer in bytes.

setenv

pathname

INFORMIXC compiler

compiler is the name of the C compiler.
pathname is the full pathname of the C compiler.
Environment Variables 4-41

INFORMIXCOB
INFORMIXCOB
The INFORMIXCOB environment variable specifies the program name of the
COBOL compiler that you use with INFORMIX-ESQL/COBOL. It identifies the
command that calls up the compiler environment. You must set this
environment variable before you compile your ESQL/COBOL program.

The program name depends on the manufacturer of the COBOL compiler, as
shown in the following table.

Your COBOL compiler might require you to set additional (UNIX)
environment variables as listed in the compiler documentation. For
compiler-specific information, see the product manuals and the
INFORMIX-ESQL/COBOL Programmer’s Manual.

For more information about INFORMIXCOB, refer to the
INFORMIX-ESQL/COBOL Programmer’s Manual.

setenv INFORMIXCOB program

program is the program name of the COBOL compiler.

Compiler Manufacturer Enter the Command:

Micro Focus setenv INFORMIXCOB cob

Ryan-McFarland (Liant) setenv INFORMIXCOB rmcobol
4-42 Informix Guide to SQL: Reference

INFORMIXCOBDIR
INFORMIXCOBDIR
The INFORMIXCOBDIR environment variable specifies the directory where
the COBOL compiler resides. You must set this environment variable before
you compile your INFORMIX-ESQL/COBOL program and create the runtime
product.

For more information about INFORMIXCOBDIR, refer to the
INFORMIX-ESQL/COBOL Programmer’s Manual.

INFORMIXCOBSTORE
The INFORMIXCOBSTORE environment variable applies only to the Micro
Focus (MF) COBOL/2 environment. It specifies the type of storage to use
during compilation. You must set INFORMIXCOBSTORE before you compile
your INFORMIX-ESQL/COBOL program and create the runtime product.

The number of bytes needed to store BINARY or COMPUTATIONAL data is
based on the size (maximum number of digits) specified in the PICTURE
clause. The MF COBOL/2 compiler also considers whether byte or word
storage is specified when determining the number of bytes needed to store
BINARY and COMPUTATIONAL data. (MF COBOL/2 uses only byte storage.)

setenv INFORMIXCOBDIR dirname

dirname is the full directory pathname of the directory where the
COBOL compiler, runtime library, and objects reside.

setenv

word

INFORMIXCOBSTORE byte

byte specifies byte storage.
word specifies word storage.
Environment Variables 4-43

INFORMIXCOBTYPE
If INFORMIXCOBSTORE is not set, the default storage mode is byte, which is
more restrictive of available data-type choices. If you are using byte storage,
the only legal PIC sizes are 3, 4, 7, 8, and 9. If you are using word storage,
PIC sizes can range from 1 through 9.

For a table showing the storage allocation for MF compilers, see the
INFORMIX-ESQL/COBOL Programmer’s Manual.

INFORMIXCOBTYPE
The INFORMIXCOBTYPE environment variable specifies a code that
identifies the manufacturer of your COBOL compiler. You must set
INFORMIXCOBTYPE before you compile an INFORMIX-ESQL/COBOL
program and create the runtime product.

For more information about INFORMIXCOBTYPE, refer to the
INFORMIX-ESQL/COBOL Programmer’s Manual.

INFORMIXCONRETRY
The INFORMIXCONRETRY environment variable specifies the maximum
number of additional connection attempts that should be made to each server
by the client during the time limit specified by the INFORMIXCONTIME
environment variable.

setenv INFORMIXCOBTYPE type

type indicates the manufacturer of the COBOL compiler that you
use with ESQL/COBOL, as shown in the following list:
mf2 Micro Focus
rm85 Ryan-McFarland (Liant)

setenv INFORMIXCONRETRY value

value represents the number of connection attempts to each server.
4-44 Informix Guide to SQL: Reference

INFORMIXCONTIME
For example, set INFORMIXCONRETRY to three additional connection
attempts (after the initial attempt) by entering the following command:

setenv INFORMIXCONRETRY 3

The default value for INFORMIXCONRETRY is one retry after the initial
connection attempt. The INFORMIXCONTIME setting, described in the
following section, takes precedence over the INFORMIXCONRETRY setting.

INFORMIXCONTIME
The INFORMIXCONTIME environment variable lets you specify that an SQL
CONNECT statement should keep trying for at least the given number of
seconds before returning an error.

You might encounter connection difficulties related to system or network
load problems. For instance, if the database server is busy establishing new
SQL client threads, some clients might fail because the server cannot issue a
network function call fast enough. The INFORMIXCONTIME and
INFORMIXCONRETRY environment variables let you configure your client-
side connection capability to retry the connection instead of returning an
error.

For example, set INFORMIXCONTIME to 60 seconds by entering the
following command:

setenv INFORMIXCONTIME 60

If INFORMIXCONTIME is set to 60 and INFORMIXCONRETRY is set to 3, as
shown in these examples, attempts to connect to the server (after the initial
attempt at 0 seconds) will be made at 20, 40, and 60 seconds, if necessary,
before aborting. This 20-second interval is the result of INFORMIXCONTIME
divided by INFORMIXCONRETRY.

If execution of the CONNECT statement involves searching DBPATH, the
following rules apply:

setenv INFORMIXCONTIME value

value represents the minimum number of seconds spent in attempts to
establish a connection to a server.
Environment Variables 4-45

INFORMIXDIR
■ All appropriate servers in the DBPATH setting are accessed at least
once, even though the INFORMIXCONTIME value might be
exceeded. Thus, the CONNECT statement might take longer than the
INFORMIXCONTIME time limit to return an error indicating
connection failure or that the database was not found.

■ The INFORMIXCONRETRY value specifies the number of additional
connections that should be attempted for each server entry in
DBPATH.

■ The INFORMIXCONTIME value is divided among the number of
server entries specified in DBPATH. Thus, if DBPATH contains
numerous servers, you should increase the INFORMIXCONTIME
value accordingly. For example, if DBPATH contains three entries, to
spend at least 30 seconds attempting each connection, set
INFORMIXCONTIME to 90.

The default value for INFORMIXCONTIME is 15 seconds. The setting for
INFORMIXCONTIME takes precedence over the INFORMIXCONRETRY
setting. Retry efforts could end after the INFORMIXCONTIME value has been
exceeded, but before the INFORMIXCONRETRY value has been reached.

INFORMIXDIR
The INFORMIXDIR environment variable specifies the directory that
contains the subdirectories in which your product files are installed. You
must always set INFORMIXDIR. If you have multiple versions of OnLine or
SE, set INFORMIXDIR to the appropriate directory name for the version that
you want to access. For information about when to set the INFORMIXDIR
environment variable, see the UNIX Products Installation Guide.

Set the INFORMIXDIR environment variable to the desired installation
directory by entering the following command:

setenv INFORMIXDIR /usr/informix

setenv INFORMIXDIR pathname

pathname is the directory path where the product files are installed.
4-46 Informix Guide to SQL: Reference

INFORMIXOPCACHE
INFORMIXOPCACHE
The INFORMIXOPCACHE environment variable lets you specify the size of
the memory cache for the staging-area blobspace of the client application.

You set the INFORMIXOPCACHE environment variable by specifying the size
of the memory cache in kilobytes. The specified size must be equal to or
smaller than the size of the system-wide configuration parameter,
OPCACHEMAX. If you do not set the INFORMIXOPCACHE environment
variable, the default cache size is 128 kilobytes or the size specified in the
configuration parameter OPCACHEMAX. The default for OPCACHEMAX is
128 kilobytes. If you set INFORMIXOPCACHE to a value of 0,
INFORMIX-OnLine/Optical does not use the cache.

INFORMIXSERVER
The INFORMIXSERVER environment variable specifies the default database
server to which an explicit or implicit connection is made by an SQL API client
or the DB-Access utility. The database server can be either INFORMIX-OnLine
Dynamic Server or INFORMIX-SE and can be either local or remote. You must
always set INFORMIXSERVER before using an Informix product.

The value of INFORMIXSERVER must correspond to a valid dbservername
entry in the $INFORMIXDIR/etc/sqlhosts file on the computer running the
application. The dbservername must be specified using lowercase characters
and cannot exceed 18 characters for OnLine or 10 characters for SE. For
example, specify the coral database server as the default for connection by
entering the following command:

setenv INFORMIXSERVER coral

INFORMIXOPCACHE kilobytessetenv

kilobytes specifies the value you set for the optical memory cache.

setenv INFORMIXSERVER dbservername

dbservername is the name of the default database server.
Environment Variables 4-47

INFORMIXSHMBASE
INFORMIXSERVER specifies the database server to which an application
connects if the CONNECT DEFAULT statement is executed. It also defines the
database server to which an initial implicit connection is established if the
first statement in an application is not a CONNECT statement.

Important: INFORMIXSERVER must be set even if the application or DB-Access
does not use implicit or explicit default connections.

INFORMIXSHMBASE
The INFORMIXSHMBASE environment variable affects only client
applications connected to OnLine using the IPC shared-memory (ipcshm)
communication protocol.

Important: Resetting INFORMIXSHMBASE requires a thorough understanding of
how the application uses memory. Normally you do not reset INFORMIXSHMBASE.

You use INFORMIXSHMBASE to specify where shared-memory
communication segments are attached to the client process so that client
applications can avoid collisions with other memory segments used by the
application. If you do not set INFORMIXSHMBASE, the memory address of
the communication segments defaults to an implementation-specific value
such as 0x800000.

The OnLine calculates the memory address where segments are attached by
multiplying the value of INFORMIXSHMBASE by 1,024. For example, to set
the memory address to the value 0x800000, set the INFORMIXSHMBASE
environment variable by entering the following command:

setenv INFORMIXSHMBASE 8192

For more information, see the INFORMIX-OnLine Dynamic Server Adminis-
trator’s Guide.

setenv INFORMIXSHMBASE value

value is used to calculate the memory address.
4-48 Informix Guide to SQL: Reference

INFORMIXSQLHOSTS
INFORMIXSQLHOSTS
The INFORMIXSQLHOSTS environment variable specifies the full pathname
and filename of a file that contains connectivity information.

The file specified in the INFORMIXSQLHOSTS environment variable has the
same format as the $INFORMIXDIR/etc/sqlhosts file. For a description of the
$INFORMIXDIR/etc/sqlhosts file, see the INFORMIX-OnLine Dynamic Server
Administrator’s Guide.

For example, to specify that the client or database server will look for connec-
tivity information in the mysqlhosts file in the /work/envt directory, enter
the following command:

setenv INFORMIXSQLHOSTS /work/envt/mysqlhosts

When the INFORMIXSQLHOSTS environment variable is set, the client or
database server looks in the specified file for connectivity information. When
the INFORMIXSQLHOSTS environment variable is not set, the client or
database server looks in the $INFORMIXDIR/etc/sqlhosts file.

INFORMIXSTACKSIZE
INFORMIXSTACKSIZE specifies the stack size (in kilobytes) that OnLine uses
for a particular client session. Use INFORMIXSTACKSIZE to override the
value of the ONCONFIG parameter STACKSIZE for a particular application or
user.

INFORMIXSQLHOSTS pathnamesetenv

pathname specifies the full pathname and filename of the file that
contains connectivity information.

setenv INFORMIXSTACKSIZE value

value is the stack size for SQL client threads in kilobytes.
Environment Variables 4-49

INFORMIXTERM
For example, to decrease the INFORMIXSTACKSIZE to 20 kilobytes, enter the
following command:

setenv INFORMIXSTACKSIZE 20

If INFORMIXSTACKSIZE is not set, the stack size is taken from the OnLine
configuration parameter STACKSIZE, or it defaults to a platform-specific
value. The default stack size value for the primary thread for an SQL client is
32 kilobytes for nonrecursive database activity.

Warning: For specific instructions for setting this value, see the
“INFORMIX-OnLine Dynamic Server Administrator’s Guide.” If you incorrectly
set the value of INFORMIXSTACKSIZE, it can cause OnLine to crash.

INFORMIXTERM
The INFORMIXTERM environment variable specifies whether DB-Access
should use the information in the termcap file or the terminfo directory. The
termcap file and terminfo directory determine terminal-dependent
keyboard and screen capabilities such as the operation of function keys, color
and intensity attributes in screen displays, and the definition of window
border and graphics characters.

If INFORMIXTERM is not set, the default setting is termcap. When DB-Access
is installed on your system, a termcap file is placed in the etc subdirectory of
$INFORMIXDIR. This file is a superset of an operating-system termcap file.

You can use the termcap file supplied by Informix, the system termcap file,
or a termcap file that you create. You must set the TERMCAP environment
variable if you do not use the default termcap file. For information on setting
the TERMCAP environment variable, see page 4-60.

The terminfo directory contains a file for each terminal name that has been
defined. The terminfo setting for INFORMIXTERM is supported only on
computers that provide full support for the UNIX System V terminfo library.
For details, see the Version 7.2 machine notes file for your product.

setenv

terminfo

INFORMIXTERM termcap
4-50 Informix Guide to SQL: Reference

INF_ROLE_SEP
INF_ROLE_SEP
The INF_ROLE_SEP environment variable configures the security feature of
role separation when INFORMIX-OnLine Dynamic Server is installed. Role
separation enforces separating administrative tasks that are performed by
different people who are involved in running and auditing OnLine.

If INF_ROLE_SEP is set, role separation is implemented and a separate group
is specified to serve each of the following responsibilities: the database
system security officer (DBSSO), the audit analysis officer (AAO), and the
standard user. If INF_ROLE_SEP is not set, user informix (the default) can
perform all administrative tasks.

See the INFORMIX-OnLine Dynamic Server Trusted Facility Manual to learn
more about the security feature of role separation. See the UNIX Products
Installation Guide to learn how to configure role separation when you install
OnLine.

NODEFDAC
When it is set to yes, the NODEFDAC environment variable prevents default
table privileges (Select, Insert, Update, and Delete) from being granted to
PUBLIC when a new table is created in a database that is not ANSI compliant.
If you do not set the NODEFDAC variable, it is, by default, set to no.

n n is any positive integer.

INF_ROLE_SEP nsetenv

NODEFDAC yessetenv

no
Environment Variables 4-51

ONCONFIG
ONCONFIG
The ONCONFIG environment variable specifies a file that holds
configuration parameters for OnLine. This file is read as input during the
initialization procedure.

Prepare the ONCONFIG file by making a copy of the onconfig.std file and
modifying the copy. Informix recommends that you name the ONCONFIG file
so it can easily be related to a specific OnLine database server. If you have
multiple instances of OnLine, each instance must have its own uniquely
named ONCONFIG file.

If you do not set the ONCONFIG environment variable, the default filename
is onconfig.

For more information, see the INFORMIX-OnLine Dynamic Server Adminis-
trator’s Guide.

yes prevents default table privileges from being granted to PUBLIC
on new tables in a database that is not ANSI compliant. This
setting also prevents the Execute privilege for a new stored
procedure from being granted to PUBLIC when the stored pro-
cedure is created in owner mode.

no allows default table privileges to be granted to PUBLIC. Also
allows the Execute privilege on a new stored procedure to be
granted to PUBLIC when the stored procedure is created in
owner mode.

setenv ONCONFIG filename

filename is the name of a file in $INFORMIXDIR/etc that contains
the OnLine configuration parameters.
4-52 Informix Guide to SQL: Reference

OPTCOMPIND
OPTCOMPIND
You can set the OPTCOMPIND environment variable so that the optimizer
can select the appropriate join method. The OPTCOMPIND environment
variable applies only to OnLine.

When the OPTCOMPIND environment variable is not set, OnLine uses the
value specified for the ONCONFIG configuration parameter OPTCOMPIND.
When neither the environment variable nor the configuration parameter is
set, the default value is 2.

For more information on the ONCONFIG configuration parameter
OPTCOMPIND, see the INFORMIX-OnLine Dynamic Server Administrator’s
Guide. For more information on the different join methods used by the
optimizer, see INFORMIX-OnLine Dynamic Server Performance Guide.

setenv OPTCOMPIND 0

1

2

0 A nested-loop join is preferred, where possible, over a sort-merge join
or a hash join.

1 When the transaction isolation mode is not Repeatable Read, the opti-
mizer behaves as in setting 2; otherwise, the optimizer behaves as in
setting 0.

2 Nested-loop joins are not necessarily preferred. The optimizer bases
its decision purely on costs, regardless of transaction isolation mode.
Environment Variables 4-53

PATH
PATH
The UNIX PATH environment variable tells the shell which directories to
search for executable programs. You must add the directory that contains
your Informix product to your PATH environment variable before you can
use the product.

You can specify the correct search path in various ways. Be sure to include a
colon between the directory names.

For additional information about how to modify your path, see “Modifying
the Setting of an Environment Variable” on page 4-9.

PDQPRIORITY
The PDQPRIORITY environment variable determines the degree of
parallelism used by OnLine. PDQPRIORITY affects how OnLine allocates
resources, including memory, processors, and disk reads.

setenv PATH pathname

:

$PATH:

pathname specifies the search path for the executables.

setenv PDQPRIORITY HIGH

LOW

OFF

percent-of-resources

HIGH When OnLine allocates resources among all users, it gives as
many resources as possible to the query.

LOW Data is fetched from fragmented tables in parallel, but no
other parallelism is used.

OFF PDQ processing is turned off.
4-54 Informix Guide to SQL: Reference

PLCONFIG
When the PDQPRIORITY environment variable is not set, the default value is
OFF.

When the environment variable is set to HIGH, the database server
determines an appropriate value to use for PDQPRIORITY based on several
criteria, including the number of available processors, the fragmentation of
tables queried, the complexity of the query, and so on.

Usually the more resources OnLine uses, the better its performance for a
given query, but using too many resources can cause contention among the
resources and also take away resources from other queries, resulting in
degraded performance.

An application can override the setting of the environment variable when it
issues the SQL statement SET PDQPRIORITY, which is described in the Informix
Guide to SQL: Syntax.

PLCONFIG
The PLCONFIG environment variable specifies the name of the configuration
file that the High-Performance Loader uses. This configuration file must
reside in the $INFORMIXDIR/etc directory. If the PLCONFIG environment
variable is not set, the default configuration file is the
$INFORMIXDIR/etc/plconfig file.

percent-of-
resources

An integer between 0 and 100 that indicates a query priority
level. The higher the number, the more resources OnLine uses.
Two values have special meaning:
0 is equivalent to the symbolic value of OFF.

1 is equivalent to the symbolic value of LOW.

setenv PLCONFIG filename

filename specifies the simple filename of the configuration file to be
used by the High-Performance Loader.
Environment Variables 4-55

PSORT_DBTEMP
For example, to specify the $INFORMIXDIR/etc/custom.cfg file as the config-
uration file for the High-Performance Loader, enter the following command:

setenv PLCONFIG custom.cfg

PSORT_DBTEMP
The PSORT_DBTEMP environment variable specifies a directory or
directories where the OnLine writes the temporary files it uses when
performing a sort.

OnLine uses the directory specified by PSORT_DBTEMP even if the
environment variable PSORT_NPROCS is not set.

Set the PSORT_DBTEMP environment variable to specify the directory (for
example, /usr/leif/tempsort) by entering the following command:

setenv PSORT_DBTEMP /usr/leif/tempsort

For maximum performance, specify directories that reside in file systems on
different disks.

You also might want to consider setting the environment variable
DBSPACETEMP to place temporary files used in sorting in dbspaces rather
than operating-system files. See the discussion of the DBSPACETEMP
environment variable on page 4-34.

For additional information about the PSORT_DBTEMP environment variable,
see INFORMIX-OnLine Dynamic Server Administrator’s Guide as well as the
INFORMIX-OnLine Dynamic Server Performance Guide.

setenv pathnamePSORT_DBTEMP

:

pathname is the name of the UNIX directory used for intermediate
writes during a sort.
4-56 Informix Guide to SQL: Reference

PSORT_NPROCS
PSORT_NPROCS
The PSORT_NPROCS environment variable enables OnLine to improve the
performance of the parallel-process sorting package by allocating more
threads for sorting. Before the sorting package performs a parallel sort, make
sure that OnLine has enough memory for the sort.

Use the following command to set the PSORT_NPROCS environment
variable to 4:

setenv PSORT_NPROCS 4

To maximize the effectiveness of the parallel sort, set PSORT_NPROCS to the
number of available processors in the hardware.

You can disable parallel sorting by entering the following command:

unsetenv PSORT_NPROCS

Tip: If the PDQPRIORITY environment variable is not set, OnLine allocates the
minimum amount of memory to sorts. This minimum memory is insufficient to start
even two sort threads. If you have not set the PDQPRIORITY environment variable,
check the available memory before you perform a large-scale sort (such as an index
build) and make sure that you have enough memory.

Default Values for Ordinary Sorts

If the PSORT_NPROCS environment variable is set, OnLine uses the specified
number of sort threads as an upper limit for ordinary sorts.

If PSORT_NPROCS is not set, parallel sorting does not take place. OnLine
uses one thread for the sort.

If PSORT_NPROCS is set to 0, OnLine uses three threads for the sort.

setenv PSORT_NPROCS threads

threads specifies the maximum number of threads to be used to sort a
query. The maximum value of threads is 10.
Environment Variables 4-57

SQLEXEC
Default Values for Attached Indexes

The default number of threads is different for attached indexes.

If the PSORT_NPROCS environment variable is set, you get the specified
number of sort threads for each fragment of the index that is being built.

If the PSORT_NPROCS environment variable is not set, or if it is set to 0, you
get two sort threads for each fragment of the index unless you have a single-
CPU virtual processor. If you have a single-CPU virtual processor, you get one
sort thread for each fragment of the index.

For additional information about the PSORT_NPROCS environment variable,
see INFORMIX-OnLine Dynamic Server Administrator’s Guide as well as the
INFORMIX-OnLine Dynamic Server Performance Guide.

SQLEXEC
Important: This environment variable functions differently in Version 5.0 and
Version 6.0 and later Informix products. For details of Version 5.0 functionality,
refer to Chapter 4 of the December 1991 release of this manual.

The SQLEXEC environment variable specifies the location of the Version 6.0
or later relay-module executable that allows a Version 5.0 or earlier client to
communicate with a local Version 6.0 or later INFORMIX-OnLine Dynamic
Server or INFORMIX-SE database server. Therefore, set SQLEXEC only if you
want to establish communication between a Version 5.0 or earlier client and
a Version 6.0 or later database server.

