
4js.com.au Securing BDL Applications Over the Internet with SSH - HOWTO

© Copyright Century Software 2001 1 Draft Revision 0.4.a

Securing BDL Applications Over the Internet with SSH - HOWTO
Morgan Ho, MoHo@4js.com.au
Draft Revision 0.4.a, Created 11dec2000, Last update 16jan2001

This document introduces SSH (secure shell) and how it can be used to run secure
Four Js BDL applications over the Internet including a case study that covers an
implementation using OpenSSH.

This document is copyright by Century Software Pty. Ltd.
(http://www.CenturySoftware.com.au) and may be reproduced and distributed freely
subject to the terms of the GNU Free Documentation Licence
(http://www.gnu.org/copyleft/fdl.html).

Table of Contents

1 Introduction ... 2

2 Requirements... 2

3 Server Setup... 3

4 Testing the Server.. 4

5 Setting Up A Windows Client .. 5

6 Tunnelling .. 6

7 Starting A Secure Application ... 9

8 Launching A Secure Application... 10

9 Performance... 10

10 Other Four Js Clients.. 10

11 Firewalls ... 11

12 Limitations ... 15

http://www.centurysoftware.com.au/
http://www.gnu.org/copyleft/fdl.html

4js.com.au Securing BDL Applications Over the Internet with SSH - HOWTO

© Copyright Century Software 2001 2 Draft Revision 0.4.a

1 Introduction

SSH is a secure shell replacement for rsh (or rcmd). SSH also provides port
forwarding capabilities which allows other socket connections (eg. Windows or Java
client) to be tunelled through an established SSH connection.

For more information about SSH, see http://www.ssh.org and FAQs at
http://www.employees.org/~satch/ssh/faq/ssh-faq.html.

This document describes how to implement SSH to run secure BDL applications over
the Internet. We will also examine a simple case study using open source
implementations of SSH that support both SSH1 and SSH2 protocols.

2 Requirements

The requirements are pretty straight forward - you need an ssh daemon (sshd) on the
server side to listen for requests and ssh on the client side.

Other client tools include scp (the secure analogy for rcp).

The following case study is based on OpenSSH http://www.openssh.com and
OpenSSL http://www.openssl.org implementations.

The Linux versions used were from RedHat http://www.redhat.com.

There are a few Windows NT versions around. The one we used included SSH
daemon for NT as well and can be found at:

http://marvin.criadvantage.com/caspian/Software/SSHD-NT/default.php
or
http://www.certaintysolutions.com/tech-advice/ssh_on_nt.html

which are Windows ports of OpenSSH using Cygnus GNU libraries
(http://www.cygnus.com). Note this is a character mode implementation.

If you just want a minimal SSH client, try this lite package which is a simple subset of
one of Windows OpenSSH ports:

http://www.4js.com.au/ssh/openssh-lite.zip

http://www.openssl.org/

4js.com.au Securing BDL Applications Over the Internet with SSH - HOWTO

© Copyright Century Software 2001 3 Draft Revision 0.4.a

There are also many other commercial and shareware implementations, with varying
features and levels of conformity. The main things to look for are (and beware, most
are only stelnet clients):

• Protocol support (SSH1/SSH2)
• Range of ciphers
• Port redirection (ie. tunnelling)
• Compression (for performance)

Here are some others with GUI front-ends that we have tested:

 MindTerm (Java based http://www.mindbright.se)
 SSH Communications (http://www.ssh.com)
 F-Secure SSH Client (http://www.f-secure.com)

Note: SSH1 protocol relied on encryption algorithms originally patented by RSA
Data Security which expired in Sept 2000, which ends the US export restrictions.
However there are many SSH product sites yet to acknowledge this and you may
experience
some difficulty downloading from these anachronistic sites. You can either wait (I'm
sure they'll get their act together) or use http://www.anonymous.com to work around
this.

As an aside, this was an exceptionally good (and free) SSH and telnet terminal
emulator (though it doesn't have all the features we need for tunnelling, it was a very
good replacement for our previous commercial emulator).