Set SQLEXEC to specify the full pathname of the relay module, which is in the
lib subdirectory of your $INFORMIXDIR directory, by entering the following
command:

setenv SQLEXEC $INFORMIXDIR/lib/sqlrm

setenv SQLEXEC pathname

pathname specifies the pathname for the relay module.
4-58 Informix Guide to SQL: Reference

SQLRM
If you set the SQLEXEC environment variable on the C shell command line,
you must include curly braces around the existing INFORMIXDIR, as shown
in the following command:

setenv SQLEXEC ${INFORMIXDIR}/lib/sqlrm

For information on the relay module, see the INFORMIX-OnLine Dynamic
Server Administrator’s Guide or the INFORMIX-SE Administrator’s Guide.

SQLRM
Important: This environment variable functions differently in Version 5.0 and
Version 6.0 and later Informix products. For details of Version 5.0 functionality,
refer to Chapter 4 of the December 1991 release of this manual.

In Version 6.0 and later, if the system administrator is configuring a client/
server environment in which a Version 5.0 SQL API client accesses a local
Version 6.0 or later database server, the SQLRM environment variable must
be unset before SQLEXEC can be used to spawn a Version 6.0 or later relay
module.

You can unset SQLRM by entering the following command:

unsetenv SQLRM

For information on the relay module, see the INFORMIX-OnLine Dynamic
Server Administrator’s Guide or the INFORMIX-SE Administrator’s Guide.

SQLRMDIR
Important: This environment variable functions differently in Version 5.0 and
Version 6.0 and later Informix products. For details of Version 5.0 functionality,
refer to Chapter 4 of the December 1991 release of this manual.

In Version 6.0 and later, if the DBA is configuring a client/server environment
in which a Version 5.0 SQL API client accesses a local Version 6.0 or later
database server, the SQLRMDIR environment variable must be unset.

Unset SQLRMDIR by entering the following command:

unsetenv SQLRMDIR
Environment Variables 4-59

TERM
TERM
The UNIX TERM environment variable is used for terminal handling. It
enables DB-Access to recognize and communicate with the terminal you are
using.

The terminal type specified in the TERM setting must correspond to an entry
in the termcap file or terminfo directory. Before you can set the TERM
environment variable, you must obtain the code for your terminal from the
DBA.

For example, to specify the vt100 terminal, set the TERM environment
variable by entering the following command:

setenv TERM vt100

TERMCAP
The TERMCAP environment variable is used for terminal handling. It tells
DB-Access to communicate with the termcap file instead of the terminfo
directory.

The termcap file contains a list of various types of terminals and their
characteristics. For example, you can provide DB-Access terminal-handling
information, which is specified in the /usr/informix/etc/termcap file, by
entering the following command:

setenv TERMCAP /usr/informix/etc/termcap

setenv TERM type

type specifies the terminal type.

setenv TERMCAP pathname

pathname specifies the location of the termcap file.
4-60 Informix Guide to SQL: Reference

TERMINFO
You can use any of the following settings for TERMCAP. They are used in the
following order:

1. The termcap file that you create

2. The termcap file supplied by Informix (that is,
$INFORMIXDIR/etc/termcap)

3. The operating-system termcap file (that is, /etc/termcap)

If you set the TERMCAP environment variable, be sure that the
INFORMIXTERM environment variable is set to the default, termcap.

 If you do not set the TERMCAP environment variable, the system file (that is,
/etc/termcap) is used by default.

TERMINFO
The TERMINFO environment variable is used for terminal handling. It is
supported only on platforms that provide full support for the terminfo
libraries provided by System V and Solaris UNIX systems.

TERMINFO tells DB-Access to communicate with the terminfo directory
instead of the termcap file. The terminfo directory has subdirectories that
contain files that pertain to terminals and their characteristics.

Set TERMINFO by entering the following command:

setenv TERMINFO /usr/lib/terminfo

If you set the TERMINFO environment variable, you must also set the
INFORMIXTERM environment variable to terminfo.

THREADLIB
You use the THREADLIB environment variable to compile multithreaded
ESQL/C applications. A multithreaded ESQL/C application lets you establish
as many connections to one or more databases as there are threads. These
connections can remain active while the application program executes.

setenv TERMINFO /usr/lib/terminfo
Environment Variables 4-61

Index of Environment Variables
The THREADLIB environment variable indicates which thread package to
use when you compile an application. Currently only the Distributed
Computing Environment (DCE) is supported.

The THREADLIB environment variable is checked when the -thread option is
passed to the ESQL/C script when you compile a multithreaded ESQL/C
application. When you use the -thread option while compiling, the ESQL/C
script generates an error if the THREADLIB environment variable is not set or
if the variable is set to an unsupported thread package.

Index of Environment Variables
Figure 4-2 provides an overview of the uses for the various Informix and
UNIX environment variables supported in Version 7.2. It serves as an index to
general topics and lists the related environment variables and the pages
where the environment variables are introduced.

Figure 4-2
Environment Variables Used with Informix Products

setenv THREADLIB DCE

Topic Environment Variables Page

ANSI compliance DBANSIWARN 4-17

BLOB buffer DBBLOBBUF 4-18

C compiler INFORMIXC 4-41

C compiler: processing of multibyte
characters

CC8BITLEVEL Guide to GLS
Functionality

Client locale CLIENT_LOCALE Guide to GLS
Functionality

 (1 of 9)
4-62 Informix Guide to SQL: Reference

Index of Environment Variables
Client/server INFORMIXSERVER 4-47

INFORMIXSHMBASE 4-48

INFORMIXSTACKSIZE 4-49

SQLEXEC 4-58

SQLRM 4-59

SQLRMDIR 4-59

CLIENT_LOCALE Guide to GLS
Functionality

DB_LOCALE Guide to GLS
Functionality

SERVER_LOCALE Guide to GLS
Functionality

COBOL compiler INFORMIXCOB 4-42

INFORMIXCOBDIR 4-43

INFORMIXCOBSTORE 4-43

INFORMIXCOBTYPE 4-44

Code-set conversion CLIENT_LOCALE Guide to GLS
Functionality

DB_LOCALE Guide to GLS
Functionality

Compilation: ESQL/C THREADLIB 4-61

Compiler CC8BITLEVEL Guide to GLS
Functionality

INFORMIXC 4-41

INFORMIXCOB 4-42

INFORMIXCOBDIR 4-43

Topic Environment Variables Page

 (2 of 9)
Environment Variables 4-63

Index of Environment Variables
INFORMIXCOBSTORE 4-43

INFORMIXCOBTYPE 4-44

Configuration file: ignore variables ENVIGNORE 4-40

Configuration file: ON-Archive ARC_DEFAULT 4-15

Configuration file: OnLine ONCONFIG 4-52

Configuration file: tctermcap ARC_KEYPAD 4-16

Connecting INFORMIXCONRETRY 4-44

INFORMIXCONTIME 4-45

INFORMIXSERVER 4-47

INFORMIXSQLHOSTS 4-49

Data distributions DBUPSPACE 4-39

Database locale DB_LOCALE Guide to GLS
Functionality

Database server INFORMIXSERVER 4-47

SERVER_LOCALE Guide to GLS
Functionality

SQLEXEC 4-58

SQLRM 4-59

SQLRMDIR 4-59

Date and time values DBCENTURY 4-18

DBDATE 4-21, Guide to
GLS Function-
ality

GL_DATE Guide to GLS
Functionality

Topic Environment Variables Page

 (3 of 9)
4-64 Informix Guide to SQL: Reference

Index of Environment Variables
GL_DATETIME Guide to GLS
Functionality

DBTIME 4-36

Delimited Identifiers DELIMIDENT 4-39

Disk space DBUPSPACE 4-39

Editor DBEDIT 4-24

ESQL/C: C compiler INFORMIXC 4-41

ESQL/C: DATETIME formatting DBTIME 4-36

ESQL/C: delimited identifiers DELIMIDENT 4-39

ESQL/C: multibyte filter ESQLMF Guide to GLS
Functionality

ESQL/C: multibyte identifiers CLIENT_LOCALE Guide to GLS
Functionality

ESQL/COBOL: DATETIME formatting DBTIME 4-36

ESQL/COBOL: delimited identifiers DELIMIDENT 4-39

ESQL/COBOL: multibyte identifiers CLIENT_LOCALE Guide to GLS
Functionality

Executable programs PATH 4-54

Fetch buffer size FET_BUF_SIZE 4-41

Filenames: multibyte GLS8BITSYS Guide to GLS
Functionality

Files: field delimiter DBDELIMITER 4-24

Files: installation INFORMIXDIR 4-46

Files: locale CLIENT_LOCALE Guide to GLS
Functionality

DB_LOCALE Guide to GLS
Functionality

Topic Environment Variables Page

 (4 of 9)
Environment Variables 4-65

Index of Environment Variables
SERVER_LOCALE Guide to GLS
Functionality

Files: message DBLANG 4-25

Files: temporary (OnLine) DBSPACETEMP 4-34

Files: temporary (SE) DBTEMP 4-35

Files: temporary sorting PSORT_DBTEMP 4-56

Files: termcap, terminfo INFORMIXTERM 4-50

TERM 4-60

TERMCAP 4-60

TERMINFO 4-61

High-Performance Loader DBONPLOAD 4-28

PLCONFIG 4-55

Identifiers: delimited DELIMIDENT 4-39

Identifiers: multibyte characters CLIENT_LOCALE Guide to GLS
Functionality

ESQLMF Guide to GLS
Functionality

INFORMIX-OnLine/Optical INFORMIXOPCACHE 4-47

Installation INFORMIXDIR 4-46

PATH 4-54

Language environment DBLANG 4-25

Locale CLIENT_LOCALE Guide to GLS
Functionality

DB_LOCALE Guide to GLS
Functionality

Topic Environment Variables Page

 (5 of 9)
4-66 Informix Guide to SQL: Reference

Index of Environment Variables
SERVER_LOCALE Guide to GLS
Functionality

Message files DBLANG 4-25

Money values DBMONEY 4-27, Guide to
GLS Function-
ality

Multibyte characters CLIENT_LOCALE Guide to GLS
Functionality

DB_LOCALE Guide to GLS
Functionality

SERVER_LOCALE Guide to GLS
Functionality

Multibyte filter ESQLMF Guide to GLS
Functionality

Multithreaded applications THREADLIB 4-61

Nondefault locale CLIENT_LOCALE Guide to GLS
Functionality

DB_LOCALE Guide to GLS
Functionality

SERVER_LOCALE Guide to GLS
Functionality

OnLine: archiving ARC_DEFAULT 4-15

ARC_KEYPAD 4-16

DBREMOTECMD 4-33

OnLine: configuration parameters ONCONFIG 4-52

OnLine: parallel sorting PSORT_DBTEMP 4-56

PSORT_NPROCS 4-57

OnLine: role separation INF_ROLE_SEP 4-51

Topic Environment Variables Page

 (6 of 9)
Environment Variables 4-67

Index of Environment Variables
OnLine: shared memory INFORMIXSHMBASE 4-48

OnLine: stacksize INFORMIXSTACKSIZE 4-49

OnLine: tape management ARC_DEFAULT 4-15

ARC_KEYPAD 4-16

DBREMOTECMD 4-33

OnLine: temporary tables, sort files DBSPACETEMP 4-34

Pathname: for C compiler INFORMIXC 4-41

Pathname: for COBOL run times INFORMIXCOBDIR 4-43

Pathname: for database files DBPATH 4-29

Pathname: for executable programs PATH 4-54

Pathname: for installation INFORMIXDIR 4-46

Pathname: for message files DBLANG 4-25

Pathname: for parallel sorting PSORT_DBTEMP 4-56

Pathname: for relay module SQLEXEC 4-58

Pathname: for remote shell DBREMOTECMD 4-33

Pathname: for temporary files (SE) DBTEMP 4-35

Printing DBPRINT 4-32

Privileges NODEFDAC 4-51

Program: COBOL compiler INFORMIXCOB 4-42

Program: printing DBPRINT 4-32

Relay module SQLEXEC 4-58

SQLRM 4-59

SQLRMDIR 4-59

Remote shell DBREMOTECMD 4-33

Topic Environment Variables Page

 (7 of 9)
4-68 Informix Guide to SQL: Reference

Index of Environment Variables
Role separation INF_ROLE_SEP 4-51

Routine: DATETIME formatting DBTIME 4-36

SE: temporary files DBTEMP 4-35

Server See Database server.

Server locale SERVER_LOCALE Guide to GLS
Functionality

Shared memory INFORMIXSHMBASE 4-48

Shell: remote DBREMOTECMD 4-33

Shell: search path PATH 4-54

Sorting PSORT_DBTEMP 4-56

PSORT_NPROCS 4-57

DBSPACETEMP 4-34

SQL statement: CONNECT INFORMIXSERVER 4-47

SQL statement: editing DBEDIT 4-24

SQL statement: LOAD, UNLOAD DBDELIMITER 4-24

SQL statement: UPDATE STATISTICS DBUPSPACE 4-39

Stacksize INFORMIXSTACKSIZE 4-49

Tables: temporary (OnLine) DBSPACETEMP 4-34

Temporary files DBTEMP 4-35

PSORT_DBTEMP 4-56

Temporary tables DBSPACETEMP 4-34

Terminal handling INFORMIXTERM 4-50

TERM 4-60

TERMCAP 4-60

Topic Environment Variables Page

 (8 of 9)
Environment Variables 4-69

Index of Environment Variables
TERMINFO 4-61

Utilities: DB-Access DBDELIMITER 4-24

DBEDIT 4-24

INFORMIXTERM 4-50

DBFLTMASK 4-25

Utilities: dbexport DBDELIMITER 4-24

Utilities: ON-Archive ARC_DEFAULT 4-15

ARC_KEYPAD 4-16

DBREMOTECMD 4-33

Values: date and time DBDATE 4-21, Guide to
GLS Function-
ality

DBTIME 4-36

Values: money DBMONEY 4-27

Variables: overriding ENVIGNORE 4-40

Topic Environment Variables Page

 (9 of 9)
4-70 Informix Guide to SQL: Reference

A
Appendix
The stores7 Database
The stores7 database contains a set of tables that describe an
imaginary business. The examples in the Informix Guide to SQL:
Syntax and Informix Guide to SQL: Tutorial are based on this data-
base. The stores7 database is not ANSI-compliant. Information
on creating the stores7 database appears in the section “Demon-
stration Database” in the Introduction of this manual.

This appendix contains the following sections:

■ The first section describes the structure of the tables in
the stores7 database. It identifies the primary key of
each table, lists the name and data type of each column,
and indicates whether the column has a default value or
check constraint. Indexes on columns are also identified
and classified as unique or if they allow duplicate
values.

■ The second section shows a graphic map of the tables in
the stores7 database and indicates the relationships
between columns.

■ The third section describes the primary-foreign key
relationships between columns in tables.

■ The final section shows the data contained in each table
of the stores7 database.

Structure of the Tables
Structure of the Tables
The stores7 database contains information about a fictitious sporting-goods
distributor that services stores in the western United States. This database
includes the following tables:

■ customer

■ orders

■ items

■ stock

■ catalog

■ cust_calls

■ call_type

■ manufact

■ state

The following sections describe each table. The unique identifier for each
table (primary key) is shaded and indicated by a key symbol.

The customer Table
The customer table contains information about the retail stores that place
orders from the distributor. The columns of the customer table are shown in
Figure A-1.
A-2 Informix Guide to SQL: Reference

The orders Table
The zipcode column in Figure A-1 is indexed and allows duplicate values.

The orders Table
The orders table contains information about orders placed by the customers
of the distributor. The columns of the orders table are shown in
Figure A-2.

Figure A-1
The customer Table

Column Data
Name Type Description
customer_num SERIAL(101) system-generated customer number
fname CHAR(15) first name of store representative
lname CHAR(15) last name of store representative
company CHAR(20) name of store
address1 CHAR(20) first line of store address
address2 CHAR(20) second line of store address
city CHAR(15) city
state CHAR(18) state (foreign key to state table)
zipcode CHAR(2) zipcode
phone CHAR(5) telephone number

Figure A-2
The orders Table

Column Data
Name Type Description
order_num SERIAL(1001) system-generated order number
order_date DATE date order entered
customer_num INTEGER customer number (foreign key to customer

table)
ship_instruct CHAR(40) special shipping instructions
backlog CHAR(1) indicates order cannot be filled because the item

is backlogged:
y = yes
n = no

po_num CHAR(10) customer purchase order number
ship_date DATE shipping date
ship_weight DECIMAL(8,2) shipping weight
ship_charge MONEY(6) shipping charge
paid_date DATE date order paid
The stores7 Database A-3

The items Table
The items Table
An order can include one or more items. One row exists in the items table for
each item in an order. The columns of the items table are shown in
Figure A-3.

The stock Table
The distributor carries 41 types of sporting goods from various manufac-
turers. More than one manufacturer can supply an item. For example, the
distributor offers racer goggles from two manufacturers and running shoes
from six manufacturers.

Figure A-3
The items Table

Column Data
Name Type Description
item_num SMALLINT sequentially assigned item number for an order
order_num INTEGER order number (foreign key to orders table)
stock_num SMALLINT stock number for item (foreign key to stock table)
manu_code CHAR(3) manufacturer code for item ordered (foreign key

to manufact table)
quantity SMALLINT quantity ordered (value must be > 1)
total_price MONEY(8) quantity ordered ∗ unit price = total price of item
A-4 Informix Guide to SQL: Reference

The catalog Table
The stock table is a catalog of the items sold by the distributor. The columns
of the stock table are shown in Figure A-4.

The catalog Table
The catalog table describes each item in stock. Retail stores use this table
when placing orders with the distributor. The columns of the catalog table
are shown in Figure A-5.

The catalog table appears only if you are using an OnLine database server.

Figure A-4
The stock Table

Column Data
Name Type Description
stock_num SMALLINT stock number that identifies type of item
manu_code CHAR(3) manufacturer code (foreign key to manufact

table)
description CHAR(15) description of item
unit_price MONEY(6,2) unit price
unit CHAR(4) unit by which item is ordered:

each
pair
case
box

unit_descr CHAR(15) description of unit

Figure A-5
The catalog Table

Column Data
Name Type Description
catalog_num SERIAL(10001) system-generated catalog number
stock_num SMALLINT distributor stock number (foreign key to

stock table)
manu_code CHAR(3) manufacturer code (foreign key to

manufact table)
cat_descr TEXT description of item
cat_picture BYTE picture of item (binary data)
cat_advert VARCHAR(255, 65) tag line underneath picture
The stores7 Database A-5

The cust_calls Table
The cust_calls Table
All customer calls for information on orders, shipments, or complaints are
logged. The cust_calls table contains information about these types of
customer calls. The columns of the cust_calls table are shown in Figure A-6.

The call_type Table
The call codes associated with customer calls are stored in the call_type table.
The columns of the call_type table are shown in Figure A-7.

Figure A-6
The cust_calls TableColumn Data

Name Type Description
customer_num INTEGER customer number (foreign

key to customer table)
call_dtime DATETIME YEAR TO MINUTE date and time call received
user_id CHAR(18) name of person logging call

(default is user login name)
call_code CHAR(1) type of call (foreign key to

call_type table)
call_descr CHAR(240) description of call
res_dtime DATETIME YEAR TO MINUTE date and time call resolved
res_descr CHAR(240) description of how call was

resolved

Figure A-7
The call_type TableColumn Data

Name Type Description
call_code CHAR(1) call code
call_descr CHAR (30) description of call type
A-6 Informix Guide to SQL: Reference

The manufact Table
The manufact Table
Information about the nine manufacturers whose sporting goods are handled
by the distributor is stored in the manufact table. The columns of the
manufact table are shown in Figure A-8.

The state Table
The state table contains the names and postal abbreviations for the 50 states
of the United States. The columns of the state table are shown in
Figure A-9.

The stores7 Database Map
Figure A-10 displays the joins in the stores7 database. The lines connecting
a column in one table to the same column in another table indicate the
relationships, or joins, between tables.

Figure A-8
The manufact TableColumn Data

Name Type Description
manu_code CHAR(3) manufacturer code
manu_name CHAR(15) name of manufacturer
lead_time INTERVAL DAY(3) TO DAY lead time for shipment

of orders

Figure A-9
The state Table

Column Data
Name Type Description
code CHAR(2) state code
sname CHAR(15) state name
The stores7 Database A-7

A-8
Inform

ix Guide to SQL: Reference

The stores7 Database M
apFigure A-10

he stores7 Database

manufact

manu_code

manu_name

call_type lead_time

call_code

call_descr
Joins in t

items

orders item_num catalog

order_num order_num stock catalog_num

cust_calls customer order_date stock_num stock_num stock_num

customer_num customer_num customer_num manu_code manu_code manu_code

call_dtime fname ship_instruct quantity description cat_descr

user_id lname backlog total_price unit_price cat_picture

call_code company po_num unit cat_advert

call_descr address1 ship_date unit_descr

res_dtime address2 ship_weight

res_descr city ship_charge

state state paid_date

code zipcode

sname phone

Primary-Foreign Key Relationships
Primary-Foreign Key Relationships
The tables of the stores7 database are linked by the primary-foreign key
relationships shown in Figure A-10 and identified in this section. This type of
relationship is called a referential constraint because a foreign key in one table
references the primary key in another table. Figure A-11 through Figure A-18
show the relationships among tables and how information stored in one table
supplements information stored in others.

The customer and orders Tables
The customer table contains a customer_num column that holds a number
identifying a customer, along with columns for the customer name, company,
address, and telephone number. For example, the row with information
about Anthony Higgins contains the number 104 in the customer_num col-
umn. The orders table also contains a customer_num column that stores the
number of the customer who placed a particular order. In the orders table, the
customer_num column is a foreign key that references the customer_num
column in the customer table. This relationship is shown in Figure A-11.

Figure A-11
Tables Joined by the

customer_num
Column

customer Table (detail)

customer_num fname lname

101 Ludwig Pauli
102 Carole Sadler
103 Philip Currie
104 Anthony Higgins

orders Table (detail)

order_num order_date customer_num

1001 05/20/1994 104
1002 05/21/1994 101
1003 05/22/1994 104
1004 05/22/1994 106
The stores7 Database A-9

The orders and items Tables
According to Figure A-11, customer 104 (Anthony Higgins) has placed two
orders, as his customer number appears in two rows of the orders table.
Because the customer number is a foreign key in the orders table, you can
retrieve Anthony Higgins’ name, address, and information about his orders
at the same time.

The orders and items Tables
The orders and items tables are linked by an order_num column that con-
tains an identification number for each order. If an order includes several
items, the same order number appears in several rows of the items table. In
the items table, the order_num column is a foreign key that references the
order_num column in the orders table. Figure A-12 shows this relationship.

Figure A-12
Tables Joined by the
order_num Column

orders Table (detail)

order_num order_date customer_num

1001 05/20/1994 104
1002 05/21/1994 101
1003 05/22/1994 104

items Table (detail)

item_num order_num stock_num manu_code

1 1001 1 HRO
1 1002 4 HSK
2 1002 3 HSK
1 1003 9 ANZ
2 1003 8 ANZ
3 1003 5 ANZ
A-10 Informix Guide to SQL: Reference

The items and stock Tables
The items and stock Tables
The items table and the stock table are joined by two columns: the
stock_num column, which stores a stock number for an item, and the
manu_code column, which stores a code that identifies the manufacturer.
You need both the stock number and the manufacturer code to uniquely
identify an item. For example, the item with the stock number 1 and the
manufacturer code HRO is a Hero baseball glove; the item with the stock num-
ber 1 and the manufacturer code HSK is a Husky baseball glove. The same
stock number and manufacturer code can appear in more than one row of the
items table, if the same item belongs to separate orders. In the items table, the
stock_num and manu_code columns are foreign keys that reference the
stock_num and manu_code columns in the stock table. This is illustrated in
Figure A-13.

Figure A-13
Tables Joined by the

stock_num and
manu_code

Columns

 items Table (detail)

item_num order_num stock_num manu_code

1 1001 1 HRO
1 1002 4 HSK
2 1002 3 HSK
1 1003 9 ANZ
2 1003 8 ANZ
3 1003 5 ANZ
1 1004 1 HRO

stock Table (detail)

stock_num manu_code description

1 HRO baseball gloves
1 HSK baseball gloves
1 SMT baseball gloves
The stores7 Database A-11

The stock and catalog Tables
The stock and catalog Tables
The stock table and catalog table are joined by two columns: the stock_num
column, which stores a stock number for an item, and the manu_code
column, which stores a code that identifies the manufacturer. You need both
columns to uniquely identify an item. In the catalog table, the stock_num
and manu_code columns are foreign keys that reference the stock_num and
manu_code columns in the stock table. Figure A-14 shows this relationship.

Figure A-14
Tables Joined by the

stock_num and
manu_code

Columns

stock Table (detail)

stock_num manu_code description

1 HRO baseball gloves
1 HSK baseball gloves
1 SMT baseball gloves

catalog Table (detail)

catalog_num stock_num manu_code

10001 1 HRO
10002 1 HSK
10003 1 SMT
10004 2 HRO
A-12 Informix Guide to SQL: Reference

The stock and manufact Tables
The stock and manufact Tables
The stock table and the manufact table are joined by the manu_code column.
The same manufacturer code can appear in more than one row of the stock
table if the manufacturer produces more than one piece of equipment. In the
stock table, the manu_code column is a foreign key that references the
manu_code column in the manufact table. This relationship is illustrated in
Figure A-15.

Figure A-15
Tables Joined by the
manu_code Column

stock Table (detail)

stock_num manu_code description

1 HRO baseball gloves
1 HSK baseball gloves
1 SMT baseball gloves

manufact Table (detail)

manu_code manu_name

NRG Norge
HSK Husky
HRO Hero
The stores7 Database A-13

The cust_calls and customer Tables
The cust_calls and customer Tables
The cust_calls table and the customer table are joined by the customer_num
column. The same customer number can appear in more than one row of the
cust_calls table if the customer calls the distributor more than once with a
problem or question. In the cust_calls table, the customer_num column is a
foreign key that references the customer_num column in the customer table.
This relationship is illustrated in Figure A-16.

Figure A-16
Tables Joined by the

customer_num
Column

customer Table (detail)

customer_num fname lname

101 Ludwig Pauli
102 Carole Sadler
103 Philip Currie
104 Anthony Higgins
105 Raymond Vector
106 George Watson

cust_calls Table (detail)

customer_num call_dtime user_id

106 1994-06-12 08:20 maryj
127 1994-07-31 14:30 maryj
116 1993-11-28 13:34 mannyh
116 1993-12-21 11:24 mannyh
A-14 Informix Guide to SQL: Reference

The call_type and cust_calls Table
The call_type and cust_calls Table
The call_type and cust_calls tables are joined by the call_code column. The
same call code can appear in more than one row of the cust_calls table
because many customers can have the same type of problem. In the cust_calls
table, the call_code column is a foreign key that references the call_code col-
umn in the call_type table. This relationship is illustrated in Figure A-17.

Figure A-17
Tables Joined by the

call_code Column
call_type Table (detail)

call_code code_descr

B billing error
D damaged goods
I incorrect merchandise sent
L late shipment
O other

cust_calls Table (detail)

customer_num call_dtime call_code

106 1994-06-12 08:20 D
127 1994-07-31 14:30 I
116 1993-11-28 13:34 I
116 1993-12-21 11:24 I
The stores7 Database A-15

The state and customer Tables
The state and customer Tables
The state table and the customer table are joined by a column that contains
the state code. This column is called code in the state table and state in the
customer table. If several customers live in the same state, the same state
code appears in several rows of the table. In the customer table, the state col-
umn is a foreign key that references the code column in the state table. This
is shown in Figure A-18.

Data in the stores7 Database
 The following tables display the data in the stores7 database.

Figure A-18
Tables Joined by the

state/code Column
customer Table (detail)

customer_num fname lname --- state

101 Ludwig Pauli --- CA
102 Carole Sadler --- CA
103 Philip Currie --- CA

state Table (detail)

code sname

AK Alaska
AL Alabama
AR Arkansas
AZ Arizona
CA California
A-16 Informix Guide to SQL: Reference

The stores7 Database
A-17

Data in the stores7 Database

customer_num fnam pcode phone

101 Lud 086 408-789-8075

102 Car 117 415-822-1289

103 Phi 303 415-328-4543

104 Ant 026 415-368-1100

105 Ray 022 415-776-3249

106 Geo 063 415-389-8789

107 Cha 304 415-356-9876

108 Don 063 415-544-8729

109 Jan 086 408-723-8789

110 Roy 062 415-743-3611

111 Fra 085 408-277-7245

112 Ma 022 415-887-7235

113 Lan 025 415-356-9982

114 Fra 062 415-886-6677

115 Alfr 025 415-356-1123

 (1 of 3)
customer Table

e lname company address1 address2 city state zi

wig Pauli All Sports Supplies 213 Erstwild Court Sunnyvale CA 94

ole Sadler Sports Spot 785 Geary St San Francisco CA 94

lip Currie Phil’s Sports 654 Poplar P. O. Box 3498 Palo Alto CA 94

hony Higgins Play Ball! East Shopping Cntr. 422 Bay Road Redwood City CA 94

mond Vector Los Altos Sports 1899 La Loma Drive Los Altos CA 94

rge Watson Watson & Son 1143 Carver Place Mountain
View

CA 94

rles Ream Athletic Supplies 41 Jordan Avenue Palo Alto CA 94

ald Quinn Quinn’s Sports 587 Alvarado Redwood City CA 94

e Miller Sport Stuff Mayfair Mart 7345 Ross
Blvd.

Sunnyvale CA 94

Jaeger AA Athletics 520 Topaz Way Redwood City CA 94

nces Keyes Sports Center 3199 Sterling Court Sunnyvale CA 94

rgaret Lawson Runners & Others 234 Wyandotte Way Los Altos CA 94

a Beatty Sportstown 654 Oak Grove Menlo Park CA 94

nk Albertson Sporting Place 947 Waverly Place Redwood City CA 94

ed Grant Gold Medal Sports 776 Gary Avenue Menlo Park CA 94

A-18
Inform

ix Guide to SQL: Reference

Data in the stores7 Database116 Je 94040 415-534-8822

117 Ar 94063 415-245-4578

118 Di 94609 415-655-0011

119 Bo 08002 609-663-6079

120 Fr 85016 602-265-8754

121 Ja 19898 302-366-7511

122 Ca 08540 609-342-0054

123 M 32256 904-823-4239

124 Ch 74006 918-355-2074

125 Ja 02135 617-232-4159

customer_num fn zipcode phone

 (2 of 3)
an Parmelee Olympic City 1104 Spinosa Drive Mountain
View

CA

nold Sipes Kids Korner 850 Lytton Court Redwood City CA

ck Baxter Blue Ribbon Sports 5427 College Oakland CA

b Shorter The Triathletes
Club

2405 Kings Highway Cherry Hill NJ

ed Jewell Century Pro Shop 6627 N. 17th Way Phoenix AZ

son Wallack City Sports Lake Biltmore Mall 350 W. 23rd
Street

Wilmington DE

thy O’Brian The Sporting Life 543 Nassau Street Princeton NJ

arvin Hanlon Bay Sports 10100 Bay Meadows
Rd

Suite 1020 Jacksonville FL

ris Putnum Putnum’s Putters 4715 S.E. Adams
Blvd

Suite 909C Bartlesville OK

mes Henry Total Fitness Sports 1450 Common-
wealth Ave.

Brighton MA

ame lname company address1 address2 city state

The stores7 Database
A-19

Data in the stores7 Database

126 Eile 219 303-936-7731

127 Kim 406 312-944-5691

128 Fra 008 602-533-1817

customer_num fnam pcode phone

 (3 of 3)
en Neelie Neelie’s Discount
Sports

2539 South Utica St Denver CO 80

Satifer Big Blue Bike Shop Blue Island Square 12222 Gregory
Street

Blue Island NY 60

nk Lessor Phoenix University Athletic Department 1817 N.
Thomas Road

Phoenix AZ 85

e lname company address1 address2 city state zi

Data in the stores7 Database
items Table

item_num order_num stock_num manu_code quantity total_price

1 1001 1 HRO 1 250.00

1 1002 4 HSK 1 960.00

2 1002 3 HSK 1 240.00

1 1003 9 ANZ 1 20.00

2 1003 8 ANZ 1 840.00

3 1003 5 ANZ 5 99.00

1 1004 1 HRO 1 250.00

2 1004 2 HRO 1 126.00

3 1004 3 HSK 1 240.00

4 1004 1 HSK 1 800.00

1 1005 5 NRG 10 280.00

2 1005 5 ANZ 10 198.00

3 1005 6 SMT 1 36.00

4 1005 6 ANZ 1 48.00

1 1006 5 SMT 5 125.00

2 1006 5 NRG 5 140.00

3 1006 5 ANZ 5 99.00

4 1006 6 SMT 1 36.00

5 1006 6 ANZ 1 48.00

1 1007 1 HRO 1 250.00

2 1007 2 HRO 1 126.00

3 1007 3 HSK 1 240.00

4 1007 4 HRO 1 480.00

 (1 of 3)
A-20 Informix Guide to SQL: Reference

Data in the stores7 Database
5 1007 7 HRO 1 600.00

1 1008 8 ANZ 1 840.00

2 1008 9 ANZ 5 100.00

1 1009 1 SMT 1 450.00

1 1010 6 SMT 1 36.00

2 1010 6 ANZ 1 48.00

1 1011 5 ANZ 5 99.00

1 1012 8 ANZ 1 840.00

2 1012 9 ANZ 10 200.00

1 1013 5 ANZ 1 19.80

2 1013 6 SMT 1 36.00

3 1013 6 ANZ 1 48.00

4 1013 9 ANZ 2 40.00

1 1014 4 HSK 1 960.00

2 1014 4 HRO 1 480.00

1 1015 1 SMT 1 450.00

1 1016 101 SHM 2 136.00

2 1016 109 PRC 3 90.00

3 1016 110 HSK 1 308.00

4 1016 114 PRC 1 120.00

1 1017 201 NKL 4 150.00

2 1017 202 KAR 1 230.00

3 1017 301 SHM 2 204.00

1 1018 307 PRC 2 500.00

item_num order_num stock_num manu_code quantity total_price

 (2 of 3)
The stores7 Database A-21

Data in the stores7 Database
2 1018 302 KAR 3 15.00

3 1018 110 PRC 1 236.00

4 1018 5 SMT 4 100.00

5 1018 304 HRO 1 280.00

1 1019 111 SHM 3 1499.97

1 1020 204 KAR 2 90.00

2 1020 301 KAR 4 348.00

1 1021 201 NKL 2 75.00

2 1021 201 ANZ 3 225.00

3 1021 202 KAR 3 690.00

4 1021 205 ANZ 2 624.00

1 1022 309 HRO 1 40.00

2 1022 303 PRC 2 96.00

3 1022 6 ANZ 2 96.00

1 1023 103 PRC 2 40.00

2 1023 104 PRC 2 116.00

3 1023 105 SHM 1 80.00

4 1023 110 SHM 1 228.00

5 1023 304 ANZ 1 170.00

6 1023 306 SHM 1 190.00

item_num order_num stock_num manu_code quantity total_price

 (3 of 3)
A-22 Informix Guide to SQL: Reference

Data in the stores7 Database
call_type Table

call_code code_descr

B billing error

D damaged goods

I incorrect merchandise sent

L late shipment

O other
The stores7 Database A-23

A-24
Inform

ix Guide to SQL: Reference

Data in the stores7 Databaseorder_num order_ rge paid_date

1001 05/2 07/22/1994

1002 05/2 06/03/1994

1003 05/2 06/14/1994

1004 05/2

1005 05/2 06/21/1994

1006 05/3

1007 05/3

1008 06/0 07/21/1994

1009 06/1 08/21/1994

1010 06/1 08/22/1994

1011 06/1 08/29/1994

1012 06/1

 (1 of 2)
orders Table

date customer_num ship_instruct backlog po_num ship_date ship_weight ship_cha

0/1994 104 express n B77836 06/01/1994 20.40 10.00

1/1994 101 PO on box;
deliver back
door only

n 9270 05/26/1994 50.60 15.30

2/1994 104 express n B77890 05/23/1994 35.60 10.80

2/1994 106 ring bell twice y 8006 05/30/1994 95.80 19.20

4/1994 116 call before
delivery

n 2865 06/09/1994 80.80 16.20

0/1994 112 after 10AM y Q13557 70.80 14.20

1/1994 117 n 278693 06/05/1994 125.90 25.20

7/1994 110 closed Monday y LZ230 07/06/1994 45.60 13.80

4/1994 111 door next to
grocery

n 4745 06/21/1994 20.40 10.00

7/1994 115 deliver 776 King
St. if no answer

n 429Q 06/29/1994 40.60 12.30

8/1994 104 express n B77897 07/03/1994 10.40 5.00

8/1994 117 n 278701 06/29/1994 70.80 14.20

The stores7 Database
A-25

Data in the stores7 Database

1013 06/22 07/31/1994

1014 06/25 07/10/1994

1015 06/27 08/31/1994

1016 06/29

1017 07/09

1018 07/10 08/06/1994

1019 07/11/ 08/06/1994

1020 07/11/ 09/20/1994

1021 07/23 08/22/1994

1022 07/24 09/02/1994

1023 07/24 08/22/1994

order_num order_d ge paid_date

 (2 of 2)
/1994 104 express n B77930 07/10/1994 60.80 12.20

/1994 106 ring bell, kick
door loudly

n 8052 07/03/1994 40.60 12.30

/1994 110 closed Mondays n MA003 07/16/1994 20.60 6.30

/1994 119 delivery
entrance off
Camp St.

n PC6782 07/12/1994 35.00 11.80

/1994 120 North side of
clubhouse

n DM3543
31

07/13/1994 60.00 18.00

/1994 121 SW corner of
Biltmore Mall

n S22942 07/13/1994 70.50 20.00

1994 122 closed til noon
Mondays

n Z55709 07/16/1994 90.00 23.00

1994 123 express n W2286 07/16/1994 14.00 8.50

/1994 124 ask for Elaine n C3288 07/25/1994 40.00 12.00

/1994 126 express n W9925 07/30/1994 15.00 13.00

/1994 127 no deliveries
after 3 p.m.

n KF2961 07/30/1994 60.00 18.00

ate customer_num ship_instruct backlog po_num ship_date ship_weight ship_char

Data in the stores7 Database
stock Table

stock_num manu_code description unit_price unit unit_descr

1 HRO baseball gloves 250.00 case 10 gloves/case

1 HSK baseball gloves 800.00 case 10 gloves/case

1 SMT baseball gloves 450.00 case 10 gloves/case

2 HRO baseball 126.00 case 24/case

3 HSK baseball bat 240.00 case 12/case

3 SHM baseball bat 280.00 case 12/case

4 HSK football 960.00 case 24/case

4 HRO football 480.00 case 24/case

5 NRG tennis racquet 28.00 each each

5 SMT tennis racquet 25.00 each each

5 ANZ tennis racquet 19.80 each each

6 SMT tennis ball 36.00 case 24 cans/case

6 ANZ tennis ball 48.00 case 24 cans/case

7 HRO basketball 600.00 case 24/case

8 ANZ volleyball 840.00 case 24/case

9 ANZ volleyball net 20.00 each each

101 PRC bicycle tires 88.00 box 4/box

101 SHM bicycle tires 68.00 box 4/box

102 SHM bicycle brakes 220.00 case 4 sets/case

102 PRC bicycle brakes 480.00 case 4 sets/case

103 PRC front derailleur 20.00 each each

104 PRC rear derailleur 58.00 each each

105 PRC bicycle wheels 53.00 pair pair

 (1 of 4)
A-26 Informix Guide to SQL: Reference

Data in the stores7 Database
105 SHM bicycle wheels 80.00 pair pair

106 PRC bicycle stem 23.00 each each

107 PRC bicycle saddle 70.00 pair pair

108 SHM crankset 45.00 each each

109 PRC pedal binding 30.00 case 6 pairs/case

109 SHM pedal binding 200.00 case 4 pairs/case

110 PRC helmet 236.00 case 4/case

110 ANZ helmet 244.00 case 4/case

110 SHM helmet 228.00 case 4/case

110 HRO helmet 260.00 case 4/case

110 HSK helmet 308.00 case 4/case

111 SHM 10-spd, assmbld 499.99 each each

112 SHM 12-spd, assmbld 549.00 each each

113 SHM 18-spd, assmbld 685.90 each each

114 PRC bicycle gloves 120.00 case 10 pairs/case

201 NKL golf shoes 37.50 each each

201 ANZ golf shoes 75.00 each each

201 KAR golf shoes 90.00 each each

202 NKL metal woods 174.00 case 2 sets/case

202 KAR std woods 230.00 case 2 sets/case

203 NKL irons/wedges 670.00 case 2 sets/case

204 KAR putter 45.00 each each

205 NKL 3 golf balls 312.00 case 24/case

205 ANZ 3 golf balls 312.00 case 24/case

stock_num manu_code description unit_price unit unit_descr

 (2 of 4)
The stores7 Database A-27

Data in the stores7 Database
205 HRO 3 golf balls 312.00 case 24/case

301 NKL running shoes 97.00 each each

301 HRO running shoes 42.50 each each

301 SHM running shoes 102.00 each each

301 PRC running shoes 75.00 each each

301 KAR running shoes 87.00 each each

301 ANZ running shoes 95.00 each each

302 HRO ice pack 4.50 each each

302 KAR ice pack 5.00 each each

303 PRC socks 48.00 box 24 pairs/box

303 KAR socks 36.00 box 24 pair/box

304 ANZ watch 170.00 box 10/box

304 HRO watch 280.00 box 10/box

305 HRO first-aid kit 48.00 case 4/case

306 PRC tandem adapter 160.00 each each

306 SHM tandem adapter 190.00 each each

307 PRC infant jogger 250.00 each each

308 PRC twin jogger 280.00 each each

309 HRO ear drops 40.00 case 20/case

309 SHM ear drops 40.00 case 20/case

310 SHM kick board 80.00 case 10/case

310 ANZ kick board 89.00 case 12/case

311 SHM water gloves 48.00 box 4 pairs/box

312 SHM racer goggles 96.00 box 12/box

stock_num manu_code description unit_price unit unit_descr

 (3 of 4)
A-28 Informix Guide to SQL: Reference

Data in the stores7 Database
312 HRO racer goggles 72.00 box 12/box

313 SHM swim cap 72.00 box 12/box

313 ANZ swim cap 60.00 box 12/box

stock_num manu_code description unit_price unit unit_descr

 (4 of 4)
The stores7 Database A-29

A-30
Inform

ix Guide to SQL: Reference

Data in the stores7 Database

catalog_num s

10001 1 ’s Baseball Glove

10002 1 d-Stitched, Deep-
ebbing that Won’t

10003 1 r’s Mitt With the

10004 2 Ball Available, from
ng to the Robinson

10005 3 Design Expands

10006 3 um for High School
thletes

10007 4 ith Norm Van
re

10008 4 Football for High
giate Competitions

 (1 of 12)
catalog Table

tock_num manu_code cat_descr cat_picture cat_advert

HRO Brown leather. Specify first baseman’s
or infield/outfield style. Specify right-
or left-handed.

<BYTE value> Your First Season

HSK Babe Ruth signature glove. Black
leather. Infield/outfield style. Specify
right- or left-handed.

<BYTE value> All-Leather, Han
Pockets, Sturdy W
Let Go

SMT Catcher’s mitt. Brown leather. Specify
right- or left-handed.

<BYTE value> A Sturdy Catche
Perfect Pocket

HRO Jackie Robinson signature glove.
Highest Professional quality, used by
National League.

<BYTE value> Highest Quality
the Hand-Stitchi
Signature

HSK Pro-style wood. Available in sizes: 31,
32, 33, 34, 35.

<BYTE value> High-Technology
the Sweet Spot

SHM Aluminum. Blue with black tape. 31",
20 oz or 22 oz; 32", 21 oz or 23 oz; 33",
22 oz or 24 oz.

<BYTE value> Durable Alumin
and Collegiate A

HSK Norm Van Brocklin signature style. <BYTE value> Quality Pigskin w
Brocklin Signatu

HRO NFL-Style pigskin. <BYTE value> Highest Quality
School and Colle

The stores7 Database
A-31

Data in the stores7 Database

10009 5 fies Your Natural
ing More Power

amic Design

10010 5 t For the

10011 5 f Classic Wooden

10012 6 nnis, Day or Night

10013 6 tion Coupled with
rs Available

10014 7 alls for Indoor

10015 8 yballs for Indoor

10016 9 ball Netting for
al and Collegiate

10017 10 ure Protection,
 In-City Riding

catalog_num sto

 (2 of 12)
NRG Graphite frame. Synthetic strings. <BYTE value> Wide Body Ampli
Abilities by Provid
Through Aerodyn

SMT Aluminum frame. Synthetic strings. <BYTE value> Mid-Sized Racque
Improving Player

ANZ Wood frame, cat-gut strings. <BYTE value> Antique Replica o
Racquet Built with
Cat-Gut Strings

SMT Soft yellow color for easy visibility in
sunlight or artificial light.