PuTTY http://www.chiark.greenend.org.uk/~sgtatham/putty/

3 Server Setup

The server was an Intel based PC running RedHat 6.2 at kernel 2.2.16-3. The
following RPMs were installed:

rpm -i openssl-0.9.6-1.i386.rpm
rpm -i openssl-misc-0.9.6-1.i386.rpm
rpm -i openssh-2.1.1p1-1.i386.rpm
rpm -i openssh-server-2.1.1p1-1.i386.rpm
rpm -i openssh-clients-2.1.1p1-1.i386.rpm
rpm -i openssh-askpass-2.1.1p1-1.i386.rpm

These are either available on your RedHat CD or can be downloaded from
http://www.redhat.com. The server package will automatically generate a server key
for you.

http://www.mindbright.se/
http://www.ssh.com/
http://www.f-secure.com/
http://www.anonymous.com/
http://www.chiark.greenend.org.uk/~sgtatham/putty/

4js.com.au Securing BDL Applications Over the Internet with SSH - HOWTO

© Copyright Century Software 2001 4 Draft Revision 0.4.a

Then you need to allow access to sshd by adding the following entry to your
/etc/hosts.allow file:

sshd : ALL

If you don't wish to provide global access you can replace ALL with a list of IP or
domain name patterns.

Now, if sshd wasn't started up automatically (which it should do next time you
reboot), then you can start it with:

/etc/rc.d/init.d/sshd start

4 Testing the Server

If you installed all of the above RPMs, you would have also installed the SSH client.
You can test the server from the same server by running:

ssh server [-l user]

where server is the name or IP address of your server and user is the login id
(default is your current login id).

By default, you will be using standard login/password authentication. You can also
improve security with other options such as implementing RSA (SSH1) or DSA
(SSH2) public keys as well as optional passphrases (if you don't use passphrases, you
won't need to enter them – but if someone steals your private certificate...).

To use certificates, you need a tool like ssh-keygen to generate a private and public
key, which can also incoporate your passphrase (typically a sentence rather than a
password for added security). The public key is stored on the server (typically in your
home directory's .ssh directory in file identity.pub (RSA) or id_dsa.pub (DSA).

You will need to examine your security requirements to determine the most
appropriate authentication strategy to use. See the SSH FAQs for more information to
help you decide.

For our example, we'll use the default password authentication.

The first time you connect, you will be warned that the server cannot be authenticated
and the server's RSA/DSA fingerprint will be provided for you to verify (for the ultra
paranoid). If you trust it, it will be added your list of known hosts. This is a
safeguard against spoofing.

http://www.employees.org/~satch/ssh/faq/ssh-faq.html

4js.com.au Securing BDL Applications Over the Internet with SSH - HOWTO

© Copyright Century Software 2001 5 Draft Revision 0.4.a

$ ssh server -l fred
The authenticity of host 'server.domain.com' can't be
established.
RSA key fingerprint is
af:33:8d:c5:8d:43:75:88:27:60:12:dd:ed:23:57:9b.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'server.domain.com,192.0.0.1' (RSA)
to
the list of known hosts.
fred@server.domain.com's password:
$

After you answer “yes”, you will be logged into a shell.

That's it.

5 Setting Up A Windows Client

Most of the GUI SSH clients use their own self-extracting installers.

The openssh-lite is quite straight forward to install.

1. Create a directory %SystemDrive%:\etc. The passwd file must reside on your
system drive (typically C:).

2. Install the contents of the zip archive into this directory.

3. For command syntax

ssh -help

4. To login to your server

ssh server -l user

where user is your loginid on server. The first time you run this, it will create a
.ssh directory to store known_hosts and a random number seed used for permuting
subsequent ciphers. Using the lite version (ie. without the rest of the Cygnus GNU
baggage), it will fail to find a shell and exit.

Note that Windows does not allow you to create a directory .ssh, so allow this initial
step to create it for you.