<BYTE value> High-Visibility Te

ANZ Pro-core. Available in neon yellow,
green, and pink.

<BYTE value> Durable Construc
the Brightest Colo

HRO Indoor. Classic NBA style. Brown
leather.

<BYTE value> Long-Life Basketb
Gymnasiums

ANZ Indoor. Finest leather. Professional
quality.

<BYTE value> Professional Volle
Competitions

ANZ Steel eyelets. Nylon cording. Double-
stitched. Sanctioned by the National
Athletic Congress.

<BYTE value> Sanctioned Volley
Indoor Profession
Competition

1 PRC Reinforced, hand-finished tubular.
Polyurethane belted. Effective against
punctures. Mixed tread for super wear
and road grip.

<BYTE value> Ultimate in Punct
Tires Designed for

ck_num manu_code cat_descr cat_picture cat_advert

A-32
Inform

ix Guide to SQL: Reference

Data in the stores7 Database

10018 1 for Club Rides or

10019 1 nd Spring-Sleeve
tees Smooth Action

10020 1 n Delivers Rigid Yet
rakes

10021 1 ntain: ProCycle’s
Adds Finesse to

10022 1 Design Engineers
ity Into
Derailleur

10023 1 Wheels That Hold
hest Conditions

catalog_num s

 (3 of 12)
01 SHM Durable nylon casing with butyl tube
for superior air retention. Center-
ribbed tread with herringbone side.
Coated sidewalls resist abrasion.

<BYTE value> The Perfect Tire
Training

02 SHM Thrust bearing and coated pivot
washer/ spring sleeve for smooth
action. Slotted levers with soft gum
hoods. Two-tone paint treatment. Set
includes calipers, levers, and cables.

<BYTE value> Thrust-Bearing a
Brake Set Guaran

02 PRC Computer-aided design with low-
profile pads. Cold-forged alloy calipers
and beefy caliper bushing. Aero levers.
Set includes calipers, levers, and
cables.

<BYTE value> Computer Desig
Vibration-Free B

03 PRC Compact leading-action design
enhances shifting. Deep cage for
super-small granny gears. Extra strong
construction to resist off-road abuse.

<BYTE value> Climb Any Mou
Front Derailleur
Your ATB

04 PRC Floating trapezoid geometry with
extra thick parallelogram arms.
100-tooth capacity. Optimum
alignment with any freewheel.

<BYTE value> Computer-Aided
100-Tooth Capac
ProCycle’s Rear

05 PRC Front wheels laced with 15g spokes in
a 3-cross pattern. Rear wheels laced
with 14g spikes in a 3-cross pattern.

<BYTE value> Durable Training
True Under Toug

tock_num manu_code cat_descr cat_picture cat_advert

The stores7 Database
A-33

Data in the stores7 Database

10024 10 Wheels for
erformance

10025 10 th Pearl Finish

10026 10 iding Comfort,
 Anatomical

10027 10 ountain Bike With
nkset

10028 10 proved To Prevent
uckle

catalog_num sto

 (4 of 12)
5 SHM Polished alloy. Sealed-bearing, quick-
release hubs. Double-butted. Front
wheels are laced 15g/2-cross. Rear
wheels are laced 15g/3-cross.

<BYTE value> Extra Lightweight
Training or High-P
Touring

6 PRC Hard anodized alloy with pearl finish.
6mm hex bolt hardware. Available in
lengths of 90-140mm in 10mm
increments.

<BYTE value> ProCycle Stem wi

7 PRC Available in three styles: Men’s racing;
Men’s touring; and Women’s.
Anatomical gel construction with
lycra cover. Black or black/hot pink.

<BYTE value> The Ultimate In R
Lightweight With
Support

8 SHM Double or triple crankset with choice
of chainrings. For double crankset,
chainrings from 38-54 teeth. For triple
crankset, chainrings from 24-48 teeth.

<BYTE value> Customize Your M
Extra-Durable Cra

9 PRC Steel toe clips with nylon strap. Extra
wide at buckle to reduce pressure.

<BYTE value> Classic Toeclip Im
Soreness At Clip B

ck_num manu_code cat_descr cat_picture cat_advert

A-34
Inform

ix Guide to SQL: Reference

Data in the stores7 Database

10029 1 Clip Design
m Power And Fast

10030 1 uick-Release,
ction Helmet

10031 1 ontact, Feather-
 Protection Helmet

10032 1 elmet: Smooth
s the Worry of Brush
rs

ction

10033 1 tic with Vents
mfort Without
ction

catalog_num s

 (5 of 12)
09 SHM Ingenious new design combines
button on sole of shoe with slot on a
pedal plate to give riders new options
in riding efficiency. Choose full or
partial locking. Four plates mean both
top and bottom of pedals are slotted—
no fishing around when you want to
engage full power. Fast unlocking
ensures safety when maneuverability
is paramount.

<BYTE value> Ingenious Pedal/
Delivers Maximu
Unlocking

10 PRC Super-lightweight. Meets both ANSI
and Snell standards for impact protec-
tion. 7.5 oz. Quick-release shadow
buckle.

<BYTE value> Feather-Light, Q
Maximum Prote

10 ANZ No buckle so no plastic touches your
chin. Meets both ANSI and Snell stan-
dards for impact protection. 7.5 oz.
Lycra cover.

<BYTE value> Minimum Chin C
Light, Maximum

10 SHM Dense outer layer combines with softer
inner layer to eliminate the mesh cover,
no snagging on brush. Meets both
ANSI and Snell standards for impact
protection. 8.0 oz.

<BYTE value> Mountain Bike H
Cover Eliminate
Snags But Delive
Maximum Prote

10 HRO Newest ultralight helmet uses plastic
shell. Largest ventilation channels of
any helmet on the market. 8.5 oz.

<BYTE value> Lightweight Plas
Assures Cool Co
Sacrificing Prote

tock_num manu_code cat_descr cat_picture cat_advert

The stores7 Database
A-35

Data in the stores7 Database

10034 110 sed by Yellow
ime the Difference

10035 111 cycle Designed for
uter Who Mixes

asure

10036 112 eal Combination of
pment, Then
s Package Deal:
 on the Roads,
e Everywhere

10037 113 erious Competitor,
ing Machine

10038 114 Comfort and

catalog_num sto

 (6 of 12)
HSK Aerodynamic (teardrop) helmet
covered with anti-drag fabric. Credited
with shaving 2 seconds/mile from
winner’s time in Tour de France time-
trial. 7.5 oz.

<BYTE value> Teardrop Design U
Jerseys, You Can T

SHM Light-action shifting 10 speed.
Designed for the city commuter with
shock-absorbing front fork and drilled
eyelets for carry-all racks or bicycle
trailers. Internal wiring for generator
lights. 33 lbs.

<BYTE value> Fully Equipped Bi
the Serious Comm
Business With Ple

SHM Created for the beginner enthusiast.
Ideal for club rides and light touring.
Sophisticated triple-butted frame
construction. Precise index shifting. 28
lbs.

<BYTE value> We Selected the Id
Touring Bike Equi
Turned It Into Thi
High-Performance
Maximum Pleasur

SHM Ultra-lightweight. Racing frame
geometry built for aerodynamic
handlebars. Cantilever brakes. Index
shifting. High-performance gearing.
Quick-release hubs. Disk wheels.
Bladed spokes.

<BYTE value> Designed for the S
The Complete Rac

PRC Padded leather palm and stretch mesh
merged with terry back; Available in
tan, black, and cream. Sizes S, M, L, XL.

<BYTE value> Riding Gloves For
Protection

ck_num manu_code cat_descr cat_picture cat_advert

A-36
Inform

ix Guide to SQL: Reference

Data in the stores7 Database

10039 2 ng-Wearing Golf
d Women

10040 2 ction Ensures
ort and Durability In

10041 2 ality Shoe
er and Leather Mesh

10042 2 ods, Ideal for High
giate Classes

10043 2 ods Appropriate for
petitions or Serious

10044 2 able From Factory at
ings: Discontinued

10045 2 ginning Set of Irons
High School

10046 2 Balls: Fluorescent

catalog_num s

 (7 of 12)
01 NKL Designed for comfort and stability.
Available in white & blue or white &
brown. Specify size.

<BYTE value> Full-Comfort, Lo
Shoes for Men an

01 ANZ Guaranteed waterproof. Full leather
upper. Available in white, bone,
brown, green, and blue. Specify size.

<BYTE value> Waterproof Prote
Maximum Comf
All Climates

01 KAR Leather and leather mesh for
maximum ventilation. Waterproof
lining to keep feet dry. Available in
white & gray or white & ivory. Specify
size.

<BYTE value> Karsten’s Top Qu
Combines Leath

02 NKL Complete starter set utilizes gold
shafts. Balanced for power.

<BYTE value> Starter Set of Wo
School and Colle

02 KAR Full set of woods designed for preci-
sion control and power performance.

<BYTE value> High-Quality Wo
High School Com
Amateurs

03 NKL Set of eight irons includes 3 through 9
irons and pitching wedge. Originally
priced at $489.00.

<BYTE value> Set of Irons Avail
Tremendous Sav
Line

04 KAR Ideally balanced for optimum control.
Nylon-covered shaft.

<BYTE value> High-Quality Be
Appropriate for
Competitions

05 NKL Fluorescent yellow. <BYTE value> Long Drive Golf
Yellow

tock_num manu_code cat_descr cat_picture cat_advert

The stores7 Database
A-37

Data in the stores7 Database

10047 20 alls: White

10048 20 Case Includes
 and Standard

10049 30 ion For High-

10050 30 inators Take Heart:
 Shoe For Runners
 Control

10051 30 Engineered for
Ultra-Distance

10052 30 g Flat That
orefoot Protection
el

catalog_num sto

 (8 of 12)
5 ANZ White only. <BYTE value> Long Drive Golf B

5 HRO Combination fluorescent yellow and
standard white.

<BYTE value> HiFlier Golf Balls:
Fluorescent Yellow
White

1 NKL Super shock-absorbing gel pads
disperse vertical energy into a hori-
zontal plane for extraordinary
cushioned comfort. Great motion
control. Men’s only. Specify size.

<BYTE value> Maximum Protect
Mileage Runners

1 HRO Engineered for serious training with
exceptional stability. Fabulous shock
absorption. Great durability. Specify
men’s/women’s, size.

<BYTE value> Pronators and Sup
A Serious Training
Who Need Motion

1 SHM For runners who log heavy miles and
need a durable, supportive, stable plat-
form. Mesh/synthetic upper gives
excellent moisture dissipation.
Stability system uses rear antiprona-
tion platform and forefoot control
plate for extended protection during
high-intensity training. Specify
men’s/women’s size.

<BYTE value> The Training Shoe
Marathoners and
Runners

1 PRC Supportive, stable racing flat. Plenty of
forefoot cushioning with added
motion control. Women’s only.
D widths available. Specify size.

<BYTE value> A Woman’s Racin
Combines Extra F
With a Slender He

ck_num manu_code cat_descr cat_picture cat_advert

A-38
Inform

ix Guide to SQL: Reference

Data in the stores7 Database

10053 3 Flat That Can Carry
rathon Miles

10054 3 Protection, and
om

10055 3 ack for Achilles
 Splints that You
ffice

10056 3 ks Off With YOUR

10057 3 d Socks - No Cotton

catalog_num s

 (9 of 12)
01 KAR Anatomical last holds your foot firmly
in place. Feather-weight
cushioning delivers the responsive-
ness of a racing flat. Specify
men’s/women’s size.

<BYTE value> Durable Training
You Through Ma

01 ANZ Cantilever sole provides shock absorp-
tion and energy rebound. Positive
traction shoe with ample toe box. Ideal
for runners who need a wide shoe.
Available in men’s and women’s.
Specify size.

<BYTE value> Motion Control,
Extra Toebox Ro

02 KAR Reusable ice pack with velcro strap.
For general use. Velcro strap allows
easy application to arms or legs.

<BYTE value> Finally, An Ice P
Injuries and Shin
Can Take to the O

03 PRC Neon nylon. Perfect for running or
aerobics. Indicate color: Fluorescent
pink, yellow, green, and orange.

<BYTE value> Knock Their Soc
Socks

03 KAR 100% nylon blend for optimal wicking
and comfort. We’ve taken out the
cotton to eliminate the risk of blisters
and reduce the opportunity for infec-
tion. Specify men’s or women’s.

<BYTE value> 100% Nylon Blen

tock_num manu_code cat_descr cat_picture cat_advert

The stores7 Database
A-39

Data in the stores7 Database

10058 30 4-Lap Memory

10059 30 lete Watch In
rs

10060 30 irst-Aid Kit
 Practices, Team

10061 30 ith Your Child On a
ur Family Outing

10062 30 g Vacation For the
ightweight,

or Parent and Child

10063 30 s A Running

10064 30 ows, Infant Jogger

catalog_num sto

 (10 of 12)
4 ANZ Provides time, date, dual display of
lap/cumulative splits, 4-lap memory,
10 hr count-down timer, event timer,
alarm, hour chime, waterproof to 50m,
velcro band.

<BYTE value> Athletic Watch w/

4 HRO Split timer, waterproof to 50m. Indicate
color: Hot pink, mint green, space
black.

<BYTE value> Waterproof Triath
Competition Colo

5 HRO Contains ace bandage, anti-bacterial
cream, alcohol cleansing pads,
adhesive bandages of assorted sizes,
and instant-cold pack.

<BYTE value> Comprehensive F
Essential for Team
Traveling

6 PRC Converts a standard tandem bike into
an adult/child bike. User-tested
assembly instructions

<BYTE value> Enjoy Bicycling W
Tandem; Make Yo
Safer

6 SHM Converts a standard tandem bike into
an adult/child bike. Lightweight
model.

<BYTE value> Consider a Tourin
Entire Family: A L
Touring Tandem f

7 PRC Allows mom or dad to take the baby
out too. Fits children up to 21 pounds.
Navy blue with black trim.

<BYTE value> Infant Jogger Keep
Family Together

8 PRC Allows mom or dad to take both
children! Rated for children up to 18
pounds.

<BYTE value> As Your Family Gr
Grows With You

ck_num manu_code cat_descr cat_picture cat_advert

A-40
Inform

ix Guide to SQL: Reference

Data in the stores7 Database

10065 3 revent Ear Infection

10066 3 rops Specially
hildren

10067 3 rable, Compact
am Practice

10068 3 ckboard

10069 3 l - Webbed Swim
 Strength and

10070 3 er’s Goggles:
nt

10071 3 raditional Rounded
Comfort

catalog_num s

 (11 of 12)
09 HRO Prevents swimmer’s ear. <BYTE value> Swimmers Can P
All Season Long

09 SHM Extra-gentle formula. Can be used
every day for prevention or treatment
of swimmer’s ear.

<BYTE value> Swimmer’s Ear D
Formulated for C

10 SHM Blue heavy-duty foam board with
Shimara or team logo.

<BYTE value> Exceptionally Du
Kickboard for Te

10 ANZ White. Standard size. <BYTE value> High-Quality Ki

11 SHM Swim gloves. Webbing between
fingers promotes strengthening of
arms. Cannot be used in competition.

<BYTE value> Hot Training Too
Gloves Build Arm
Endurance

12 SHM Hydrodynamic egg-shaped lens.
Ground-in anti-fog elements;
Available in blue or smoke.

<BYTE value> Anti-Fog Swimm
Quantity Discou

12 HRO Durable competition-style goggles.
Available in blue, grey, or white.

<BYTE value> Swim Goggles: T
Lens For Greater

tock_num manu_code cat_descr cat_picture cat_advert

The stores7 Database
A-41

Data in the stores7 Database

10072 31 e Swim Cap

10073 31 off Silicone Swim

10074 31 nt Combines With
imal Orthopedic

catalog_num sto

 (12 of 12)
3 SHM Silicone swim cap. One size. Available
in white, silver, or navy. Team Logo
Imprinting Available.

<BYTE value> Team Logo Silicon

4 ANZ Silicone swim cap. Squared-off top.
One size. White

<BYTE value> Durable Squared-
Cap

5 HRO Re-usable ice pack. Store in the freezer
for instant first-aid. Extra capacity to
accommodate water and ice.

<BYTE value> Water Compartme
Ice to Provide Opt
Treatment

ck_num manu_code cat_descr cat_picture cat_advert

A-42
Inform

ix Guide to SQL: Reference

Data in the stores7 Database

customer_num

106 redit for two cans to
ued apology. Called
o report the QA

110 h shipping (Ed
r sent yesterday- we
 for goods from

ime will call with
ssary.

119 ane Akant in
found the error and
w bill to customer.

121 arketing group of
fant joggers.

 (1 of 2)
cust_calls Table

call_dtime user_id call_code call_descr res_dtime res_descr

1994-06-12 8:20 maryj D Order was received, but
two of the cans of ANZ
tennis balls within the case
were empty.

1994-06-12 8:25 Authorized c
customer, iss
ANZ buyer t
problem.

1994-07-07 10:24 richc L Order placed one month
ago (6/7) not received.

1994-07-07 10:30 Checked wit
Smith). Orde
were waiting
ANZ. Next t
delay if nece

1994-07-01 15:00 richc B Bill does not reflect credit
from previous order.

1994-07-02 8:21 Spoke with J
Finance. She
is sending ne

1994-07-10 14:05 maryj O Customer likes our
merchandise. Requests that
we stock more types of
infant joggers. Will call
back to place order.

1994-07-10 14:06 Sent note to m
interest in in

The stores7 Database
A-43

Data in the stores7 Database

127 1 shipping to send
 to customer and
atches. Should be
, 8/1.

116 1 d correct case in
 express mailed it

im meet.

116 1 ing (Ava Brown)
 left-handed
 wrong case;
g requesting 5%
cate customer due
se and lateness of

ause of holiday.

customer_num c

 (2 of 2)
994-07-31 14:30 maryj I Received Hero watches
(item # 304) instead of ANZ
watches.

Sent memo to
ANZ item 304
pickup HRO w
done tomorrow

993-11-28 13:34 mannyn I Received plain white swim
caps (313 ANZ) instead of
navy with team logo (313
SHM).

1993-11-28 16:47 Shipping foun
warehouse and
in time for sw

993-12-21 11:24 mannyn I Second complaint from this
customer! Received two
cases right-handed
outfielder gloves
(1 HRO) instead of one case
lefties.

1993-12-27 08:19 Memo to shipp
to send case of
gloves, pick up
memo to billin
discount to pla
to second offen
resolution bec

all_dtime user_id call_code call_descr res_dtime res_descr

Data in the stores7 Database
manufact Table

state Table

manu_code manu_name lead_time

ANZ Anza 5

HSK Husky 5

HRO Hero 4

NRG Norge 7

SMT Smith 3

SHM Shimara 30

KAR Karsten 21

NKL Nikolus 8

PRC ProCycle 9

code sname code sname

AK Alaska MT Montana

AL Alabama NE Nebraska

AR Arkansas NC North Carolina

AZ Arizona ND North Dakota

CA California NH New Hampshire

CT Connecticut NJ New Jersey

CO Colorado NM New Mexico

DC D.C. NV Nevada

DE Delaware NY New York

FL Florida OH Ohio

 (1 of 2)
A-44 Informix Guide to SQL: Reference

Data in the stores7 Database
GA Georgia OK Oklahoma

HI Hawaii OR Oregon

IA Iowa PA Pennsylvania

ID Idaho PR Puerto Rico

IL Illinois RI Rhode Island

IN Indiana SC South Carolina

KY Kentucky TN Tennessee

LA Louisiana TX Texas

MA Massachusetts UT Utah

MD Maryland VA Virginia

ME Maine VT Vermont

MI Michigan WA Washington

MN Minnesota WI Wisconsin

MO Missouri WV West Virginia

MS Mississippi WY Wyoming

code sname code sname

 (2 of 2)
The stores7 Database A-45

Glossary
Glossary
access method A procedure that is used to retrieve rows from or insert rows into
a storage location. In the SET EXPLAIN statement, access method
refers to the type of table access in a query (for example,
SEQUENTIAL SCAN as opposed to INDEX PATH).

access privileges The types of operations that a user has permission to perform in
a specific database, table, table fragment, or column. Informix
maintains its own set of database, table, table fragment, and col-
umn access privileges, which are independent of the operating-
system access privileges.

active set The collection of rows that satisfies a query associated with a
cursor.

aggregate
functions

The functions that return a single value based on the values of
columns in one or more rows of a table (for example, the total
number, sum, average, and maximum or minimum of an expres-
sion in a query or report). Aggregate functions are sometimes
referred to as set functions or math functions.

alias A temporary alternative name for a table in a query; usually
used in complex subqueries and required for self-joins. In a
form-specification file or any SQL query, alias refers to a single-
word alternative name used in place of a more complex table
name (for example, t1 as an alias for owner.table_name).

alpha class The alpha class of a code set consists of all characters that are
classified as alphabetic. For example, the alpha class of the ASCII
code set is the letters a-z and A-Z.

ANSI Acronym for the American National Standards Institute. This
group sets standards in many areas, including the computer
industry and standards for SQL languages.

ANSI compliant Refers to a database that conforms to certain ANSI standards. Informix
databases can be created either as ANSI compliant or not ANSI compliant. An
ANSI-compliant database enforces certain ANSI requirements, such as
implicit transactions, required owner naming, and unbuffered logging
(unbuffered logging only when using INFORMIX-OnLine Dynamic Server),
that are not enforced in databases that are not ANSI compliant.

application
development tool

Software, such as INFORMIX-NewEra, that you can use to create and maintain
a database. The software allows a user to send instructions and data to and
receive information from the database server.

application
process

The process that manages an ESQL, NewEra, or other program at runtime. It
executes the program logic and initiates SQL requests. Memory that is allo-
cated for program variables, program data, and the fetch buffer is part of this
process. See also database server process.

application-
productivity tools

Tools, such as forms and reports, used to write applications.

application
program

An executable file or logically related set of files that perform one or more
database management tasks.

application
programming
interface (API)

See SQL API.

arbitrary rule A series of expressions that you define using SQL relational and logical
operators. Unlike the range rule, the arbitrary rule allows you to use any rela-
tional operator and any logical operator to define the expressions. Typically
includes the use of the OR logical operator to group data.

archiving Copying all the data and indexes of a database onto a new medium, usually
a tape or a different physical device from the one that stores the database.
Archived material is used for recovering from a failure and is usually
performed by a database administrator. See backup.

argument A value passed to a function, routine, stored procedure, or command.

array A set of items of the same type. Individual members of the array are referred
to as elements and are usually distinguished by an integer argument that gives
the position of the element in the array. Informix arrays can have up to three
dimensions.
2 Informix Guide to SQL: Reference

ASCII Acronym for the American Standards Committee for Information
Interchange. Often used to describe an ordered set of printable and non-
printable characters used in computers and telecommunication.

ASF Acronym for Associated Services Facility. The code in the ASF portion of
Informix products controls the connections between clients and servers. This
term is used by system developers; users of Informix products see this term
only in occasional error messages.

attached index An index that is created without a fragmentation strategy. An attached index
can also be an index created on a fragmented table.

audit event Any OnLine activity or operation that could potentially access and alter data,
which should be recorded and monitored by the OnLine secure auditing
facility. Examples of audit events include accessing tables, altering indexes,
dropping chunks, granting database access, updating the current row, run-
ning OnLine utilities, and so forth. (For a complete list of audit events, see
Appendix A in the INFORMIX-OnLine Dynamic Server Trusted Facility Man-
ual.)

audit file A file that contains records of audit events and resides in the specified audit
directory. Audit files form an audit trail of information that can be extracted
by the OnLine secure auditing facility for analysis by the OnLine
administrator.

audit mask A structure that specifies which events should be audited by (or excluded
from auditing by) the OnLine secure auditing facility.

audit trail A history of all changes to a table in SE database servers.

audit trail log A file that contains a history of all changes to a table. Starting from an
archived database, an audit trail log can reconstruct all subsequent changes
to the table in INFORMIX-SE database servers.

auxiliary
statements

The SQL statements that you use to obtain auxiliary information about tables
and databases. These statements include INFO, OUTPUT, WHENEVER, and
GET DIAGNOSTICS.

B+ tree A method of organizing an index into a tree structure for efficient record
retrieval.
Glossary 3

backup A duplicate of a computer file on another device or tape to preserve existing
work, in case of a computer failure or other mishap. In INFORMIX-OnLine
Dynamic Server, backup refers to duplicating logical log files and archiving
refers to duplicating data.

base table See table.

before-image The image of a row, page, or other item before any changes are made to it.

blobpage The unit of disk allocation within a blobspace under INFORMIX-OnLine
Dynamic Server. The OnLine administrator determines the size of a
blobpage; the size can vary from blobspace to blobspace.

blobs Acronym for binary large objects. Blobs are data objects that effectively have
no maximum size (theoretically as large as 231 bytes).

blobspace A logical collection of chunks that is used to store TEXT and BYTE data in
INFORMIX-OnLine Dynamic Server.

Boolean A variable or an expression that can take on the logical values TRUE (1),
FALSE (0), or UNKNOWN (if null values are involved).

buffer A portion of computer memory where a program temporarily stores data.
Data typically is read into or written out from buffers to disk.

buffered logging A type of logging that holds transactions in a memory buffer until the buffer
is full, regardless of when the transaction is committed or rolled back.
INFORMIX-OnLine Dynamic Server provides this option to speed up
operations by reducing the number of disk writes.

byte A unit of storage that corresponds approximately to one character. It is the
smallest addressable computer memory unit. A byte is also known as an
octet. (When BYTE appears in uppercase letters, it refers to the Informix data
type.)

callback function A user-defined function called during execution of an SQL request.

Cartesian
product

The set that results when you pair each and every member of one set with
each and every member of another set. A Cartesian product results from a
multiple-table query when you do not specify the joining conditions among
tables. See join.

cascading
deletes

When any rows are deleted from the primary key column of a table, cascad-
ing deletes, if enabled, eliminate identical information from any foreign key
column in a related table.
4 Informix Guide to SQL: Reference

case-sensitivity The condition of distinguishing between uppercase and lowercase letters. Be
careful running Informix programs because certain commands and their
options are case-sensitive; that is, they react differently to the same letters
presented in uppercase and lowercase characters.

character A logical unit of storage for the value code in a code set. It can be represented
by one or more bytes and can be numeric, alphabetic, or a non-printable char-
acter (control character).

check constraint A condition that must be met before data can be assigned to a table column
during an INSERT or UPDATE statement.checkpoint

A point in time during an INFORMIX-OnLine Dynamic Server operation when
the pages on disk are synchronized with the pages in the shared-memory
buffer pool. Checkpoints are marked by a special record written into the
logical log.

child table The referencing table in a referential constraint. See parent table.

chunk The largest contiguous section of disk space for OnLine. A specified set of
chunks defines a dbspace or blobspace. An OnLine administrator allocates a
chunk to a dbspace ora blobspace when that dbspace or blobspace
approaches full capacity.

client An application program that requests services from a server program,
typically a file server or a database server.

client locale The environment that defines the behavior of the client application at
runtime by specifying a language, code set, and the conventions used for a
particular language, including date, time, and monetary formats.

client/server
architecture

A hardware and software design that allows the user interface and database
server to reside on separate nodes or platforms on a single computer or over
a network.

client/server
connection
statements

The SQL statements that you use to make connections with databases. These
statements include CONNECT, DISCONNECT, and SET CONNECTION.

close a cursor To drop the association between a cursor and active set of rows resulting from
a query.

close a database To deactivate the connection between a client and a database. Only one
database can be active at a time.
Glossary 5

close a file To release the association between a file and a program.

cluster an index To rearrange the physical data of a table according to a specific index.

cluster key The column in a table that logically relates a group of blobs stored in an
optical cluster.

clustersize The amount of space, specified in kilobytes, that is allocated to an optical
cluster on an optical volume.

code set The representation of a national character set where each code value has a
one-to-one mapping with a character graphic.

code-set
conversion

The process of converting data from one code set to another when client and
server computers use different code sets to represent the same character data.

collating
sequence

The sequence of values that specifies some logical order in which the charac-
ter fields in a database are sorted and indexed. Collation sequences may
depend on order of the chosen code set (e.g. the order of characters and
numbers in the ASCII code set) or it may depend on the locale chosen (e.g. the
language, territory of the database, and futher specifics as to whether a dic-
tionary or a phone-book order is selected). Collating sequence is also known
as collation order.

column A data element containing a particular type of information that occurs in
every row of the table; also known as a field.

column
expression

An expression that includes a column name and optionally uses column
subscripts to define a column substring.

column subscript A subscript in a column expression. See subscript.

column substring A substring in a column expression. See substring.

command file A system file that contains one or more statements or commands, such as SQL
statements.

comment The information in a program file that is not processed by the computer but
documents the program. You use special characters such as a pound sign (#),
curly braces ({ }), slash marks (/) and asterisks (*), or a double dash (--)
to identify comments, depending on the programming environment.

COMMIT WORK To complete a transaction by accepting all changes to the database since the
beginning of the transaction.
6 Informix Guide to SQL: Reference

Committed Read An Informix level of isolation in which a user can view only rows that are
currently committed at the moment of the query request; that is, a user
cannot view rows that were changed as a part of a currently uncommitted
transaction. COMMITED READ is available through INFORMIX-OnLine
Dynamic Server and set with the SET ISOLATION statement. It is the default
level of isolation under OnLine for databases that are not ANSI compliant. See
isolation.

compile To translate a file that contains instructions (in a higher-level language) into
a file containing the corresponding machine-level instructions.

compile-time
errors

The errors that occur at the time the program source code is converted to
executable form. Compare with run-time errors.

component In the High-Performance Loader, the information required to load or unload
data is organized in several components. The components are format, map,
filter, query, project, device array, load job, and unload job.

composite index An index constructed on two or more columns of a table. The ordering
imposed by the composite index varies least frequently on the first-named
column and most frequently on the last-named column.

composite join A join between two tables based on the relationship among two or more
columns in each table. See join.

concatenate To append a second string to the end of a first string.

concatenation
operator

A symbolic notation composed of two pipe symbols (||) used in expressions
to indicate the joining of two strings.

concurrency The ability of two or more processes to access the same database
simultaneously.

configuration file A file read during INFORMIX-OnLine Dynamic Server disk or shared-memory
initialization that contains the parameters that specify values for config-
urable behavior. OnLine and its archiving tool, ON-Archive, use
configuration files.

connection An association between an application and a database environment, created
by a CONNECT or DATABASE statement. Database servers can also have con-
nections to one another. See also explicit connection and implicit connection.

constant A nonvarying data element or value.
Glossary 7

constraint A restriction on what kinds of data can be inserted or updated in tables. See
also check constraint, primary-key constraint, referential constraint, NOT NULL
constraint, and unique constraint.

control character A character whose occurrence in a particular context initiates, modifies, or
stops a control function (an operation to control a device, for example, in
moving a cursor or in reading data). In a program, you can define actions that
use the CTRL key with another key to execute some programming action (for
example, entering CTRL-W to obtain on-line Help in Informix products). A
control character is sometimes referred to as a control key. Compare to
printable character.

correlation name The prefix that you can use with a column name in a triggered action to refer
to an old (before triggering statement) or a new (after triggering statement)
column value. The associated column name must belong to the triggering
table.

corrupted
database

A database whose tables or indexes contain incomplete or invalid data.

corrupted index An index that does not correspond exactly to its table.

current row The most recently retrieved row of the active set of a query.

cursor An identifier associated with a group of rows; conceptually, the pointer to the
current row. You can use cursors for SELECT statements or EXECUTE
PROCEDURE statements (associating the cursor with the rows returned by a
query) or INSERT statements (associating the cursor with a buffer to insert
multiple rows as a group). A select cursor is declared for sequential only (reg-
ular cursor) or nonsequential (scroll cursor) retrieval of row information. In
addition, you can declare a select cursor for update (initiating locking control
for updated and deleted rows) or WITH HOLD (completing a transaction does
not close the cursor). In ESQL/C and ESQL/COBOL, a cursor can be dynamic,
meaning that it can be an identifier or a character/string variable.

cursor
manipulation
statements

The SQL statements that control cursors; specifically, the CLOSE, DECLARE,
FETCH, FLUSH, OPEN, and PUT statements.

Cursor Stability An Informix level of isolation available through OnLine and set with the SET
ISOLATION statement in which the database server must secure a shared lock
on a fetched row before the row can be viewed. The database server retains
the lock until it receives a request to fetch a new row. See isolation.
8 Informix Guide to SQL: Reference

data access
statements

The SQL statements that you use to grant and revoke permissions and to lock
tables.

data definition
statements

The SQL statements that you use to create, alter, drop, and rename data
objects, including databases, tables, views, synonyms, triggers, and stored
procedures.

data dictionary The collection of tables that keeps track of the structure of the database. Infor-
mation about the database is maintained in the data dictionary, which is also
referred to as the system catalog. See system catalog.

data distribution A mapping of the data in a column into a set of the column values. The
contents of the column are examined and divided into bins, each of which
represents a percentage of the data. The organization of column values into
bins is called the distribution for that column. You use the UPDATE
STATISTICS statement to create data distributions.

data integrity The process of ensuring that data corruption does not occur when multiple
users simultaneously try to alter the same data. Locking and transaction pro-
cessing are used to control data integrity.

data integrity
statements

The SQL statements that you use to control transactions and audits. Data
integrity statements also include statements for repairing and recovering
tables.

data
manipulation
statements

The SQL statements that you use to query tables, insert into tables, delete
from tables, update tables, and load into and unload from tables.

data replication When database objects have more than one representation at more than one
distinct site. INFORMIX-OnLine Dynamic Server implements data replication
at the level of database servers.

data restriction Synonym for constraint. See constraint.

data type A descriptor assigned to each column in a table or program variable, which
indicates the type of data the column or program variable is intended to hold.
Informix data types include SMALLINT, INTEGER, SERIAL, SMALLFLOAT,
FLOAT, DECIMAL, MONEY, DATE, DATETIME, INTERVAL, CHAR, VARCHAR,
TEXT, and BYTE. When NLS is enabled, Informix data types include NCHAR
and NVARCHAR.
Glossary 9

database A collection of information (contained in tables) that is useful to a particular
organization or used for a specific purpose.

Database
Administrator

See DBA.

database
application

A program that applies database management techniques to implement
specific data manipulation and reporting tasks.

database
environment

Used in the CONNECT statement, either the database server or the database
server and database to which a user connects.

database locale The environment that defines the language conventions and the behavior of
read and write operations on the database.

database
management
system

See DBMS.

database
object

In the broad sense, any SQL entity recorded in a system catalog table, such as
a table, index, or stored procedure. In the restricted context of the SET state-
ment, a database object is a constraint, index, or trigger whose name and
current object mode are recorded in the sysobjstate system catalog table. You
use the SET statement to change the object mode of database objects.

database server
process

The portion of the INFORMIX-SE database management system that actually
manipulates the database files. It receives SQL statements from the applica-
tion process, parses them, optimizes the approach to data retrieval, retrieves
the database, and returns the data to the application. In the
INFORMIX-OnLine Dynamic Server database management system, these
activities are distributed among threads instead of using a single process. See
thread.

DBA Acronym for Database Administrator. The DBA is the individual who is
responsible for the contents and use of a database. This is different from the
administrator of an INFORMIX-OnLine Dynamic Server database server, who
is responsible for managing one or more OnLine database servers.

DBA-privileged Refers to a class of stored procedures created only by a user with DBA
database privileges.

DBMS Acronym for database management system. It is all the components necessary
to create and maintain a database, including the application development
tools and the database server.
10 Informix Guide to SQL: Reference

dbspace A logical collection of one or more INFORMIX-OnLine Dynamic Server
chunks. Because chunks represent specific regions of disk space, the creators
of databases and tables can control where their data is physically located by
placing databases or tables in specific dbspaces.

DDL Acronym for data definition language. See data definition statements.

deadlock A situation in which two or more threads cannot proceed because each is
waiting for data locked by the other (or another) thread. INFORMIX-OnLine
Dynamic Server monitors and prevents potential deadlock situations by
sending an error message to the application whose request for a lock may
result in a deadlock.

debug file A file that receives output used for debugging purposes.

decision-support
application

An application that provides information which is used for strategic
planning, decision-making, and reporting. It typically executes in a batch
environment in a sequential scan fashion and returns a large fraction of the
rows scanned. Decision-support queries typically scan the entire database.
See OLTP application.

decision-support
query

A query that is generated by a decision-support application. It often requires
operations such as multiple joins, temporary tables, and extensive calcula-
tions, and can benefit significantly from PDQ. Also see OLTP query.

declaration
statement

A programming language statement that describes or defines objects, for
example, defining a program variable. Compare to procedural statement.

default How a program acts or the values that are assumed if the user does not
explicitly specify an action.

default value A value inserted into a column or variable when an explicit value is
not specified. Default values can be assigned to columns using the
ALTER TABLE and CREATE TABLE statements and to variables in stored
procedures.

delete To remove any row or combination of rows with the DELETE statement.

delimited
identifier

An identifier surrounded by double quotes. The purpose of a delimited iden-
tifier is to allow usage of identifiers that are otherwise identical to SQL
reserved keywords or that contain non-alphabetical characters. See also
identifier.
Glossary 11

delimiter A boundary on an input field or the terminator for a column or row. Some
files and prepared objects require semicolon (;), comma (,), space, or tab
delimiters between statements.

descriptor A quoted string or embedded variable name that identifies an allocated
system-descriptor area or an sqlda structure. It is used for the Informix
SQL APIs. See identifier.

detached index An index that is created with a fragmentation strategy or with the IN dbspace
storage option.

device array A list of I/O devices. See component.

diagnostic area A data structure that stores diagnostic information about an executed SQL
statement.

diagnostics table A special table that holds information about the integrity violations caused
by each row in a violations table. You use the START VIOLATIONS TABLE
statement to create violations and diagnostics tables and associate them with
a base table.

Dirty Read An Informix level of isolation set with the SET ISOLATION statement that does
not account for locks and allows viewing of any existing rows, even rows that
currently can be altered from inside an uncommitted transaction. DIRTY
READ is the lowest level of isolation (no isolation at all). It is the level at which
INFORMIX-SE normally operates and it is an optional level under
INFORMIX-OnLine Dynamic Server. See isolation.

disabled mode The object mode in which a database object is disabled. When a constraint,
index, or trigger is in the disabled mode, the database server acts as if the
object does not exist and does not take it into consideration during the execu-
tion of data manipulation statements.

disk
configuration

The organization of data on a disk; also refers to the process of preparing a
disk to store data.

disk I/O The process of transferring data between memory and disk.

display label A temporary name for a column or expression in a query.

distributed data The ability to access data in multiple databases. The databases can be on the
same hardware or on a network. (INFORMIX-OnLine Dynamic Server can
perform multiple-database queries.)
12 Informix Guide to SQL: Reference

distribution See data distribution.

distribution
scheme

A synonym for fragmentation scheme. It is a method that OnLine uses to
distribute rows or index entries to fragments and in some cases, to reduce the
number of fragments that OnLine scans. In an expression-based distribution
scheme, you decide where a fragment is to be stored in addition to providing
a rule or algorithm that OnLine uses to place the rows into the fragments.

DML Acronym for data manipulation language. See data manipulation statements.

dominant table See outer join.

DRDA Acronym for Distributed Relational Database Architecture. DRDA is an IBM-
defined set of protocols that software manufacturers can follow to develop
connectivity solutions between heterogeneous relational database
management environments.

duplicate index An index that allows duplicate values in the indexed column.

dynamic
management
statements

The SQL statements that describe, execute, and prepare statements.

dynamic
SQL

The statements and structures that allow a program to form an SQL statement
during execution, so that portions of the statement can be determined by user
input.

dynamic
statements

The SQL statements that are created at the time the program is executed,
rather than when the program is written. You use the PREPARE statement to
create dynamic statements.

embedded
SQL

The SQL statements that are placed within a host language. Informix
supports embedded SQL in C and COBOL.

enabled mode The default object mode of database objects. When a constraint, index, or trig-
ger is in this mode, the database server recognizes the existence of the object
and takes the object into consideration while executing data manipulation
statements. Also see object mode.

environment
variable

A variable that is maintained by the operating system for each user and made
available to all programs that the user runs.

error
log

A file that receives error information whenever a program runs.
Glossary 13

error
message

A message that is associated with a (usually negative) designated number.
Informix applications display error messages on the screen or write them to
files.

error
trapping

The code within a program that anticipates and reacts to run-time errors.

escape
character

A character that indicates that the following character, normally interpreted
by the program, is to be printed as a literal character instead. The escape
character is used with the interpreted character to “escape” or ignore the
interpreted meaning.

escape
key

The keyboard key, usually marked ESC, that is used to terminate one mode
and start another mode in most UNIX and DOS systems.

exception An error or warning returned by the database server or a state initiated by a
stored procedure statement.

exclusive
access

When a user has sole access to a database or table and other users are
prevented from using it.

exclusive
lock

A lock on an object (row, page, table, or database) that is held by a single
thread that prevents other processes from acquiring a lock of any kind on the
same object.

executable
file

A binary file containing compiled code that can be run as a program; can also
refer to a UNIX shell script or an MS-DOS batch file.

execute To carry out a program, procedure, or a set of instructions.

explicit
connection

A connection made to a database environment that uses the CONNECT
statement.

exponent The power to which a value is to be raised.

expression Anything from a simple numeric or alphabetic constant to a more complex
series of column values, functions, quoted strings, operators, and keywords.
A Boolean expression contains a logical operator (>, <, =, !=, IS NULL, and so
on) and evaluates as TRUE, FALSE, or UNKNOWN. An arithmetic expression
contains the operators (+, −, ×, /, and so on) and evaluates as a number.

expression-
based
distribution
scheme

User-defined distribution scheme created by formulating a series of fragment
expressions to be used by OnLine to distribute rows to fragments.
14 Informix Guide to SQL: Reference

extent A continuous segment of disk space that OnLine allocated to a tblspace (a
table). The user can specify both the initial extent size for a table and the size
of all subsequent extents that OnLine allocates to the table.

external
table

A database table that is not in the current database. It may or may not be in a
database managed by the same database server.

family name A quoted string constant that specifies a family name in the optical family.
See optical family.

fast recovery An automatic, fault-tolerant feature that INFORMIX-OnLine Dynamic Server
implements any time the operating mode changes from off-line to quiescent
mode. The aim of fast recovery is to return OnLine to a state of physical and
logical consistency with a minimal loss of work in the event of a system
failure.

fault tolerance See high availability.

fetch The action of moving a cursor to a new row and retrieving the row values into
memory.

fetch buffer A buffer in the application process that the database server uses to send
fetched row data (except blob data) to the application. See also application
process.

field See column.

file A collection of related information stored together on a system, such as the
words in a letter or report, a computer program, or a listing of data.

file server A network node that manages a set of disks and provides storage services to
computers on the network.

filename
extension

The part of a filename following the period. For example, DB-Access appends
the extension .sql to command files.

filter A set of conditions for selecting records from an input file. See component.

filtering mode The object mode of a database object that causes bad rows to be filtered out
to the violations table during data manipulation operations. Only constraints
and unique indexes can be in the filtering mode. When a constraint or unique
index is in this mode, the database server enforces the constraint or the
unique index requirement during INSERT, DELETE, and UPDATE operations
but filters out rows that would violate the constraint or unique index
requirement.
Glossary 15

fixchar A character data type, available in INFORMIX-ESQL/C programs, in which
the character string is fixed in length, padded with trailing blanks if
necessary, and not null-terminated.

fixed-point
number

A number where the decimal point is fixed at a specific place regardless of the
value of the number.

flag A command-line option, usually indicated by a minus (-) sign in UNIX
systems. For example, in DB-Access the -e flag echoes input to the screen.

floating-point
number

A number with fixed precision (total number of digits) and undefined scale
(number of digits to the left of the decimal point). The decimal point floats as
appropriate to represent an assigned value.

forced residency An option that forces UNIX to keep the resident portion of INFORMIX-OnLine
Dynamic Server shared-memory segments resident in memory, preventing
UNIX from swapping out these segments to disk. (This option is not available
on all UNIX systems.)

foreign key A column, or set of columns, that references a unique or primary key in a
table. For every entry in a foreign-key column, there must exist a matching
entry in the unique or primary column, if all foreign-key columns contain
non-null values.

format A description of the organization of a data file. See component.

fragment See index fragment and table fragment.

fragmentation An OnLine feature that enables you to define groups of rows within a table
based on a rule. OnLine stores these groups or fragments in separate
dbspaces that you specify when you create a table or index fragmentation
strategy.

fragmentation
strategy

Consists of a distribution scheme (round-robin or expression), a rule or
algorithm, and a location for the fragments. The rule or algorithm is OnLine-
defined for a round robin-based distribution scheme and user defined for an
expression-based distribution scheme.

function See program block.

gateway A data communications device that establishes communications between
networks.
16 Informix Guide to SQL: Reference

gigabyte Gigabyte is a unit of storage. A gigabyte equals 1024 megabytes or 10243

bytes.