Just run it again to actually connect.

http://www.4js.com.au/ssh/openssh-lite.zip

4js.com.au Securing BDL Applications Over the Internet with SSH - HOWTO

© Copyright Century Software 2001 6 Draft Revision 0.4.a

C:\etc> ssh server1
setsockopt IPTOS_LOWDELAY: Invalid argument
Host key not found from the list of known hosts.
Are you sure you want to continue connecting (yes/no)? yes
Host 'server1' added to the list of known hosts.
Creating random seed file ~/.ssh/random_seed. This may take a while.
execv /bin/sh failed: No such file or directory
execv /bin/sh failed: No such file or directory
execv /bin/sh failed: No such file or directory
execv /bin/sh failed: No such file or directory
execv /bin/sh failed: No such file or directory
execv /bin/sh failed: No such file or directory
execv /bin/sh failed: No such file or directory
Write failed: errno ESHUTDOWN triggered

C:\etc> ssh server2 -l fred
setsockopt IPTOS_LOWDELAY: Invalid argument
Host key not found from the list of known hosts.
Are you sure you want to continue connecting (yes/no)? yes
Host 'server2' added to the list of known hosts.
fred@server2's password:
setsockopt IPTOS_LOWDELAY: Invalid argument
$

5. If you wish to avoid using the -l loginid arguments, modify the entry in passwd to
your login name on Windows.

While OpenSSH may not be as elegant as the GUI offerings, it works quite well and
as you have access to the source code, you can encapsulate it with your own GUI
front end.

This Windows port is a little dated and does not support SSH2 or show the server
fingerprint on initial connection, but works adequately enough. If you really need the
latest, have a hunt on the web or grab the sources and the Cygus toolkit and go for it.

6 Tunnelling

One of the most powerful features of SSH is the ability to establish tunnels through
the encrypted connection between the client and the server.

Let's look at how a typical Windows WTK client might start an application on a
server.

4js.com.au Securing BDL Applications Over the Internet with SSH - HOWTO

© Copyright Century Software 2001 7 Draft Revision 0.4.a

1. The client starts the WTK display server and listens on the default port 6400. If the
option is enabled for WTK, the client will also start an rshd (remote shell daemon) on
port 514.

2. The client connects to the rlogind port (513) on the server for a nominated user
login.

3. Assuming the client is not trusted (ie. not defined in /etc/hosts.equiv or .rhosts),
and that the client's IP address passes any other security checks (eg. tcpd wrapper),
the server will typically prompt for the user's password.

4. The client will respond by sending the user's password, which is sent in clear text
which can be intercepted by anyone on the Internet.

5. If the password is correct, a shell is spawned.

6. The client monitors the standard output stream from the shell and considers itself
"logged in" when it sees the expect sequence LOGIN_OK (typically a string like
"Last login ..." – refer to Four Js Windows Client User Guide).

7. Initial commands, if defined, are then sent to the remote shell session to start the
application. Typically this consists of setting the FGLSERVER environment variable
and fglrun to run a BDL application.

8. The fglrun process examines the FGLSERVER (eg. client:0) environment
variable and connects to port 6400 on the client. If the session offset is something
other than :0, then this value would be added to the base port of 6400. Hence if we
had FGLSERVER=client:10, then the port used would be 6410.

9. If this is the first application, an initialisation occurs (loading of fgl2c.tcl) and
displays any initial content from the application.

Clearly in the above example, we are publicly exposing:

• The password
• All traffic between client and server
• A publicly accessible (and hackable) login port

4js.com.au Securing BDL Applications Over the Internet with SSH - HOWTO

© Copyright Century Software 2001 8 Draft Revision 0.4.a

SSH can be used to secure all data between the client and server and provides
improved authentication to guard against unauthorised intrusion.

A tunnel is a logical network connection between two hosts, where one or more
protocols are encapsulated within another. If the tunnelling protocol is SSH in this
case, then we can encapsulate other protocols such as Four Js, FTP, smtp, etc.
securely between the two hosts.

In SSH, tunnelling is implemented with by redirecting ports, also known as port
forwarding. Thus it is possible to listen on a port on the remote host and redirect this
through the tunnel to a port on the local host or vice versa. Depending on the
direction, the tunnel may be referred to as inbound or outbound.