Global Language
Support (GLS)

An application environment that allows Informix APIs and database servers
to handle different languages, cultural conventions, and code sets.

global variable A variable whose value you can access from any module or function in a
program or stored procedure. See variable and scope of reference.

GLS See Global Language Support.

hash rule A user-defined algorithm that maps each row in a table to a set of integers
called hash values. OnLine uses these values to determine in which fragment
it will store a given row. Hash rules are usually implemented using the MOD
function.

help message On-line text displayed automatically or at the request of the user to assist the
user in interactive programs. Such messages are stored in help files.

hierarchy A tree-like data structure in which some groups of data are subordinate to
others such that only one group (called root) exists at the highest level, and
each group except root is related to only one parent group on a higher level.

high availability The ability of a system to resist failure and data loss. High availability
includes features such as fast recovery and mirroring. It is sometimes
referred to as fault tolerance.

High-
Performance
Loader

The High-Performance Loader utility is part of INFORMIX-OnLine Dynamic
Server. The HPL loads and unloads data using parallel access to devices.

highlight A rectangular inverse-video area that marks your place on the screen. A high-
light often indicates the current option on a menu or the current character in
an editing session. If a terminal cannot display highlighting, the current
option often appears in angle brackets, and the current character is
underlined.

hold cursor A cursor that is created using the WITH HOLD keywords. A hold cursor
remains open past the end of a transaction. It allows uninterrupted access to
a set of rows across multiple transactions.
Glossary 17

home page The page that contains the first byte of the data row. Even if a data row
outgrows its original storage location, the home page does not change. The
home page contains a forward pointer to the new location of the data row. See
remainder page.

host variable A C or COBOL program variable that is referenced in an embedded statement.
A host variable is identified by the dollar sign ($) or colon (:) that precedes
it.

HPL See High-Performance Loader.

identifier A sequence of letters, digits, and underscores (_) that represents the name of
a database, table, column, cursor, function, index, synonym, alias, view,
prepared object, constraint, or procedure name.

implicit
connection

A connection made using a database statement (DATABASE, CREATE
DATABASE, START DATABASE, DROP DATABASE).Also see explicit connection.

incremental
archiving

A system of archiving that allows the option to archive only those parts of the
data that have changed since the last archive was created.

index A structure of pointers that point to rows of data in a table. An index
optimizes the performance of database queries by ordering rows to make
access faster.

index fragment Consists of zero or more index items grouped together, which can be stored
in the same dbspace as the associated table fragment or, if you choose, in a
separate dbspace.

Informix user ID A login user ID (login user name) that must be valid on all computer systems
(operating systems) involved in the client’s database access. Often referred to
as the client’s user ID or user name. The user ID does not need to refer to a
fully functional user account on the computer system; only the user identity
components of the user account information is significant to Informix data-
base servers. Any given user typically has the same Informix user ID on all
networked computer systems involved in the database access.

Informix user
password

A user ID password that must be valid on all computer systems (operating
systems) involved in the client’s database access. When the client specifies an
explicit user ID, most computer systems require the Informix user password
to validate the user ID.

initialize To assign a starting value.
18 Informix Guide to SQL: Reference

inmigration The process by which INFORMIX-OnLine/Optical migrates a blob from the
optical storage subsystem into the INFORMIX-OnLine Dynamic Server
environment.

in-place alter An algorithm used by the INFORMIX-OnLine Dynamic Server to execute the
ALTER TABLE statement under certain conditions. When the database server
uses this algorithm, the table is unavailable to users for no longer than the
time it takes to update the table definition. The addition of a new column to
the table definition occurs essentially in place as rows are updated, without
requiring a second copy of the table to be created.

input The information that is received from an external source (for example, from
the keyboard, a file, or another program) and processed by a program.

input parameter A placeholder within a prepared SQL statement that indicates a value is to be
provided at the time the statement is executed.

insert cursor A cursor for insert operations. Allows bulk insert data to be buffered in mem-
ory and written to disk.

installation The loading of software from some magnetic medium (tape, cartridge, or
floppy disk) or CD onto a computer and preparing it for use.

interactive Refers to a program that accepts input from the user, processes the input, and
then produces output on the screen, in a file, or on a printer.

interquery
parallelization

Occurs when OnLine processes multiple queries simultaneously. A common
bottleneck develops when multiple, independent queries access the same
table. Fragmentation combined with interquery parallelization can effec-
tively eliminate this bottleneck. Also see intraquery parallelization.

interrupt A signal from a user or another process that can stop the current process
temporarily or permanently. See signal.

interrupt key A key used to cancel or abort a program or to leave a current menu and return
to the menu one level above. On many systems, the CONTROL-C keypress is
used for the interrupt key. On other systems, the interrupt key is DEL or
CONTROL-Break.

intraquery
parallelization

Occurs when OnLine breaks a single query using PDQ into subqueries and
then processes the subqueries in parallel. Parallel processing of this type has
important implications when each subquery retrieves data from a fragment
of a table. Because each partial query operates on a smaller amount of data,
the retrieval time is significantly reduced. Also see interquery parallelization.
Glossary 19

IPX/SPX Acronym for Internetwork Packet Exchange/Sequenced Packet Exchange. It
refers to the NetWare network protocol by Novell.

ISAM Acronym for Indexed Sequential Access Method. An indexed sequential
access method allows you to find information in a specific order or to find
specific pieces of information quickly through an index. See access method.

ISAM error Operating system or file access error.

ISO Acronym for the International Standards Organization. ISO sets worldwide
standards for the computer industry, including standards for character input
and manipulation, code sets, and SQL syntax.

isolation The level of independence among multiple users when they attempt to access
common data, specifically relating to the locking strategy for read-only SQL
requests. The various levels of isolation are distinguished primarily by the
length of time that shared locks are (or can be) acquired and held.
INFORMIX-SE sets a level of no isolation (referred to as a Dirty Read), which
cannot be changed. INFORMIX-OnLine Dynamic Server allows the program-
mer to choose from Informix levels of isolation or ANSI levels of isolation. See
the Informix levels of isolation: Dirty Read, Committed Read, Cursor
Stability, and Repeatable Read. See the ANSI levels of isolation: Read
Uncommitted, Read Committed, Repeatable Read, and Serializable.

join The process of combining information from two or more tables based on
some common domain of information. Rows from one table are paired with
rows from another table when information in the corresponding rows match
on the joining criterion. For example, if a customer_num column exists in the
customer and the orders tables, you can construct a query that pairs each
customer row with all the associated orders rows based on the common
customer_num. See Cartesian product and outer join.

jukebox A cabinet that consists of one or more optical-disc drives, slots that store
optical platters when they are not mounted, and a robotic arm that transfers
platters between the slots and the drives. A jukebox is also known as an
autochanger.

kernel The part of the UNIX operating system that controls processes and the
allocation of resources.
20 Informix Guide to SQL: Reference

key The pieces of information that are used to locate a row of data. A key defines
the pieces of information you want to search for, as well as the order in which
you want to process information in a table. For example, you can index the
last_name column in a customer table to find specific customers or to process
the customers in alphabetical or reverse alphabetical order, according to their
last names (last_name serves as the key).

keyword A word that has meaning to a program. For example, the word SELECT is a
keyword in SQL.

kilobyte Kilobyte is a unit of storage. A kilobyte equals 1024 bytes.

language
supplement

The result of the product localization process. A language supplement for a
specific Western European language can be installed with an Informix prod-
uct to allow the user to see error and warning messages in a language other
than U.S. English. If installed with DB-Access, the menu names and options
and on-line Help for that product also appear in the specified language.

latch A mechanism of shared-memory resource management that is used by
INFORMIX-OnLine Dynamic Server to coordinate processes (virtual
processors) as they attempt to modify entries in shared memory.

level of isolation See isolation.

library A collection of precompiled functions or routines that are designed to
perform tasks which are common to a particular kind of application. Your
product can include library functions or routines that you can call from your
programs.

link The process of combining separately compiled program modules into an
executable program.

literal A character or numeric constant.

load job The information required to load data into an OnLine database using the
HPL. This information includes format, map, filter, device array, project, and
special options.

local character A character in a native language character set; also known as a national
character or a native character.

local loopback A connection between the client and database server that uses a network
connection even though the client and the database servers are on the same
computer.
Glossary 21

local variable A variable that has meaning only in the module in which it is defined. See
variable and scope of reference.

locale The environment that defines the behavior of the program at runtim by
specifying a language, code set, and local customs. It usually is based on the
linguistic customs and rules of the region or territory. The locale can be
expressed through an environment variable setting that dictates output
formats for numbers, currency symbols, dates, and time or collation order for
character strings and regular expressions.

lock mode An option that describes whether a user who requests a lock on an already
locked object is to not wait for the lock and instead receive an error, wait until
the object is released to receive the lock, or wait a certain amount of time
before receiving an error (available only with INFORMIX-OnLine Dynamic
Server). The lock mode also can refer to the standard unit of locking (either
page or row) chosen by the programmer. The lock mode is set with the SET
LOCK MODE statement.

locking The process of temporarily limiting access to an object (database, table, page,
or row) to prevent conflicting interactions among concurrent processes.
Locks can be in either exclusive mode, which restricts read and write access
to only one user; or share mode, which allows read-only access to other users.
In addition, update locks exist that begin in share mode but are upgraded to
exclusive mode when a row is changed.

locking
granularity

The size of a locked object. The size may be a database, table, page, or row.

logical log An allocation of disk space managed by OnLine that contains records of all
changes that were performed on a database during the period the log was
active. The logical log is used to roll back transactions, recover from system
failures, and restore databases from archives.

login The process of identifying oneself to a computer.

login password See Informix user password.

login user ID See Informix user ID.

macro A named set of instructions that the computer executes whenever the name
is referenced.

map A description of the relation between the records of a data file and the col-
umns of an OnLine database. See component.
22 Informix Guide to SQL: Reference

mantissa The significant digits in a floating-point number.

math functions See aggregate functions.

Memory Grant
Manager (MGM)

An OnLine component that coordinates the use of memory and I/O band-
width for decision-support queries. MGM uses the DS_MAX_QUERIES,
DS_TOTAL_MEMORY, DS_MAX_SCANS, and PDQPRIORITY configuration
parameters to determine what resources can or cannot be granted to a
decision-support query.

megabyte Megabyte is a unit of storage. A megabyte equals 1024 kilobytes or 10242

bytes.

menu A screen display that allows you to choose the commands that you want the
computer to perform.

message log The UNIX file that INFORMIX-OnLine Dynamic Server keeps to record
significant events, such as checkpoints, logical log file backups, recovery
data, and errors.

mirroring Storing the same data on two chunks simultaneously. If one chunk fails, the
data is still usable on the other chunk in the mirrored pair. This data storage
option is available with INFORMIX-OnLine Dynamic Server and is handled by
the OnLine administrator.

MODE ANSI The keywords specified on the CREATE DATABASE statement to make a
database ANSI compliant.

monochrome A term that describes a monitor that can display only one color.

multibyte
character

A character that requires more than one byte to represent it.

multithreading Refers to multiple threads that are run within the same process. Also see
thread.

national
character

See local character.

node In indexing of relational databases, a node is an ordered group of key values
having a fixed number of elements. (A key is a value from a data record.) A
B+ tree, for example, is a set of nodes that contain keys and pointers that are
arranged in a hierarchy.
Glossary 23

not null
constraint

A constraint on a column that specifies the column cannot contain null
values.

null value A value representing unknown or not applicable. (A null is not the same as
a value of zero or blank.)

object See database object.

object mode The state of a database object as recorded in the sysobjstate system catalog
table. A constraint or unique index can be in the enabled, disabled, or filter-
ing mode. A trigger or duplicate index can be in the enabled or disabled
mode. You use the SET statement to change the object mode of an object.

offset A term that is used in INFORMIX-OnLine Dynamic Server to specify the phys-
ical position of a chunk on a disk. The offset is the number of kilobytes
indented into the named device (which is the specified disk partition) before
starting the chunk.

OLTP application Characterized by quick, indexed access to a small number of data items. The
applications are typically multiuser, and response times are measured in
fractions of seconds.

OLTP queries The transactions handled by OLTP applications are usually simple and pre-
defined. A typical OLTP system is an order-entry system where only a limited
number of rows is accessed by a single transaction many times.

OnLine instance One OnLine database server.

ON-Monitor An interface that presents a series of screens through which an
INFORMIX-OnLine Dynamic Server administrator can monitor and modify an
OnLine database server.

open The process of making a resource available, such as preparing a file for access,
activating a cursor, or initiating a window.

operating mode The INFORMIX-OnLine Dynamic Server state of operation. The operating
modes are off-line, quiescent, on-line, read-only, shutdown, and recovery.

optical cluster An amount of space, on an optical disc, that is reserved for storing a group of
logically related blobs.

optical family A group of optical discs, theoretically unlimited in number.

optical platters The removable optical discs that store data in an optical storage subsystem.
24 Informix Guide to SQL: Reference

optical
statements

The SQL statements that you use to control optical clustering.

optical volume One side of a removable Write-Once-Read-Many (WORM) optical disc.

outer join An asymmetric joining of a dominant and a subordinate table in a query; the
joining restrictions apply only to the subordinate or outer table. Rows in the
dominant table are retrieved without considering the join, but rows from the
outer table are included only if they also satisfy the join conditions. Any
dominant-table rows that do not have a matching row from the outer table
receive a row of nulls in place of an outer-table row.

outmigration The process by which INFORMIX-OnLine/Optical migrates a blob from the
INFORMIX-OnLine Dynamic Server environment to an optical storage
subsystem.

output The result that the computer produces in response to a query or a request for
a report.

owner-privileged Refers to a class of stored procedures that can be created by any user who has
Resource database privileges.

pad Usually a space or blank to fill empty places at the beginning or end of a line,
string, or field.

page The basic unit of disk and memory storage that is used by INFORMIX-OnLine
Dynamic Server. The size is fixed for a particular operating system and hard-
ware platform, and the OnLine administrator cannot change it.

parallelism Refers to ability of OnLine to process a task in parallel by breaking the task
into subtasks and then processing them simultaneously.

parameter A variable that is given a constant value for a specified application. In a sub-
routine, a parameter is the placeholder for the argument values that are
passed to the subroutine at runtime.

parent-child
relationship

See referential constraint.

parent table The referenced table in a referential constraint. See child table.

partial character A multibyte character that has lost one or more bytes so that the original
intended meaning of the character is lost. GLS (Global Language Support)
software provides context-specific solutions that prevent partial characters
from being generated during string-processing operations.
Glossary 25

partition See table fragment.

pattern An identifiable or repeatable series of characters or symbols.

PDQ Acronym for Parallel Database Query (or Queries). An OnLine feature that
permits parallel rather than sequential execution of SQL queries by distribut-
ing the execution of a single query across several processors, which enhances
performance.

PDQ priority Determines the amount of resources OnLine allocates to process a query in
parallel. These resources include memory, threads (such as scan threads), and
sort space. The level of parallelism is established by using the PDQPRIORITY
environment variable or various OnLine configuration parameters (includ-
ing PDQPRIORITY and MAX_PDQPRIORITY) or dynamically through the SET
PDQPRIORITY statement.

permission On some operating systems, the right to access files and directories.

phantom row A row of a table that is initially modified or inserted during a transaction but
is subsequently rolled back. Another user can see a phantom row if the isola-
tion level is Informix DIRTY READ or ANSI READ UNCOMMITTED. No other
isolation levels allow a changed but uncommitted row to be seen.

physical log An allocation of disk space in INFORMIX-OnLine Dynamic Server that
contains the before-images of all pages changed since the last checkpoint.

pointer A number that specifies the “address-in-memory” of the data or variable of
interest.

precision The total number of significant digits in a real number, both to the right and
left of the decimal point. For example, the number 1437.2305 has a precision
of 8. See scale.

prepared
statement

An SQL statement that is generated by the PREPARE statement from a
character string or from a variable containing a character string. This feature
allows you to form your request while the program is executing without
having to modify and recompile the program.

preprocessor A program that takes high-level programs and produces code that a standard
language compiler, such as C or Micro Focus COBOL/2, can compile.

primary key The information from a column or set of columns that uniquely identifies
each row in a table. The primary key sometimes is called a unique key.
26 Informix Guide to SQL: Reference

primary-key
constraint

Specifies that each entry in a column or set of columns contains a non-null
unique value.

printable
character

A character that can be displayed on a terminal, screen, or printer. Printable
characters include A-Z, a-z, 0-9, and punctuation marks. Compare with
control character.

privilege The right to use or change the contents of a database, table, table fragment,
or column. See access privileges.

procedural
statement

A programming language statement that specifies actions; for example, loop-
ing and branching if a condition is met. Compare with declaration statement.

procedure See program block and stored procedure.

procedure cursor A cursor that is associated with an EXECUTE PROCEDURE statement. It
enables you to scan multiple rows of data, moving data row by row into a set
of receiving variables.

process A discrete task, generally a program, that the operating system executes.

program block A named collection of statements, such as a function, routine, or procedure,
that performs a particular task; a unit of program code.

program control The actions that a computer takes, as opposed to actions that a user takes.

project A group of related components used by the HPL. See component.

projection Taking a subset from the columns of a single table. Projection is implemented
through the select list in the SELECT clause of a SELECT statement and returns
some of the columns and all the rows in a table. See selection and join.

promotable lock A lock that can be changed from a shared lock to an exclusive lock. See update
lock.

protocol A set of rules that govern communication among computers. These rules
govern format, timing, sequencing, and error control.

query A request to the database to retrieve data that meets certain criteria, usually
with the SELECT statement. When used with the High Performance Loader,
selects records to unload from an OnLine database. See component.
Glossary 27

query
optimization
information
statements

The SQL statements that are used to optimize queries. These statements
include SET EXPLAIN, SET OPTIMIZATION, and UPDATE STATISTICS.

range rule A user-defined algorithm that you use to define the boundaries of each frag-
ment in a table using SQL relational and logical operators. Expressions in a
range rule can use the following restricted set of operators: >, <, >=, <=, and
the logical operator AND.

raw device A UNIX disk partition that is defined as a character-special device, which is
not mounted. OnLine can use raw files more efficiently than cooked files
(UNIX files).

Read Committed An ANSI level of isolation available through INFORMIX-OnLine Dynamic
Server and set with the SET TRANSACTION statement in which a user can
view only rows that are currently committed at the moment of the query
request; that is, a user cannot view rows that were changed as a part of a cur-
rently uncommitted transaction. It is the default level of isolation under
OnLine for databases that are not ANSI compliant. See isolation.

Read
Uncommitted

An ANSI level of isolation set with the SET TRANSACTION statement that
does not account for locks and allows viewing of any existing rows, even
rows that currently can be altered from inside an uncommitted transaction.
Read Uncommitted is the lowest level of isolation (no isolation at all). See
isolation.

real user ID See Informix user ID.

record See row.

recover a
database

To restore a database to a former condition after a system failure or other
destructive event. The recovery restores the database as it existed immedi-
ately before the crash. This is sometimes referred to as restore a database.

referential
constraint

Defines the relationship between columns within a table or between tables;
also known as a parent-child relationship. Referencing columns also are known
as foreign keys.

relation See table.
28 Informix Guide to SQL: Reference

relational
database

A database that uses table structures to store data. Data in a relational
database is divided across tables in such a way that additions and modifica-
tions to the data can be made easily without loss of information.

remainder page An additional page that is filled with data from a single row.
INFORMIX-OnLine Dynamic Server uses remainder pages when the data for
a row cannot fit in the initial page. Remainder pages are added and filled as
needed. The original page entry contains pointers to the remainder pages.
See home page.

remote A connection that requires a network.

Repeatable Read An Informix and ANSI level of isolation available through OnLine with the
Informix SET ISOLATION statement or ANSI SET TRANSACTION statement,
which ensures all data read during a transaction is not modified during the
entire transaction. Transactions under ANSI Repeatable Read are also known
as Serializable. Informix Repeatable Read is the default level of isolation
under OnLine for ANSI-compliant databases. See isolation and Serializable.

reserved word A word in a statement or command that you cannot use in any other context
of the language or program without receiving a warning or error message.

restore a
database

See recover a database.

role A classification or work task, such as payroll, assigned by the DBA. Assign-
ment of roles makes management of privileges convenient.

role separation An OnLine installation option that allows different users to perform different
administrative tasks.

roll back The process that reverses an action or series of actions on a database. The
database is returned to the condition that existed before the actions were
executed. See transaction.

roll forward The process that brings a database up to date. This process usually takes
place when a database is recovered after a system crash or other failure. In
INFORMIX-SE, an archive copy of the database is restored to the disk, and
then the database is rolled forward to a point just before the failure. In
INFORMIX-OnLine Dynamic Server, an archive copy of the database is
restored to the disk, and then the logical log records are rolled forward to a
point just before the failure.
Glossary 29

root dbspace The initial dbspace for an INFORMIX-OnLine Dynamic Server system. In
addition to any data, the root dbspace contains reserved pages and internal
tables that track OnLine storage, recovery, and consistency information.

round-robin
distribution
scheme

An OnLine-defined distribution scheme. OnLine distributes rows in such a
way that the number of rows in each of the fragments remains approximately
the same.

routine See program block.

row A group of related items of information about a single entity in a database
table. In a table of customer information, for example, a row contains infor-
mation about a single customer. A row is sometimes referred to as a record or
tuple. (In a screen form, a row can refer to a line of the screen.)

rowid In nonfragmented tables, rowid refers to an integer that defines the physical
location of a row. Rowids must be explicitly created to be used in fragmented
tables and they do not define a physical location for a row. Rowids in
fragmented tables are accessed by an index that is created when the rowid is
created; this access method is slow. Informix recommends that users creating
new applications move toward using primary keys as a method of row
identification instead of using rowids.

rule How OnLine or the user determines into which fragment rows are placed.
OnLine determines the rule for a round robin-based distribution scheme. The
user determines the rule for an expression-based distribution scheme.

run-time
environment

The hardware and operating system services available at the time a program
runs.

run-time errors Errors that occur during program execution. Compare with compile-time
errors.

scale The number of digits to the right of the decimal place in DECIMAL notation.
The number 14.2350has a scale of 4 (four digits to the right of the decimal
point). See precision.

scan thread An OnLine thread that is assigned the task of reading rows from a table.
When a query is executed in parallel, OnLine allocates multiple scan threads
to perform the query in parallel.

schema The structure of a database or a table. The schema for a table lists the names
of the columns, their data types, and (where applicable) the lengths,
indexing, and other information about the structure of the table.
30 Informix Guide to SQL: Reference

scope of
reference

The portion of a program in which an identifier applies and can be accessed.
Three possible scope sizes exist: local (an identifier applies only within a sin-
gle program block), modular (the identifier applies throughout a single
module), and global (an identifier applies throughout the entire program).

scroll cursor A cursor created with the SCROLL keyword that allows you to fetch rows of
the active set in any sequence.

secure auditing A facility of the INFORMIX-OnLine Dynamic Server that lets OnLine adminis-
trators keep track of unusual or potentially harmful user activity. Use the
onaudit utility to enable auditing of events and create audit masks, and the
onshowaudit utility to extract the audit event information for analysis.

select See query.

select cursor A cursor associated with the SELECT statement. It enables you to scan
multiple rows of data, moving data row by row into a set of receiving
variables.

selection Taking a horizontal subset of the rows of a single table that satisfies a
particular condition. Selection is implemented through the WHERE clause of
a SELECT statement and returns some of the rows and all of the columns in a
table. See projection and join.

self-join A join between a table and itself. A self-join occurs when a table is used two
or more times in a SELECT statement (with different aliases) and joined to
itself.

semaphore A UNIX communication device that signals a process to awaken.

Serializable An ANSI level of isolation available through INFORMIX-OnLine Dynamic
Server and set with the SET TRANSACTION statement, ensuring all data read
during a transaction is not modified during the entire transaction. ANSI
Serializable is the default level of isolation under OnLine for an
ANSI-compliant database that is set with the SET TRANSACTION statement.

server locale The environment that defines the locale that the database server uses when it
performs read and write operations on the database server computer.

server name The unique name of a database server. The database server name is used by
an application to select a database server. It is assigned by the administrator
of the database server.
Glossary 31

server number A unique number between 0 and 255, inclusive, that the INFORMIX-OnLine
Dynamic Server administrator assigns to an OnLine database server at the
time of initialization. If more than one OnLine database server is installed on
the same computer, each database server must have a unique number.

server
processing
locale

The environment that the database server dynamically determines based on
the client locales and information that is stored in the database being
accessed.

session The structure that is created for an application using INFORMIX-OnLine
Dynamic Server.

set functions See aggregate functions.

shared library Like a standard or static library, a shared library contains routines that are
used by applications in the course of processing data. Unlike static libraries,
shared libraries are not linked at compile time to the application, but instead
are loaded into memory by the operating system as they are needed. The
copy of the library that the operating system loads into memory is shared by
applications.

shared lock A lock that more than one thread can acquire on the same object. Shared locks
allow for greater concurrency with multiple users; if two users have shared
locks on a row, a third user cannot change the contents of that row until both
users (not just the first) release the lock. Shared-locking strategies are used in
all levels of isolation except Informix DIRTY READ and ANSI READ
UNCOMMITTED.

shared memory Memory that is accessible to multiple processes. Shared memory allows mul-
tiple processes to access a common data space in memory. Common data
does not have to be reread from disk for each process, reducing disk I/O and
improving performance. Also used as an Inter-Process Communication (IPC)
mechanism to communicate between two processes running on the same
computer.

shelf The location of an optical platter that is neither on an optical drive nor in a
jukebox slot.

shuffling Shuffling refers to the process that occurs when OnLine moves rows or key
values from one fragment to another. Shuffling occurs in a variety of circum-
stances including when you attach, detach, or drop a fragment.
32 Informix Guide to SQL: Reference

signal A means of asynchronous communication between two processes. For
example, signals are sent when a user or a program wants to interrupt or
suspend the execution of a process. See interrupt.

single-byte
character

A character that consists of one byte.

singleton select A SELECT statement that returns a single row.

SMI Acronym for system monitoring interface. SMI is a collection of tables in the
sysmaster database that maintains dynamically updated information about
the operation of an INFORMIX-OnLine Dynamic Server database server.

source file A file containing instructions (in ASCII text) that is used as the source for gen-
erating compiled programs.

SPL Acronym for Stored Procedure Language. See stored procedure.

SQL Acronym for Structured Query Language. SQL is a database query language
that was developed by IBM and standardized by ANSI. Informix relational
database management products are based on an extended implementation of
ANSI-standard SQL.

SQL API An SQL application programming interface that includes a library of callable
functions, which are used to develop an application that accesses a relational
database. Examples include the embedded-language products such as
INFORMIX-ESQL/C and INFORMIX-ESQL/COBOL. See host variable.

SQLCA Acronym for SQL Communications Area. The SQLCA is a data structure that
stores information about the most recently executed SQL statement. The
result code returned by the database server to the SQLCA is used for error
handling by Informix SQL APIs.

sqlda Acronym for SQL descriptor area. A dynamic SQL management structure that
can be used with the DESCRIBE statement to store information about database
columns or host variables used in dynamic SQL statements. The structure
contains an sqlvar_struct structure for each column; each sqlvar_struct
structure provides information such as the name, data type, and length of the
column. The sqlda structure is an Informix-specific structure for handling
dynamic columns. It is available only within an INFORMIX-ESQL/C program.
See also descriptor and system-descriptor area.
Glossary 33

sqlexecd A daemon process that receives a connection request from a client and
spawns an INFORMIX-SE database server process.

stack operator Operators that allow programs to manipulate values that are on the stack.

staging-area
blobspace

The blobspace where INFORMIX-OnLine Dynamic Server temporarily stores
a blob that is being outmigrated to an optical storage subsystem.

statement A line, or set of lines, of program code that describes a single action (for
example, a SELECT statement or an UPDATE statement).

statement block A section of a program that usually begins and terminates with special sym-
bols such as begin and end. A statement block is the smallest unit of scope of
reference for program variables.

statement
identifier

An embedded variable name or SQL statement identifier that represents a
data structure defined in a PREPARE statement. It is used for dynamic SQL
statement management by Informix SQL APIs.

status variable A program variable that indicates the status of some aspect of program
execution. Status variables often store error numbers or act as flags to
indicate that an error has occurred.

stored procedure A function that is used along with SQL statements in an Informix program.
Stored procedures are written using SQL and Stored Procedure Language
(SPL) statements. The procedure is stored in the database in executable form.

string A set of characters (generally alphanumeric) that is manipulated as a single
unit. A string might consist of a word (such as ‘Smith’), a set of digits repre-
senting a number (such as ‘19543’), or any other collection of characters.
Strings generally are surrounded by single quotes. A string is also a character
data type, available in INFORMIX-ESQL/C programs, in which the character
string is stripped of trailing blanks and is null-terminated.

subordinate table See outer join.

subquery A query that is embedded as part of another SQL statement. For example, an
INSERT statement can contain a subquery in which a SELECT statement sup-
plies the inserted values in place of a VALUES clause; an UPDATE statement
can contain a subquery in which a SELECT statement supplies the updating
values; or a SELECT statement can contain a subquery in which a second
SELECT statement supplies the qualifying conditions of a WHERE clause for
the first SELECT statement. (Parentheses always delimit a subquery, unless
you are referring to a CREATE VIEW statement or unions.)
34 Informix Guide to SQL: Reference

subscript A subscript is an offset into an array. Subscripts can be used to indicate the
start or end position in a CHAR variable.

substring A portion of a character string.

synonym A name that is assigned to a table and used in place of the original name for
that table. A synonym does not replace the original table name; instead, it
acts as an alias for the table.

sysmaster
database

A database that every INFORMIX-OnLine Dynamic Server database server
contains. It holds the ON-Archive catalog tables and system monitoring inter-
face (SMI) tables.

system call A call to a function provided by the operating system.

system catalog A group of database tables that contain information about the database itself,
such as the names of tables or columns in the database, the number of rows
in a table, the information about indexes and database privileges, and so on.
See data dictionary.

system-
descriptor area

A dynamic SQL management structure that is used with the ALLOCATE
DESCRIPTOR, DEALLOCATE DESCRIPTOR, DESCRIBE, GET DESCRIPTOR, and
SET DESCRIPTOR statements to store information about database columns or
host variables used in dynamic SQL statements. The structure contains an
item descriptor for each column; each item descriptor provides information
such as the name, data type, length, scale, and precision of the column. The
system-descriptor area is the X/Open standard for handling dynamic
columns. See descriptor and sqlda.

system
monitoring
interface

See SMI.

table A rectangular array of data in which each row describes a single entity and
each column contains the values for each category of description. For exam-
ple, a table can contain the names and addresses of customers. Each row
corresponds to a different customer and the columns correspond to the name
and address items. A table is sometimes referred to as a base table to distin-
guish it from the views, indexes, and other objects defined on the underlying
table or associated with it.

table fragment Consists of zero or more rows that are grouped together and stored in a
dbspace that you specify when you create the fragment.
Glossary 35

target table The underlying base table that a violations table and diagnostics table are
associated with. You use the START VIOLATIONS TABLE statement to create
the association between the target table and the violations and diagnostics
tables.

tblspace The logical collection of extents that are assigned to a table under
INFORMIX-OnLine Dynamic Server.

TCP/IP The specific name of a particular standard transport layer protocol (TCP) and
network layer protocol (IP). A popular network protocol used in DOS, UNIX,
and other environments.

temporary An attribute of any file, index, or table that is used only during a single
session. Temporary files or resources are typically removed or freed when
program execution terminates or an on-line session ends.

thread A thread is a task that the OnLine virtual processor schedules internally for
processing. Just as the CPU runs operating system processes for multiple
users, so does the OnLine virtual processor run multiple threads for multiple
SQL client applications.

timeout The point at which a lock request is aborted because the requesting thread
waited longer for the lock than the specified maximum time limit. A program
developer can set a time limit in INFORMIX-OnLine Dynamic Server through
the SET LOCK MODE statement.

TLI Acronym for Transport Level Interface. It is the interface designed for use by
application programs that are independent of a network protocol.

trace To keep a running list of the values of program variables, arguments, expres-
sions, and so on, in a program or stored procedure.

transaction A collection of one or more SQL statements that is treated as a single unit of
work. If one statement in a transaction fails, the entire transaction can be
rolled back (canceled). If the transaction is successful, the work is committed
and all changes to the database from the transaction are accepted.

transaction
logging

The process of keeping records of transactions. See logical log.
36 Informix Guide to SQL: Reference

transaction mode The method by which constraints are checked during transactions. You use
the SET statement to specify whether constraints are checked at the end of
each data manipulation statement or after the transaction is committed.

trigger A mechanism that resides in the database. It specifies that when a particular
action (insert, delete, or update) occurs on a particular table, the database
server should automatically perform one or more additional actions.

tuple See row.

unique constraint Specifies that each entry in a column or set of columns has a unique value.

unique index An index that prevents duplicate values in the indexed column.

unique key See primary key.

UNIX real user ID See Informix user ID.

unload job The information required to unload data from an OnLine database using the
HPL. This information includes format, map, query, device array, project, and
special options.

unlock To free an object (database, table, page, or row) that has been locked. For
example, a locked table prevents others from adding, removing, updating, or
(in the case of an exclusive lock) viewing rows in that table as long as it is
locked. When the user or program unlocks the table, others are permitted
access again.

update The process of changing the contents of one or more columns in one or more
existing rows of a table.

update lock A promotable lock that is acquired during a SELECT...FOR UPDATE. An
update lock behaves like a shared lock until the update actually occurs, and
it then becomes an exclusive lock. It differs from a shared lock in that only
one update lock can be acquired on an object at a time.

user ID See Informix user ID.

user ID password See Informix user password.

user name See Informix user ID.

user password See Informix user password.
Glossary 37

variable The identifier for a location in memory that stores the value of a program
object whose value can change during the execution of the program.

view A dynamically controlled picture of the contents in a database that allows a
programmer to determine what information the user sees and manipulates.
A view represents a virtual table based on a specified SELECT statement.

violations table A special table that holds rows that fail to satisfy constraints and unique
index requirements during data manipulation operations on base tables. You
use the START VIOLATIONS TABLE statement to create a violations table and
associate it with a base table.

virtual column A derived column of information that is not stored in the database. For exam-
ple, you can create virtual columns in a SELECT statement by arithmetically
manipulating a single column, such as multiplying existing values by a
constant, or by combining multiple columns, such as adding the values from
two columns.

virtual
processors

The multithreaded processes that make up the INFORMIX-OnLine Dynamic
Server database server. Virtual processors service a large number of clients by
functioning in a way that is analogous to the way that hardware processors
function in the computer.

warning A state or situation that is detected by the database server or compiler, possi-
bly incorrect syntax or a problem. A warning does not necessarily affect the
ability of the code to run.

white space A series of one or more space characters. The locale file defines what charac-
ters are considered to be space characters.

wildcard A special symbol that represents any sequence of zero or more characters or
any single character. In SQL, for example, you can use the asterisk (*),
question mark (?), brackets ([]), percent sign (%), and underscore (_) as
wildcard characters. (The asterisk, question mark, and brackets are also
wildcards in UNIX.)

window A rectangular area on the screen in which you can take actions without leav-
ing the context of the background program.
38 Informix Guide to SQL: Reference

WORM Acronym for Write-Once-Read-Many optical media. When a bit of data is
written to a WORM platter, a permanent mark is made on the platter.

X/Open An independent consortium that produces and develops specifications and
standards for open-systems products and technology such as dynamic SQL.

X/Open
Portability Guide

A set of specifications which vendors and users can use to build portable
software. Any vendor carrying the XPG brand on any particular software
product is guaranteeing that the software correctly implements the X/Open
Common Applications Environment (CAE) specifications. There are CAE
specifications for SQL, XA, ISAM, RDA, and so on.
Glossary 39

Index

Index
A
ALTER TABLE statement

MODIFY NEXT SIZE clause 2-10
ANSI compliance

-ansi flag 4-17
DBANSIWARN environment

variable 4-17
described 1-11
determining 1-12

ANSI-compliant database
designating 1-11
effect on

cursor behavior 1-16
decimal data type 1-15
default isolation level 1-15
escape characters 1-15
object privileges 1-14
owner naming 1-14
SQLCODE 1-16
transaction logging 1-13
transactions 1-13

owner naming 1-14
privileges 1-14
reason for creating 1-11
SQL statements allowed 1-16

Archiving
setting a different tctermcap

file 4-16
setting DBREMOTECMD to

override default remote
shell 4-33

setting personal default qualifier
file 4-15

ARC_DEFAULT environment
variable 4-15

ARC_KEYPAD environment
variable 4-16

Asian Language Support,
compatibility with version 7.2
products 1-17

B
Binary Large Object (BLOB)

increasing buffer size 4-18
location shown in sysblobs

table 2-12
setting buffer size 4-18

Boolean expression
with TEXT data type 3-24

Bourne shell
how to set environment

variables 4-8
.profile file 4-7

Buffer
setting size of fetch buffer 4-41

BYTE data type
description of 3-5
inserting data 3-6
restrictions

in Boolean expression 3-5
with GROUP BY 3-5
with LIKE or MATCHES 3-5
with ORDER BY 3-5

selecting a BYTE column 3-6

C
C compiler, setting INFORMIXC

environment variable 4-41
C shell

how to set environment
variables 4-8

.cshrc file 4-7

.login file 4-7
call_type table in stores7 database,

columns in A-6
CHAR data type

changing data types 3-27
collation 3-7
multibyte values 3-7
with numeric values 3-7

CHARACTER data type 3-8
Character string

as DATE values 3-34
as DATETIME values 3-12, 3-34
as INTERVAL values 3-19

CHARACTER VARYING data type
description of 3-8

Check constraint
described in syschecks table 2-13
described in syscoldepend

table 2-15
Checking contents of environment

configuration file 4-10
chkenv utility

description of 4-10
error message for 4-11

Client/server
shared memory communication

segments 4-48, 4-49
specifying default database 4-47
specifying stacksize for client

session 4-49
SQLEXEC environment

variable 4-58, 4-59
SQLRMDIR environment

variable 4-59
COBOL compiler

identifying the compiler
manufacturer 4-44

setting directory for library and
objects 4-43

setting with INFORMIXCOB
environment variable 4-42

specifying storage for
compiling 4-43

Code set 1-17
Collation

with CHAR data type 3-7

with TEXT data type 3-25
with VARCHAR data type 3-27

Colon (:)
as delimiter in DATETIME 3-11
as delimiter in INTERVAL 3-18

Color, setting INFORMIXTERM
for 4-50

Column
changing data type 3-27
constraints, listed in

sysconstraints table 2-19
defaults, described in sysdefaults

table 2-20
described in syscolumns

table 2-15
in stores7 database A-2 to A-7
length, shown in syscolumns

table 2-16
maximum/minimum, shown in

syscolumns table 2-18
referential constraints in

sysreferences table 2-36
Column-level privilege

described in syscolauth table 2-14
Compiler

environment variable for C 4-41
environment variable for

COBOL 4-42
specifying storage mode for

COBOL 4-43
specifying the manufacturer of

the COBOL compiler 4-44
Compiling multithreaded ESQL/C

applications 4-61
Configuration file

for ON-Archive utility 4-15
for OnLine 4-52
for tctermcap 4-16

CONNECT statement
and INFORMIXSERVER

environment variable 4-48
Connecting to data

INFORMIXCONRETRY
environment variable 4-44

INFORMIXCONTIME
environment variable 4-45

Connection
INFORMIXCONRETRY

environment variable 4-44

INFORMIXCONTIME
environment variable 4-45

Constraint
check, described in syscoldepend

table 2-15
column, described in

sysconstraints table 2-19
not null, described in

syscoldepend table 2-15
referential, described in

sysreferences table 2-36
Converting data types 3-27
CREATE SCHEMA statement

example 2-4
CREATE VIEW statement

in sysviews table 2-8
CURRENT keyword

with DATETIME 3-34
customer table in stores7

database A-2
cust_calls table in stores7 database,

columns in A-6

D
Data distributions

specifying disk space to use 4-39
Data type

approximate 2-53
BYTE 3-5
CHAR 3-6
CHARACTER 3-8
CHARACTER VARYING 3-8
conversion 3-27
DATE 3-8
DATETIME 3-9
DEC 3-13
DECIMAL 3-13
DOUBLE PRECISION 3-15
exact numeric 2-53
FLOAT 3-15
floating-point 3-15
INT 3-16
INTEGER 3-16
INTERVAL 3-16
MONEY 3-19
NUMERIC 3-21
NVARCHAR 3-21
2 Informix Guide to SQL: Reference

REAL 3-21
SERIAL 3-21
SMALLFLOAT 3-22
SMALLINT 3-23
summary table 3-3
TEXT 3-23
VARCHAR 3-25

Data types
OnLine specific 1-4

Database
data types 3-3
map of

stores7 A-8
system catalog tables 2-47

objects, state, described in
sysobjectstate table 2-29

stores7 description of A-1
Database server

attributes in Information Schema
view 2-55

choosing OnLine or SE 1-4
effect of server type on

available data types 1-4
isolation level 1-7
locking 1-6
rolling back transactions 1-5
SQL statements supported 1-8
system catalog tables 1-8
transaction logging 1-5

setting SQLEXEC 4-58
specifying default for

connection 4-47
SQLRM environment

variable 4-59
SQLRMDIR environment

variable 4-59
Database, stores 7 A-1
Data-distribution information

in sysdistrib table 2-22
DATE data type

converting to DATETIME 3-29
description of 3-8
international date formats 3-9
range of operations 3-30
representing DATE values 3-34
two-digit year values and

DBCENTURY variable 3-9
using with DATETIME and

INTERVAL values 3-33

Date value
setting DBDATE environment

variable 4-21
DATETIME data type

adding or subtracting INTERVAL
values 3-32

character string values 3-12
converting to DATE 3-29
CURRENT keyword 3-34
description of 3-9
field qualifiers 3-10
formats with DBTIME 4-36
international date and time

formats 3-13
multiplying values 3-31
precision and size 3-10
range of expressions 3-30
range of operations with DATE

and INTERVAL 3-30
representing DATETIME

values 3-34
specifying display format 4-36
two-digit year values and

DBDATE variable 3-12
using the DBTIME environment

variable 4-36
with EXTEND function 3-31, 3-33

DAY keyword
use

as DATETIME field
qualifier 3-10

as INTERVAL field
qualifier 3-17

DBANSIWARN environment
variable 4-17

DBBLOBBUF environment
variable 4-18

DBCENTURY environment
variable

description of 4-18
effect on functionality of

DBDATE 4-23
DBDATE environment

variable 4-21
DBDELIMITER environment

variable 4-24
DBEDIT environment variable 4-24
dbexport utility

specifying field delimiter with
DBDELIMITER 4-24, 4-39

DBFLTMASK environment
variable 4-25

DBLANG environment
variable 4-25

dbload utility
specifying field delimiter with

DBDELIMITER 4-24
DBMONEY environment

variable 4-27
DBONPLOAD environment

variable 4-28
DBPATH environment

variable 4-29
DBPRINT environment

variable 4-32
DBREMOTECMD environment

variable 4-33
DBSPACETEMP environment

variable 4-34
DBTEMP environment

variable 4-35
DBTIME environment

variable 4-36
DBUPSPACE environment

variable 4-39
DEC data type 3-13
DECIMAL data type

changing data types 3-27
description of 3-14
disk storage 3-14
floating-point 3-14

Decimal digits, display of 4-25
Decimal point (.)