Of course this would normally impose an overhead, but SSH allows for compression
which can be used to compensate.

Assuming we can make an SSH connection to the server from the client, we would
need to establish an inbound tunnel from the server to the client on port 6400. On the
server, we can map an arbitrarily unused port, say 16400 to effectively be our proxy
port to the client.

So from the application server's perspective, instead of setting
FGLSERVER=client:0, we would set this to FGLSERVER=localhost:10000.
When the application runs, it would add 10000 to base port 6400 and connect to
port 16400 on the local server, which then redirects through the tunnel to port 6400 on
the client.

This is how we can use SSH to login to the server and start an application.

1. The client starts the display server and listens on the default port 6400.

2. SSH connects to sshd (port 22) on the server for the nominated user.

3. After some protocol handshaking (negotiate protocols and ciphers, exchange of
keys, random numbers, etc.) a secure connection is established.

4js.com.au Securing BDL Applications Over the Internet with SSH - HOWTO

© Copyright Century Software 2001 9 Draft Revision 0.4.a

4. The server will require some form of authentication. This can vary as SSH allows
for several authentication schemes including public key, passphrases and Kerberos.
The default and simplest is traditional password (which will be encrypted at this
stage).

5. Passing authentication, a shell is spawned and an inbound tunnel is established
mapping port 16400 on the server to port 6400 on the client.

6. If a command was specified, it is executed by the remote shell. The environment
variable FGLSERVER is typically set to localhost:10000.

7. The fglrun process examines the FGLSERVER (localhost:10000) environment
variable and connects to port 16400 on the server, which redirects through the tunnel
to port 6400 on the client.

8. If this is the first application, an initialisation occurs (loading of fgl2c.tcl) and
displays any initial content from the application.

NOTE: A unique and unused port number must be allocated for each secure client.
For example,

 User 1 FGLSERVER=localhost:10000
 User 2 FGLSERVER=localhost:10001
 User 3 FGLSERVER=localhost:10002
 etc.

The policy for allocation of server port numbers can be automated (eg. counting
number of Four Js locks) or manually allocated for each user (ie. each user is
allocated a unique number).

7 Starting A Secure Application

The first step is to start an application manually.

1. Start your Windows, Java or X11 client

2. Login to the server

ssh -C -R 16400:localhost:6400 server -l user

what this does is:

-R 16400:localhost:6400

will establish a remote tunnel that listens on port 16400 on the remote server and
redirects this through the tunnel to port 6400 on the localhost.

4js.com.au Securing BDL Applications Over the Internet with SSH - HOWTO

© Copyright Century Software 2001 10 Draft Revision 0.4.a

 -C provides compression
 -l user is the user to login as

3. Authenticate
Enter your password, passphrase, etc.

4. Set FGLSERVER
Once you are logged in, set your FGLSERVER environment variable:

FGLSERVER=localhost:10000 ; export FGLSERVER

5. Start your application
eg.

. $FGLDIR/envcomp
cd $FGLDIR/demo
fglrun ia

8 Launching A Secure Application

You can also pass an initial command to the server to launch your application. In this
example, start.sh is a script that sets up the environment and starts your application.

ssh -C -R 16400:localhost:6400 server →

"export FGLSERVER=localhost:10000 ; exec start.sh"

9 Performance

We have generally found that using SSH with compression did not adversely affect
performance over the Internet. It was about the same as running the application
unsecured.

10 Other Four Js Clients

You can also use SSH with other Four Js clients (in fact any other protocol). We have
tested this with:

• Cli-ASCII (of course)
• Cli-Windows
• Cli-Java (in direct application mode - no web server)
• Cli-X11 client

4js.com.au Securing BDL Applications Over the Internet with SSH - HOWTO

© Copyright Century Software 2001 11 Draft Revision 0.4.a

Note: Even though SSH supports X11 redirection, using a remote X display server is
very slow. Ideally you should have the fglX11d daemon running on the client, as the
Four Js protocol is much more efficient than X11 display protocol.