as delimiter in DATETIME 3-11
as delimiter in INTERVAL 3-18

Defaults, column, in sysdefaults
table 2-20

DELIMIDENT environment
variable 4-39

Delimited identifier
setting DELIMIDENT

environment variable 4-39
Delimiter

for DATETIME values 3-11
for INTERVAL values 3-18

Demonstration database
map of A-8
Index 3

structure of tables A-2
tables in A-2 to A-7

Determining ANSI
compliance 1-12

Diagnostics, for base tables,
described in sysviolations
table 2-46

Disk space
specifying for data

distributions 4-39
Documentation notes Intro-21

E
Editor, specifying with

DBEDIT 4-24
ENVIGNORE environment

variable
description 4-7, 4-40
relation to chkenv utility 4-11

Enviornment variable
DBFLTMASK 4-25

Environment configuration file
debugging with chkenv 4-10
example 4-6

Environment variable
ARC_DEFAULT 4-15
ARC_KEYPAD 4-16
DBANSIWARN 4-17
DBBLOBBUF 4-18
DBCENTURY 4-18
DBDATE 4-21
DBDELIMITER 4-24
DBEDIT 4-24
DBFLTMASK 4-25
DBLANG 4-25
DBMONEY 4-27
DBONPLOAD 4-28
DBPATH 4-29
DBPRINT 4-32
DBREMOTECMD 4-33
DBSPACETEMP 4-34
DBTEMP 4-35
DBTIME 4-36
DBUPSPACE 4-39
defining in environment

configuration file 4-6
definition of 4-5

DELIMIDENT 4-39
ENVIGNORE 4-40
ENVIGNORE, and chkenv

utility 4-11
FET_BUF_SIZE 4-41
how to set in Bourne shell 4-8
how to set in C shell 4-8
how to set in Korn shell 4-8
INFORMIXC 4-41
INFORMIXCOB 4-42
INFORMIXCOBDIR 4-43
INFORMIXCOBSTORE 4-43
INFORMIXCOBTYPE 4-44
INFORMIXCONRETRY 4-44
INFORMIXCONTIME 4-45
INFORMIXDIR 4-46
INFORMIXOPCACHE 4-47
INFORMIXSERVER 4-47
INFORMIXSHMBASE 4-48, 4-49
INFORMIXSQLHOSTS 4-49
INFORMIXSTACKSIZE 4-49
INFORMIXTERM 4-50
INF_ROLE_SEP 4-51
listed, by topic 4-62
modifying 4-9
NODEFDAC 4-51
ONCONFIG 4-52
OPTCOMPIND 4-53
overriding a setting 4-7, 4-40
PATH 4-54
PDQPRIORITY 4-54
PLCONFIG 4-55
PSORT_DBTEMP 4-56
PSORT_NPROCS 4-57
rules of precedence 4-11
setting

at the command line 4-6
in a login file 4-6
in a shell file 4-7
in an environment-

configuration file 4-6
SQLEXEC 4-58
SQLRM 4-59
SQLRMDIR 4-59
TERM 4-60
TERMCAP 4-60
TERMINFO 4-61
THREADLIB 4-61
types of 4-5

view current setting 4-9
where to set 4-7

Environment, Non-U.S.
English 1-17

ESQL/C
compiling multithreaded

applications 4-61
Executable programs, where to

search 4-54
EXTEND function

with DATE, DATETIME and
INTERVAL 3-31, 3-33

Extension checking, specifying with
DBANSIWARN 4-17

Extension, to SQL
with ANSI-compliant

database 1-16
Extent, changing size of system

table 2-10

F
FET_BUF_SIZE environment

variable 4-41
Field delimiter files

DBDELIMITER 4-24
Field qualifier

for DATETIME 3-10
File

environment configuration 4-6
environment configuration,

checking with chkenv 4-10
shell 4-7
temporary for OnLine 4-34
temporary for SE 4-36
temporary, sorting 4-56
termcap, terminfo 4-50, 4-60, 4-61

FLOAT data type
changing data types 3-27
description of 3-15

Format
specifying for DATE value with

DBDATE 4-22
specifying for DATETIME value

with DBTIME 4-36
specifying for MONEY value with

DBMONEY 4-27
FRACTION keyword
4 Informix Guide to SQL: Reference

use
as DATETIME field

qualifier 3-10
as INTERVAL field

qualifier 3-17
Fragmentation

described 1-5
information in sysfragments

table 2-24
setting priority levels for

PDQ 4-54

G
Global Language Support (GLS)

and use of locales 1-17

H
High-Performance Loader,

environment variable for 4-28,
4-55

HOUR keyword
use

as DATETIME field
qualifier 3-10

as INTERVAL field
qualifier 3-17

Hyphen (-)
as delimiter in DATETIME 3-11
as delimiter in INTERVAL 3-18

I
Index

descriptions in sysindexes
table 2-26

threads for 4-58
Information Schema views

accessing 2-51
columns view 2-53
description of 2-50
generating 2-51
server_info view 2-55
sql_languages view 2-54
tables view 2-52

Informix extension checking,
specifying with
DBANSIWARN 4-17

INFORMIXC environment
variable 4-41

INFORMIXCOB environment
variable 4-42

INFORMIXCOBDIR environment
variable 4-43

INFORMIXCOBSTORE
environment variable 4-43

INFORMIXCOBTYPE environment
variable 4-44

INFORMIXCONRETRY
environment variable 4-44

INFORMIXCONTIME
environment variable 4-45

INFORMIXDIR environment
variable 4-46

INFORMIXOPCACHE
environment variable 4-47

INFORMIXSERVER environment
variable 4-47

INFORMIXSHMBASE
environment variable 4-48, 4-49

INFORMIXSTACKSIZE
environment variable 4-49

INFORMIXTERM environment
variable 4-50

Informix, environment
configuration file 4-6

informix.rc file 4-6
INF_ROLE_SEP environment

variable 4-51
INSERT statement

inserting
values into SERIAL

columns 3-22
Installation directory, specifying

with INFORMIXDIR 4-46
Installation files, INFORMIXDIR

environment variable 4-46
INTEGER data type

changing data types 3-27
description of 3-16

Intensity attributes, setting
INFORMIXTERM for 4-50

INTERVAL data type
adding or subtracting from 3-35

adding or subtracting from
DATETIME values 3-32

description of 3-16
field delimiters 3-18
multiplying or dividing

values 3-36
range of expressions 3-30
range of operations with DATE

and DATETIME 3-30
with EXTEND function 3-31, 3-33

Isolation level
default in ANSI-compliant

database 1-15
items table in stores7 database,

columns in A-4

K
Korn shell

how to set environment
variables 4-8

.profile file 4-7

L
Language environment

DBLANG 4-25
setting with DBLANG 4-25

LOAD statement
specifying field delimiter with

DBDELIMITER 4-24
Locale 1-17
Locking

in OnLine 1-6
in SE 1-6
mode 1-6
scope 1-6
shared locks 1-7

M
Machine notes Intro-21
Memory cache, for Optical

StageBlob area 4-47
Message files, specifying

subdirectory with
DBLANG 4-26
Index 5

MINUTE keyword
use

as DATETIME field
qualifier 3-10

as INTERVAL field
qualifier 3-17

MODE ANSI keywords
specifying ANSI compliance 1-12

MONEY data type
changing data types 3-27
description of 3-20
display format specified with

DBMONEY 4-27
international money formats 3-20

MONTH keyword
use

as DATETIME field
qualifier 3-10

as INTERVAL field
qualifier 3-17

Multibyte characters, with CHAR
data type 3-7

N
Network environment variable

DBPATH 4-29
SQLRM 4-59
SQLRMDIR 4-59

NLS, compatibility with version 7.2
products 1-17

NODEFDAC environment variable
description of 4-51

Nonprintable characters
with CHAR data type 3-7

Not null constraint, described in
syscoldepend table 2-15

NULL value
testing in BYTE expression 3-5
testing with TEXT data type 3-24

Null value
in columns, status in syscolumns

table 2-16
NUMERIC data type 3-21

O
Object mode

of database objects, described in
sysobjstate table 2-29

ONCONFIG environment
variable 4-52

On-line files Intro-21
OPTCOMPIND environment

variable, values 4-53
Optical cluster, described in

sysopclstr table 2-30
Optical StageBlob area, memory

cache for 4-47
orders table in stores7 database,

columns in A-3

P
Parallel distributed queries

setting with PDQPRIORITY
environment variable 4-54

Parallel sorting, using
PSORT_NPROCS for 4-56

PATH environment variable 4-54
Pathname

for C compiler 4-41
for COBOL compiler 4-42
for database server 4-29
for executable programs 4-54
for installation 4-46
for message files 4-25
for parallel sorting 4-56
for relay module 4-58
for remote shell 4-33
for temporary files in SE 4-35
specifying with DBPATH 4-29
specifying with PATH 4-54

PDQ
OPTCOMPIND environment

variable 4-53
PDQPRIORITY environment

variable 4-54
PLCONFIG environment

variable 4-55
Precedence, rules for environment

variables 4-11
Prepared statement

version number in systables 2-41
Printing with DBPRINT 4-32
Privilege

ANSI-compliant databases
and 1-14

on a table fragment
described in sysfragauth

table 2-23
on a table, described in

systabauth 2-39
on database, described in the

sysusers table 2-45
preventing to PUBLIC 4-51
related to procedures, described

in sysprocauth table 2-32
user, described in sysusers

table 2-45
Procedure privileges, described in

sysprocauth table 2-32
Protected stored procedures 2-34
PSORT_DBTEMP environment

variable 4-56
PSORT_NPROCS environment

variable 4-57

Q
Qualifier, field

for DATETIME 3-10
Query

optimization information in
sysprocplan table 2-35

R
REAL data type 3-21
Relay module

SQLRM environment
variable 4-59

SQLRMDIR environment
variable 4-59

Release notes Intro-21
Remote shell 4-33
Role

granted to user, described in
sysroleauth table 2-37

Role separation, environment
variable for 4-51

Routine DATETIME
formatting 4-36
6 Informix Guide to SQL: Reference

Runtime program, setting
DBANSIWARN 4-17

S
SE temporary files 4-35
SECOND keyword

use
as DATETIME field

qualifier 3-10
as INTERVAL field

qualifier 3-17
Sequential integers, with SERIAL

data type 3-21
SERIAL data type

description of 3-21
inserting values 3-22
resetting values 3-22

Setting environment variables 4-8
Shared memory

setting
INFORMIXSHMBASE 4-48

Shared memory parameters,
specifying file with
ONCONFIG 4-52

Shell
remote 4-33
search path 4-54
setting environment variables in a

file 4-7
specifying with

DBREMOTECMD 4-33
Single-precision floating-point

number, storage of 3-15
SMALLFLOAT data type

changing data types 3-27
description of 3-22

SMALLINT data type
changing data types 3-27
description of 3-23

Sorting
setting DBSPACETEMP

environment variable 4-34
setting PSORT_DBTEMP

environment variable 4-56
setting PSORT_NPROCS

environment variable 4-57
threads for 4-57

Space ()
as delimiter in DATETIME 3-11
as delimiter in INTERVAL 3-18

Specifying ANSI compliance 1-12
SQL Communications Area

(SQLCA)
effect of setting

DBANSIWARN 4-17
SQLEXEC environment

variable 4-58
sqlhosts file 4-49
SQLRM environment variable 4-59
SQLRMDIR environment

variable 4-59
Stacksize, setting

INFORMIXSTACKSIZE 4-49
state table in stores7 database,

columns in A-7
Statement, SQL

ANSI compliance and
DBANSIWARN 4-17

CONNECT and
INFORMIXSERVER 4-48

editing and DBEDIT 4-24, 4-25,
4-28

LOAD and DBDELIMITER 4-24,
4-39

printing and DBPRINT 4-32
UNLOAD and

DBDELIMITER 4-24, 4-39
UPDATE STATISTICS and

DBUPSPACE 4-39
stock table in stores7 database,

columns in A-5
Stored procedure

characteristics in sysprocedures
table 2-34

protected 2-34
stores7 database

call_type table columns A-6
catalog table columns A-5
customer table columns A-2
cust_calls table columns A-6
data values A-16
description of A-1
items table columns A-4
manufact table columns A-7
map of A-8
orders table columns A-3

primary-foreign key
relationships A-9 to A-16

stock table columns A-5
structure of tables A-2

Synonym
for each table view, described in

syssynonyms table 2-37
for each table, described in

syssyntable 2-38
in ANSI-compliant database 1-16

syscolauth catalog table,
example 2-8

syscolauth system catalog table 2-8
syscolumns system catalog table,

example 2-7
sysfragauth system catalog table,

example 2-23
sysindexes system catalog table,

example 2-9
sysobjstate system catalog table,

example 2-29
sysroleauth system catalog table,

example 2-37
systabauth system catalog table 2-8
systables system catalog table,

example 2-6
System catalog

accessing 2-10
altering contents 2-10
description of 2-3
how used by database server 2-5
list of tables 2-11
map of tables 2-47
sysblobs 2-12
syschecks 2-13
syscolauth 2-14
syscoldepend 2-15
syscolumns 2-15
sysconstraints 2-19
sysdefaults 2-20
sysdepend 2-21
sysdistrib 2-22
sysfragauth 2-23
sysfragments 2-24
sysindexes 2-26
sysobjstate 2-29
sysopclstr 2-30
sysprocauth 2-32
sysprocbody 2-32
Index 7

sysprocedures 2-34
sysprocplan 2-35
sysreferences 2-36
sysroleauth 2-37
syssynonyms 2-37
syssyntable 2-38
systabauth 2-39
systables 2-40
systrigbody 2-43
systriggers 2-44
sysusers 2-45
sysviews 2-46
sysviolations 2-46
updating statistics 2-11
updating system catalog

tables 2-10
using 2-4

sysviews catalog table, example 2-7
sysviolations systems catalog table,

example 2-46

T
tabid, description of 2-6
Table

changing the data type of a
column 3-27

dependencies, in sysdepend
table 2-21

description in systables catalog
table 2-40

structure in stores7 database A-2
synonyms in syssyntable

table 2-37
system catalog tables 2-12 to 2-46
temporary in SE 4-36

Table-level privilege
shown in tabauth table 2-8

tabtype 2-40, 2-42
Tape management

setting ARC_DEFAULT 4-15
setting ARC_KEYPAD 4-16
setting DBREMOTECMD 4-33

Temporary
tables in SE, specifying directory

with DBTEMP 4-36
tables, specifying dbspace with

DBSPACETEMP 4-34

Temporary files
in OnLine, setting

DBSPACETEMP 4-34
in SE, specifying directory with

DBTEMP 4-36
setting PSORT_DBTEMP 4-56

TERM environment variable 4-60
TERMCAP environment

variable 4-60
termcap file, and TERMCAP

environment variable 4-60
Terminal handling

and TERM environment
variable 4-60

and TERMCAP environment
variable 4-60

and TERMINFO environment
variable 4-61

setting INFORMIXTERM 4-50
terminfo directory, and TERMINFO

environment variable 4-61
TERMINFO environment

variable 4-61
TEXT data type

collation 3-25
description of 3-23
inserting values 3-24
restrictions

with aggregate functions 3-24
with GROUP BY 3-24
with IN clause 3-24
with LIKE or MATCHES 3-24
with ORDER BY 3-24

selecting a column 3-24
use in Boolean expression 3-24
with control characters 3-24

Text editor, specifying with
DBEDIT 4-24

THREADLIB environment
variable 4-61

Time value
setting DBTIME environment

variable 4-36
Transaction

ANSI-compliant database, effects
on 1-13

rolling back 1-5
Transaction logging

ANSI-compliant database, effects
on 1-13

effect on database server type 1-5
Trigger

information in systriggers
table 2-44

text in systrigbody table 2-43

U
Unique numeric code, with SERIAL

data type 3-22
UNIX

BSD, default print capability 4-32
environment variables 4-5
PATH environment variable 4-54
specifying directories for

intermediate writes 4-56
System V

default print capability 4-32
terminfo library support 4-50

TERM environment variable 4-60
TERMCAP environment

variable 4-60
TERMINFO environment

variable 4-61
UNLOAD statement

specifying field delimiter with
DBDELIMITER 4-24

UPDATE STATISTICS statement
and DBUPSPACE environment

variable 4-39
effect on sysdistrib table 2-22
update system catalog 2-10

User privileges, described in
sysusers table 2-45

Utility program
chkenv 4-10

V
VARCHAR data type

collation 3-27
View

dependencies, in sysdepend
table 2-21

described in sysviews table 2-46
8 Informix Guide to SQL: Reference

synonyms in syssynonyms
table 2-37

system catalog table 2-46
Violations, for base tables,

described in sysviolations
table 2-46

X
X/Open

and server_info view 2-55
Information Schema views 2-50

X/Open-compliant databases 2-55

Y
YEAR keyword

use
as DATETIME field

qualifier 3-10
as INTERVAL field

qualifier 3-17
Year values, two and four

digit 4-18

Symbols
(), space, as delimiter

in DATETIME 3-11
in INTERVAL 3-18

-, hyphen, as delimiter
in DATETIME 3-11
in INTERVAL 3-18

., decimal point, as delimiter
in DATETIME 3-11
in INTERVAL 3-18

/etc/termcap 4-61
:, colon, as delimiter

in DATETIME 3-11
in INTERVAL 3-18
Index 9

	Informix Online Documentation
	Table of Contents
	Introduction
	About This Manual
	Organization of This Manual
	Types of Users
	Software Dependencies
	Demonstration Database

	New Features of This Product
	Conventions
	Typographical Conventions
	Icon Conventions
	Comment Icons
	Compliance Icons

	Command-Line Conventions
	Sample-Code Conventions

	Additional Documentation
	Printed Documentation
	On-Line Documentation
	Error Message Files
	Release Notes, Documentation Notes, Machine Notes

	Related Reading

	Compliance with Industry Standards
	Informix Welcomes Your Comments

	Informix Databases
	Choosing a Database Server
	Data Types
	Rolling Back Statements in a Transaction
	Transaction Logging
	Table and Index Fragmentation
	Locking Issues
	Lock Scope
	Lock Mode
	Use of Shared Locks
	Waiting for Locks

	Isolation Level
	System Catalog Tables
	SQL Statements Supported by Specific Database Serv...
	SQL Statements Supported Only by OnLine
	SQL Statements That Contain Branches Specific to O...
	SQL Segments That Contain Branches Specific to OnL...
	SQL Statements Supported Only by SE
	SQL Statements and Segments That Contain Branches ...

	Using ANSI-Compliant Databases
	Designating a Database as ANSI Compliant
	Determining If an Existing Database Is ANSI Compli...
	Differences Between ANSI-Compliant and Non-ANSI- C...
	Transactions
	Transaction Logging
	Owner Naming
	Privileges on Objects
	Default Isolation Level
	Character Data Types
	Decimal Data Type
	Escape Characters
	Cursor Behavior
	The SQLCODE Field of the SQL Communications Area
	SQL Statements Allowed with ANSI-Compliant Databas...
	Synonym Behavior

	Using a Customized Language Environment for Your D...

	System Catalog
	Objects Tracked by the System Catalog Tables
	Using the System Catalog
	Accessing the System Catalog
	Updating System Catalog Data

	Structure of the System Catalog
	SYSBLOBS
	SYSCHECKS
	SYSCOLAUTH
	SYSCOLDEPEND
	SYSCOLUMNS
	SYSCONSTRAINTS
	SYSDEFAULTS
	SYSDEPEND
	SYSDISTRIB
	SYSFRAGAUTH
	SYSFRAGMENTS
	SYSINDEXES
	SYSOBJSTATE
	SYSOPCLSTR
	SYSPROCAUTH
	SYSPROCBODY
	SYSPROCEDURES
	SYSPROCPLAN
	SYSREFERENCES
	SYSROLEAUTH
	SYSSYN�ONYMS
	SYSSYNT�ABLE
	SYSTABAUTH
	SYSTABLES
	SYSTRIGBODY
	SYSTRIGGERS
	SYSUSERS
	SYSVIEWS
	SYSVIOLATIONS

	System Catalog Map
	Information Schema
	Generating the Information Schema Views
	Accessing the Information Schema Views
	Structure of the Information Schema Views
	TABLES
	COLUMNS
	SQL_LANGUAGES
	SERVER_INFO

	Data Types
	Database Data Types
	Summary of Data Types
	BYTE
	CHAR(n�)
	Collating CHAR Data
	Multibyte Characters with CHAR
	Treating CHAR Values as Numeric Values
	Nonprintable Characters with CHAR

	CHARACTER(n)
	CHARACTER VARYING(m,r)
	DATE
	DATETIME
	DEC
	DECIMAL
	DECIMAL Storage

	DOUBLE PRECISION
	FLOAT(n)
	INT
	INTEGER
	INTERVAL
	MONEY(p,s)
	NCHAR(n�)
	NUMERIC(p,s�)
	NVARCHAR(m,r�)
	REAL
	SERIAL(n�)
	SMALLFLOAT
	SMALLINT
	TEXT
	Nonprintable Characters with TEXT
	Multibyte Characters with TEXT
	Collating TEXT Data

	VARCHAR(m,r�)
	Multibyte Characters with VARCHAR
	Collating VARCHAR
	Nonprintable Characters with VARCHAR
	Storing Numeric Values in a VARCHAR Column

	Data Type Conversions��������
	Converting from Number to Number
	Converting Between Number and CHAR
	Converting Between DATE and DATETIME

	Range of Operations Using DATE, DATETIME, and�INTE...
	Manipulating DATETIME Values
	Manipulating DATETIME with INTERVAL Values
	Manipulating DATE with DATETIME and INTERVAL�Value...
	Manipulating INTERVAL Values
	Multiplying or Dividing INTERVAL Values

	Environment �Variables
	Types of Environment Variables
	Where to Set Environment Variables
	Setting Environment Variables at the System Prompt...
	Setting Environment Variables in an Environment- C...
	Setting Environment Variables at Login Time

	Manipulating Environment Variables
	Setting Environment Variables
	Viewing Your Current Settings
	Unsetting Environment Variables
	Modifying the Setting of an Environment Variable

	Checking Environment Variables with the chkenv Uti...
	Rules of Precedence
	List of Environment Variables
	Environment Variables
	ARC_DEFAULT
	ARC_KEYPAD
	DBANSIWARN
	DBBLOBBUF
	DBCENTURY
	DBDATE
	DBDELIMITER
	DBEDIT
	DBFLTMASK
	DBLANG
	DBMONEY
	DBONPLOAD
	DBPATH
	DBPRINT
	DBREMOTECMD
	DBSPACETEMP
	DBTEMP
	DBTIME
	DBUPSPACE
	DELIMIDENT
	ENVIGNORE
	FET_BUF_SIZE
	INFORMIXC
	INFORMIXCOB
	INFORMIXCOBDIR
	INFORMIXCOBSTORE
	INFORMIXCOBTYPE
	INFORMIXCONRETRY
	INFORMIXCONTIME
	INFORMIXDIR
	INFORMIXOPCACHE
	INFORMIXSERVER
	INFORMIXSHMBASE
	INFORMIXSQLHOSTS
	INFORMIXSTACKSIZE
	INFORMIXTERM
	INF_ROLE_SEP
	NODEFDAC
	ONCONFIG
	OPTCOMPIND
	PATH
	PDQPRIORITY
	PLCONFIG
	PSORT_DBTEMP
	PSORT_NPROCS
	Default Values for Ordinary Sorts
	Default Values for Attached Indexes

	SQLEXEC
	SQLRM
	SQLRMDIR
	TERM
	TERMCAP
	TERMINFO
	THREADLIB

	Index of Environment Variables

	The stores7 Database
	Glossary
	Index