11 Firewalls

SSH with its port forwarding capability can be used to pass through firewalls of
varying configurations. While it is not possible to cover the permutations, we will
look at some typical firewall configurations. Although you may need to make some
configuration changes to your firewall, with SSH, only port 22 is required as
everything else can be tunnelled through the SSH connection.

A simple firewall consists of a router with packet filtering capabilities. The router
needs to be configured to allow an inbound connection to port 22 to the application
server.

Note that IP addresses may be translated through the router, as long as we can connect
to port 22 on the server.

Once we have the SSH connection to the server, the tunnel is established and the
application processes (fglrun) can then connect back to the client on port 6400 by
forwarding to port 16400 on localhost, which is then redirected through the tunnel to
the client.

4js.com.au Securing BDL Applications Over the Internet with SSH - HOWTO

© Copyright Century Software 2001 12 Draft Revision 0.4.a

In the next configuration, the firewall is a server that has an sshd daemon running.

The client in this case connects with SSH to the firewall server and establishes a
secure tunnel. After logging in to the firewall, the application can be remotely
executed or is logged in to the application server to launch the application.
FGLSERVER is set to firewall:10000 in this case to redirect client traffic back
through the tunnel.

Note: By default, sshd on a multi-homed firewall server (ie. a server/router with more
than one IP interface such as LAN card or PPP, but excluding localhost) will establish
the listening port 16400 on localhost. This is a security measure to ensure that only
applications on the firewall server can connect to 16400 and hence, the client. You
can override this by setting GatewayPorts to yes in /etc/ssh/sshd_config. Depending
on the configuration of your firewall server, you should probably deny access to this
port 16400 from the public internet (typically through ipchains or ipfwadm if this is
not done already) and only allow access from the intranet.

From a security perspective however, it is also not a good idea to allow remote
execution (with trusted hosts, ie. without passwords) from a firewall server.

4js.com.au Securing BDL Applications Over the Internet with SSH - HOWTO

© Copyright Century Software 2001 13 Draft Revision 0.4.a

This configuration is also useful where IP masquerading is used or you only have one
valid IP address (ie. the firewall).

The next configuration sets up two tunnels, the first to the firewall, and the second
between the firewall and the application server.

This provides a better security by keeping the traffic encrypted all the way to the
application server. Unlike the previous configuration, GatewayPorts can remain set
to no. Note that the second ssh from the fireall to the application server
uses port forward mapping of 16400 on the application server to 16400 on the
firewall. Also note that no compression is required if running on the intranet as this is
assumed to be at LAN speed.

4js.com.au Securing BDL Applications Over the Internet with SSH - HOWTO

© Copyright Century Software 2001 14 Draft Revision 0.4.a

The last configuration consists of two firewalls with a possible DMZ between the two
firewalls.

There are many other possible firewall configurations, but with SSH's port forwarding
capabilities, you should be able to create a configuration that will allow you to work
through a firewall securely.

4js.com.au Securing BDL Applications Over the Internet with SSH - HOWTO

© Copyright Century Software 2001 15 Draft Revision 0.4.a

12 Limitations

12.1 Remote Shell Daemon on Windows client (WTK and Java)

The Windows client provides an optional rshd daemon that can be used to transfer
files between client and server as well as to remotely execute client side applications.
Although there is an sshd daemon that could be used, the ones we found only seem to
work on Windows NT/2000. We have not checked for any other sshd ports to
Windows at this stage (although, the source is there ...).

If you rely on this, you may need to re-engineer some part of your application to
initiate file copies, etc from the client. On the other hand, from a security perspective,
it is probably better to have a cogniscent user pull files from the server (ie. the user is
always aware of when files are added or modified on their system).

	Introduction
	Requirements
	Server Setup
	Testing the Server
	Setting Up A Windows Client
	Tunnelling
	Starting A Secure Application
	Launching A Secure Application
	Performance
	Other Four Js Clients
	Firewalls
	Limitations
	Remote Shell Daemon on Windows client (WTK and Java)

